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Abstract

Climate change and an increasing world population means traditional farming

methodsmay not be able tomeet the anticipated growth in food demands. There-

fore, alternative agricultural strategies should be considered. Here, plant cell and

tissue cultures (PCTCs) may present a possible solution, as they allow for con-

trolled, closed and sustainable manufacturing of extracts which have been or are

still being used as colorants or health food ingredients today. In this review we

would like to highlight developments and the latest trends concerning commer-

cial PCTC extracts and their use as food ingredients or even as food. The com-

mercialization of PCTC-derived products, however, requires not only regulatory

approval, but also outstanding product properties or/and a high product titer. If

these challenges can be met, PCTCs will become increasingly important for the

food sector in coming years.
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1 INTRODUCTION

There are currently more than 7 billion people on earth,
with predictions by the United Nations estimating that
this number is set to increase to 10 billion by 2050 [1].
While this has led to increased demands for food, the lim-
ited amount of arable land per capita available for food
production has constantly been decreasing due to popu-
lation growth and factors such as urbanization, erosion,
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soil salinization, and desertification. Furthermore, sus-
tainability in food production [2, 3] and the threat of crop
losses due to climate change and plant diseases are play-
ing an increasingly important role and need to be taken
into account. These factors could be countered using new
and ethically more justifiable technologies such as cellu-
lar agriculture, which aims to produce agricultural prod-
ucts such as textiles, leather, meat, milk or egg proteins
or fats without plants or animals in bioreactors, utilizing
the cells of microorganisms, animals or plants as renew-
able factories. The products produced in this manner are
either cellular or acellular in nature [1, 2] and while the
commercially available acellular products are usually pro-
duced with genetically modified organisms, their cellular
counterparts are still based on native organisms [3].
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Commercial products based on plant cell and tissue cul-
tures (i.e. aseptically isolated plant tissues and cells cul-
tivated under defined chemical and physical conditions)
have been on themarket since the 1980s [4]. They represent
ingredients for products of the pharmaceutical, cosmetics
and food industries. These products, the majority of which
are cosmetic products, can be produced in a controlled
manner under closed conditions independent of climate,
weather and soil conditions. Variations in product quan-
tity and quality, which are typical for the use of collected or
cultivated whole plants, can be avoided [5, 6]. In addition,
the use of protected and endangered plant species becomes
possible and the metabolism of the established plant cell
and tissue culture (PCTC) can be specifically influenced.
In other words, the formation of substances that are ben-
eficial to the consumer can be supported and those that
are harmful to the consumer can be reduced or even sup-
pressed.
Starting with an overview of commercial PCTC-based

food ingredients, this review intends to shed light on select
details, application principles, as well as technologies used
for the manufacture of PCTC-based food and food ingredi-
ents, including approaches to increasing process efficiency.
In addition, the latest developments aimed at producing
new PCTC extracts with nutritional potential and PCTC-
based flavour production is briefly discussed. Finally, the
authors address regulatory issues regarding the application
of PCTC-based products in the food industry.

2 COMMERCIAL FOOD INGREDIENTS
BASED ON PLANT CELL CULTURE
TECHNOLOGY

2.1 Product overview

In Table 1 PCTC-based food ingredients which have been
commercialized at an industrial scale are summarized. The
list of products is assigned to two product classes based
on their application: (1) colorants and (2) compounds
with health promoting effects. The colorants cover antho-
cyanins, betacyanins and shikonin. Production processes
for these colorants run for a maximum of 23 day, with
bioreactors using maximum working volumes of between
500 L [7] to 600 L [4, 8, 9] and, excepting the production
of betacyanin [10–13], delivering product yields up to the
kilogram range. The commercial production of shikonin,
the first authorized secondary metabolite worldwide, with
Lithospermum erythrorhizon is particularly noteworthy, as
the PCTC-based process of Mitsui Petrochemical Indus-
tries Ltd. allows for the production of 5 kg of pure shikonin
per bioreactor run.With comparable shikonin quality, pro-
ductivity is about 800 times higher than with the tradi-

tional process using ginseng roots grown in a field [4, 14].
Another remarkable example of a PCTC-based process is
the scale-up of echinacoside manufacturing to a produc-
tion bioreactor size of 75 m3, which was achieved by the
Diversa Gesellschaft für Bio- und Verfahrenstechnik in
Germany in the 1990s [15]. This company,which came to be
known as Phyton Biotech, ceased the production of echi-
nacoside in favor of paclitaxel and has been successfully
manufacturing this product in bioreactors for more than
20 years [16, 17].
Active Botanicals Research (ABR) and the Instituto di

Ricerche Biotecnologiche S.R.l. (IRB) claim on their web-
site that they produce “Echinan 4P” and “Echigena plus”
from cell cultures of Echinacea angustifolia in production
facilities up to m3 scale, however no detailed informa-
tion on the production process has been published. CBN
Plantech Co. Ltd. also works with Echinacea angustifo-

lia based cell cultures at a scale of up to 500 L. Follow-
ing one week of cultivation, 1.75 kg dry biomass contain-
ing 33.44 mg g–1 total caffeic acid can be harvested [26]
of which an accumulation of 12.3 mg g–1 echinacoside has
been reported.
Another breakthrough was the PCTC-based production

of ginseng saponins, as the traditional agricultural cul-
tivation of ginseng is considered a very time-consuming
and labor-intensive process, requiring up to 7 years. Nitto
Denko Corporation scaled up the cultivation of Panax gin-
seng cell cultures to a 2 m3 scale, achieving 19 g L–1 dry cell
biomass (700 mg L–1 d–1) in merely 4 weeks, and receiv-
ing permission for commercial use of the manufactured
biomass as a food additive in Japan in the late 1980s [35].
Further attempts to produce ginseng saponins fromPCTCs
have also been made by CBN Biotech and Unhwa Corpo-
ration.
Through bioreactor and process optimization (see also

Sections 2.2.2 and 2.2.3) CBN Biotech was able to achieve
a total saponin content (5% of cell dry weight) more
than twice as high as that of field-grown ginseng in 0.5
and 1 m3 bioreactors [29]. The 10 m3 production biore-
actor version provides an average production of 45 t of
biomass fresh weight per year [30, 31]. Unhwa Corpo-
ration, on the other hand, succeeded in establishing a
highly productive biotechnological production process by
cultivating cambial meristematic cells (see Section 2.2.1)
of wild ginseng for the first time [37, 38]. The prod-
uct for the food sector, DDB20, has been on the mar-
ket since 2014. In the same year, the first cocoa PCTC-
derived nutraceutical from the US company Diana Plant
Sciences received the Global Frost & Sullivan Award for
Visionary Innovation Leadership. It was named Cocov-
anol and was characterized by a higher flavanol content
than basic cocoa, with only traces of caffeine and theo-
bromine [46, 47]. However, since the acquisition of Diana
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F IGURE 1 Schematic representation of the procedure for the establishment of PCTCs: (A) CMC-based suspension culture, (B) DDC-based

suspension culture and (C) Adventitious root culture. Created with Biorender.com

Plant Sciences by Symrise 6 years ago, no information
has been made available regarding this product. Finally,
it should be mentioned that Active Botanicals Research
and the Instituto di Ricerche Biotecnologiche S.R.I., in
addition to the PCTC-based echinacoside-containing prod-
ucts ECHINAN 4P and ECHIGENA PluS, manufacture
the teupoloside products TEUPOL 10P and 50P as well as
TEOSIDE with the same technology [24, 42, 48, 49] and
offer them as nutraceuticals alongside Active Botanicals
Research PCTC-based and verbacosid-containing product
ACETOS 10P, which has been approved as novel food (see
also Section 4) in Europe [25, 44, 45].

2.2 Principles and technologies

2.2.1 Three main cell culture types

The majority of the products shown in Table 1 are based
on plant suspension cells (dedifferentiated cells, DDCs)
grown fromcallus cultures (Figure 1B). Callus iswound tis-
sue induced through injury using a sterile scalpel, follow-
ing a three-stage surface sterilization [50, 51] of the mother
plant segment containing the target substance(s) in the

highest quality and quantity. For this purpose, the steril-
ized and injured parts of plants are incubated at temper-
atures between 23◦C and 27◦C in the dark or under light
on agar plates with solid culture media [52, 53]. This is
followed by mass propagation of the callus to obtain suf-
ficient biomass for initiating a suspension culture using
shaking flasks. Here it is important to work with a friable
callus [54]. An efficient production process in the bioreac-
tor requires a homogeneous, well-growing and productive
suspension culture, which sequentially requires a homog-
enization procedure [55] for the suspension culture, per-
formed over several weeks. DDC-based suspension cells
have doubling times of between 0.6 and 5 days [52] and
typically grow as aggregates [56]. Their secondary metabo-
lites, usually formed intracellularly, are present in concen-
trations between 0.025 and 5 g L-1 [57, 58] andmay decrease
with increasing passage number [59].
Cambium meristematic cell (CMC)-derived suspension

cells (Figure 1A), which represent true plant stem cells,
grow as single cells [60] facilitating their long-term stor-
age. They are embedded in meristems located at the tips
of shoots, as well as roots, or are contained inside the
vascular system and can grow faster as well as reach
higher product concentrations than DDC-based suspen-



GUBSER et al. 91

sion cells [61]. The technology for the generation of CMCs
is still in its infancy and has been reported for Taxus cus-
pidata [38], Catharanthus roseus [62, 63], Ginko biloba

and Solanum lycopersicum [64], Tripterygiumwilfordii [65]
and Ocimum basilicum (Mehring A, University of Kaiser-
slautern, personal communication, 2019). Unhwa Cor-
poration having secured the world‘s first patent tech-
nology in plant stem cell isolation is the leading com-
pany in this field. The first step in CMC establishment
is surface sterilization of the cambium after removal of
the pith and xylem. To induce CMC growth, the steril-
ized explants are transferred into an osmotic agent for
16 to 24 h. Subsequently, the explants are incubated
for up to 30 days on a solid growth medium in Petri
dishes [57, 66]. Afterwards, the propagated CMCs are sub-
cultivated in Petri dishes with fresh growth medium. If
sufficient CMCs are available (100 g L–1 fresh weight),
shake flask cultures may be prepared and cultivated under
standard conditions. No homogenization procedure is
necessary.
In order to generate an adventitious root culture (Fig-

ure 1C), the callusmust first be induced and amaintenance
culture in Petri dishes established, as with the DDC-based
suspension culture [67]. Afterwards, root induction is car-
ried out with a solid culturemedium that supports root for-
mation. The roots are first propagated in Petri dishes and
then in shaking flasks, in order to generate a maintenance
culture, the latter also serving in the inoculum production
for bioreactor cultivation.
As mentioned in the introduction, no genetically modi-

fied cultures have been used for the production of PCTC-
based commercial food products or ingredients. While
the potential of genetically modified PCTCs in terms of
product titer increases is undisputed, challenges primarily
concerning the acceptance of such products in the Euro-
pean market persist. For an overview of methods com-
monly used to produce genetically modified PCTCs, the
interested reader is referred to the reviews by Kowal-
czyk et al. (2020) and Nielsen et al. (2019) [68, 69].

2.2.2 Bioreactor cultivation

There are two dominant bioreactor types which have
become established in commercial production processes
for the products in Table 1, depending on the PCTC
type used. While for suspension cultures stirred stainless
steel bioreactors are preferred, root cultures are cultivated
in modified bubble column bioreactors, with maximum
working volumes in them3 range [70]. Due to themorphol-
ogy of the suspension cells, their limitation-free cultiva-
tion on a large scale is easier than those of the adventitious
root cultures. However, a possible challenge regarding the

cultivation in stirred bioreactors is the strong increase in
the viscosity of the culture broth when using plant sus-
pension cultures which propagate very well (maximum
biomass between 10 and 18 g dry weight L–1 or 200 and
350 g fresh weight L–1) [71,72]. For such applications, it is
recommended to equip the bioreactor with impellers close
to bioreactor wall [73]. Typically, the vessel of a stirred
production bioreactor for plant suspension cultures has
a height-to-diameter ratio of 2:1 or 3:1, is equipped with
one or more Rushton, marine or pitched blade impellers
or combinations thereof, baffles and a dynamic seal [55].
Another critical point is foam formation due to polysac-
charides or media ingredients secreted during cell growth
[74]. This leads to the wall growth phenomenon, which is
considerably more pronounced in bubble column biore-
actors, due to their height-to-diameter ratio of 6:1 or
14:1.
Paek et al. (2005) succeeded in foam reduction by

modifying a bubble column bioreactor and designing the
balloon-type bubble bioreactor [29]. This bioreactor type
has also been recommended for the mass propagation of
tissue cultures [46, 75–77], including adventive root cul-
tures, with the largest balloon type bubble bioreactors (1
and 10 m3) used by CBN Biotech for the commercial pro-
duction of ginseng saponins [78].
The use of single-use bioreactors [79–81] for the produc-

tion of PCTC-based food ingredients is only beneficial for
research and development due to size limitations and the
high prices of the pharma-grade plastic vessels or bags.
Due to their homogeneous energy dissipation, wave-mixed
bioreactors [82], such as the BIOSTAT RM (Sartorius),
the Wave Bioreactor (Cytiva, formerly GE Healthcare),
the HyPerforma Rocker Bioreactor (ThermoFisher) or the
CELL-tainer (Celltainer Biotech) are often used. Figure 2A
depicts the CELL-tainer CT20, in which suspension cells
of Vitis vinifera were grown. The biomass generated
within 38 days (Figure 2B) is comparable to that from a
BIOSTATRM20/50 operatedwith a 20 L bag (unpublished
data).
Specialists of the Technical Research Center of Fin-

land Ltd. (VTT) developed the first prototype of a 3D
printed bioreactor for the cultivation of PCTCs in a domes-
tic kitchen. This aptly named “Home Bioreactor” repre-
sents a completely new approach based on amodified bub-
ble column and can be compared to a Nespresso machine
[83, 84]. The user inserts a capsule containing PCTC, adds
water and turns on the bioreactor. During cultivation, the
bioreactor maintains optimal growth conditions until the
biomass is harvested and processed. Approximately 500 g
of biomass (fresh weight) can be generated within one
week and further processed (e.g. muesli) in this manner.
The “Home Bioreactor”, however, remains to be made
commercially available.



92 GUBSER et al.

F IGURE 2 Propagation of V. viniferaDDCs in a CELL-tainer bioreactor system (A) CELL-tainer containing a 20 L bag. (B) Typical growth

curve of the V. vinifera suspension cells

2.2.3 Elicitation for the product titer
increase

Regardless of the bioreactor and PCTC type, elicitation
approaches have proven to be most effective in the pro-
duction processes shown in Table 1. For example, product
concentrations of secondary metabolites in processes with
elicited PCTCs could be increased 55-fold [85, 86] and in
some cases even product secretion [87] could be achieved.
Elicitation is a non-transgenic technique that stimulates
secondary metabolite production through physical cues or
by adding trace amounts of chemical compounds, called
elicitors [88]. The elicitors can either be classified accord-
ing their origin, as exogenous or endogenous, or on the
basis of their nature, as biotic or abiotic [89, 90]. Exoge-
nous elicitors are chemicals originating from outside the
target cell, such as fatty acids, polysaccharides, peptides
and enzymes, whereas endogenous elicitors include sub-
stances such as galacturonide or hepta-β-glucosides,which
are synthesized inside the target cell by induction of intra-
cellular biotic or abiotic signals [88]. Biotic elicitors are
of biological origin, either derived from the plant itself
or from a bacterial, fungal or viral pathogen source [88,
91]. Abiotic elicitors cover physical factors (e.g. high pH-
value, temperature shifts, osmolarity, oxidative stress and
light) and chemical compounds, such as inorganic salts
[91]. Physical elicitation is less investigated, more difficult
to monitor and more seldom applied when compared to
chemical elicitation.
Since the elicitation process is generally complex and

themetabolic pathways not always fully understood, many
factors and cultivation conditions may affect the impact of
elicitors on the synthesis of secondary metabolites. A pop-
ular abiotic elicitor is methyl jasmonate [92] often used in
concentrations between 0.5%–10%. By its addition growth
and production phase of the PCTC are decoupled [93, 94].
With regard to efficient elicitation procedures, it is impor-
tant to take into account the complex and time-consuming

preliminary tests required to select the suitable elicitor(s)
and to determine the optimum addition time, dosage and
exposure time of the elicitor [95].
If an ingredient for the food industry or food itself is

to be produced with PCTCs, it is vital that not only the
selected elicitor is food grade, but also the other ingredi-
ents of the culture medium. Synthetic phytohormones are
commonly used as pesticides in agriculture, their usage is
therefore regulated (see also Section 4) by the EU pesticide
database in Europe and toxicological assessments of intra-
cellular phytohormone accumulation are mandatory [96]
if used in PCTC cell culture medium. A study by Häkki-
nen et al. (2020) evaluated the intracellular accumulation
of such phytohormones in arctic bramble and birch cell
suspension cultures (DDC-derived). While they were able
to detect free 2.4-dichlorophenoxyacetic acid (2.4-D) (0.33–
0.83 µg g–1 dry weight), the values were below the reported
median lethal dose levels measured in rats and mice (320–
1000 µg g-1). To circumvent these regulatory hurdles the
replacement of synthetic phytohormones, such as 2.4-D,
kinetin and 1-naphthalenacetic acid, with natural versions
such as indole-3-acetic acid, casein, yeast extract, zeatin or
coconut water [97] can be considered. A completely differ-
ent approach is the use of hairy root cultures, as these can
be cultivated without phytohormones [98]; however, these
have yet to be used for the commercial production of food
or food ingredients.

3 LATEST DEVELOPMENTS

3.1 Three new PCTC extracts with
potential for human nutrition

Researchers at the Zurich University of Applied Sciences
(ZHAW) have succeeded in producing a model chocolate
using a DDC-based Theobroma cacao suspension culture
propagated in a wave-mixed bioreactor. The main steps
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towards establishing mass propagation of the cell culture
have already been described by Eibl et al (2018) [99]. The
same applies to the production of cell culture chocolate.
The sensory analysis by trained chocolate testers showed
that the cell culture chocolate, with an intense fruity and
sour aroma (comparable to citrus and red berry flavors),
presented a promising sensory profile. Chemical analyses
showed that the biomass contained both volatile and non-
volatile flavor compounds at a total polyphenol content
of 6.69 g kg–1. However, the aroma profile of chocolate
produced with biomass from the wave-mixed bioreactor
differed from those recently produced in stirred bioreac-
tors [100], with an increase in bitterness observed for the
“stirred bioreactor chocolate”. Biomass production in the
stirred reactor and wave-mixed bioreactor were compara-
ble with the harvest of approximately 0.23 kg L-1 biomass
(fresh weight) after 16 days. Subsequent research work is
now focusing on the possibility of transferring the process
from a wave-mixed bioreactor to a scalable stirred bioreac-
tor and increasing process efficiency.
Another interesting approach to the use PCTC-based

products was described by the researchers of the already
mentioned VVT (Section 2.2.2) and is focused on the use of
berry suspension cells as food. Nordlund et al. (2017) stud-
ied the nutritional properties of DDC-based plant cell
suspension cultures of Rubus chamaemorus L., Vac-

cinium vitis-idaeaL. andRubus saxatilisL. [101], also inves-
tigating the carbohydrate, lipid and protein composition,
in vitro protein digestibility and sensory properties. The
results confirm the potential use of the plant suspension
cells as a source of food itself for the first time. A fresh
odor, as well as flavor and a favorable composition (21%–
37% dietary fiber, 0.3%–1% starch, 18%–33% sugars, satisfac-
tory lipid quality, 14%–19% proteins, balanced amino acid
profile) of the cell culture biomass were achieved. Further-
more, it was shown that it was possible to mass propagate
Rubus chamaemorus L suspension cells up to pilot scale
(300 L working volumes, stirred bioreactor, feeding) [102].
Interestingly, flavanols, to which beneficial health effects
are attributed [103], are atypical for Rubus fruits cultivated
in the field or collected in nature.
Finally, Bianconi et al. (2020) demonstrated the indus-

trial potential of a red carrot cell line extract (R4G extract)
for food application (colorant and health food ingredient).
It is based on DDC-derived suspension cells (dark cul-
ture) of Daucus carota, which were grown in Gamborg’s
B5 medium on shake flask and 50 L bioreactor (30 L work-
ing volume) scale [104]. The establishment of the produc-
tion cell line was described by Ceoldo et al. (2005) and
Ceoldo et al. (2009) [105, 106]. The R4G extract is char-
acterized by large quantities of anthocyanins, which
were higher and more stable than those found in nat-
ural red carrot extract, while the metabolic profiles of

both extracts were comparable. Furthermore, a noticeable
increase of anthocyanin content was achieved by increas-
ing the sucrose level in the culture medium from 25 to
40 g L–1. The antioxidant and anti-inflammatory activ-
ities of the R4G extract were confirmed in vivo using
mice.

3.2 PCTC-derived citrus oil ingredients

Citrus, one of the most important crops worldwide,
is essential for both the beverage and flavor industry
[107–109] amongst others. However, climate change, dwin-
dling potable water supplies, soil salinity and plant dis-
eases (e.g. citrus greening disease) has led to supply issues
concerning citrus fruit and their products. As these threats
are only expected to grow in the near future, callus and
suspension cultures of numerous citrus varieties have been
established and the PCTCs capabilities of producing typi-
cal citrus oil ingredients have been investigated (Figure 3).
Analysis showed that even in the callus tissue vari-

ous known citrus volatiles, in the range of several hun-
dred mg/kg dry weight, could already be found. To fur-
ther increase the production of citrus volatiles, a precur-
sor [110–112] feeding approach was used. This concept is
based on the idea that a natural derived, less expensive sub-
stance (intermediate) can be added, in order to induce and
increase the production of the compound(s) of interest [113,
18].
To achieve this, a suspension culture (Figure 3B) orig-

inating from the flavedo of a citrus fruit was used. The
doubling time of the suspension cells (batch culture, 26◦C,
120 rpm) was 3.9 days. A two-step process (10 days growth
and 14 days production) was developed on a shaking flask
scale (100mLworking volume). After adding the precursor
(sesquiterpene), a balsamic fruity scent of orange flower
accompanied by a strong citrus taste was produced. Fol-
lowing extraction of the biomass, 37 volatile compounds
from various organic classes (aldehydes, alcohols, ethers,
furans and other) were detected by gas chromatography-
mass spectrometry analysis of the headspace and solvent.
To enable quantitative studies, the process was scaled up
to a wave-mixed BIOSTAT RM 20/50 (Figure 3C), with a
working volume of 10 L. Upon completion of the cultiva-
tion, 2 kg of biomass fresh weight and 4.5 L of liquid were
harvested. Both the biomass and culture supernatant car-
ried the balsamic fruity orange flower like scent, while the
taste of the liquid was described as that of white grape-
fruit by a flavorist of Givaudan. Approximately, 0.6% of
the terpenic compound, responsible for this characteristic
scent and taste, was detected in the biomass dry weight,
twofold of that which can be found naturally occurring in
the fruit. However, in order to improve the efficiency and
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F IGURE 3 Citrus fruit derived PCTCs grown in the dark (D) or under light (L) regime (16 h/8 h): (A) Callus cell lines (B) Suspension cell

lines (C) Suspension cell culture in a 20 L wave-mixed bioreactor (D) Light microscopy image of citrus fruit vesicles in suspension culture

commercial viability of the developedmethod, further pro-
cess scale-up to a stirred stainless-steel system in the m3

range is necebssary.

4 REGULATORY ISSUES

The progress in the PCTC technology over the last two
decades demonstrates that this technology has great poten-
tial as an alternative production method in the food sector.
As already written, only a handful of PCTC based prod-
ucts have been commercialized. Besides the challenges
on process efficiency, the complex regulatory landscape
is another limiting factor for their commercialization. As
countries have their own regulatory frameworks, the defi-
nitions as well as approval processes may vary, which may
result in an increase in time, as well in costs to get a prod-
uct to market.
Already, the definition of a novel food/food ingredient

varies broadly. In Europe a food is considered as novel
and will fall in the scope of the EU Regulation 2015/2283
on novel food, if it has not been used to a significant
degree for food consumption in the EUbeforeMay 15, 1997.
Food additives (e.g. colorants) and flavourings are not in
the scope of this legislation and are covered by their own
legislative framework with separate authorisation proce-
dures. In the USA all substances added intentionally to
food are considered as “food additives” and require pre-
market approval by the FDA, unless the substance is gen-
erally recognized as safe (GRAS) through scientific proce-
dures, through safe history of use in food (dating to before
1958), or it meets one of the other exclusions from the food
additive definition in section 201(s) of the Federal Food,
Drug and Cosmetic Act.
Although the path to approval of different categories of

food additives varies from jurisdiction to jurisdiction, there
aremany commonalities in terms of the data requirements
and considerations for assessment regarding the safety of
use of food additives, flavouring or novel food substances,
including the use of positive lists of approved substances,

pre-market approval, aswell as separation between science
and policy decisions. All the different approaches do have
a main purpose in common, which is to ensure the safety
of the consumed food.
The safety of food regarding traditional use is usually

accepted on the basis of its history of safe use. Within a
safety assessment, traditional foods/food ingredients are
used as reference points, whereas this approach is based
on the concept of substantial equivalence of the traditional
food/food ingredients versus the novel food/food ingredi-
ent under assessment. However, this approach has its limi-
tation in the space of PCTCs, as many PCTCs do not neces-
sarily deliver the same product profile as the whole plant
part does. Furthermore, it is mostly not sufficient to take
only the sourcematerials and its composition into account,
as all characteristics of the product as well as the produc-
tion process needs to be assessed.
Even the EU Regulation 2015/2283 on novel food clearly

defines that food consisting of, isolated from, or produced
from a PCTC is considered as one of the novel food cate-
gories listed in the EU and requires pre-market authorisa-
tion, which includes a safety assessment performed by the
European Food Safety Authority (EFSA). For proper char-
acterisation of the novel food, EFSAhas provided guidance
[114] in which the specific data requirements in relation to
PCTCs are described.
Currently the PCTC extract from Ajuga reptans, Lip-

pia citriodora and Echinacea augustifolia suspension cells
(Table 1, Section 2.1) had been authorised as novel food
for the use in food supplements under EU Regulation
2015/2283 and therefore imparted in the Union List of
authorised novel foods (Commission Implementing Reg-
ulation EU 2017/2470). So far, no authorizations have been
granted in Europe for food, like e.g. anthocyanins under
the food additive legislation.
Another important factor for successful commercializa-

tion is the acceptance of the consumer. Consumers can
sometimes be hesitant in accepting a novel food technol-
ogy, even if it has already been perceived as safe by the
experts.Most consumers viewed foodmanufacturedwith a
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minimum of processing with more positive attributes than
highly processed foods or food manufactured using new
technologies. As some authorisations might include spe-
cific labelling requirements as, for example in the case of
Lippia citriodora cell culture extract, for which the desig-
nated labelling of the foodstuffs containing shall be ‘dried
extract of Lippia citriodora from cell cultures HTN R©Vb’,
consumer acceptance can be a challenging factor.

5 CONCLUDING REMARKS

The potential of PCTCs for the sustainable and controlled
production of food ingredients is undisputed. Today, the
number of PCTC-based products in the food sector, repre-
senting colorants and substances stimulating the immune
system or having health effects, is still limited. However,
this could change in the near future through climate
change, loss of arable land and potable water designated
for food production, and plant diseases. Furthermore,
smooth regulatory approval and consumer acceptance
of new PCTC-based products will play an important
role in their success, with single-use bioreactors, such as
wave-mixed systems, supporting and accelerating process
development. In addition to elicitor and/or precursor
feeding, experimental design may improve process effi-
ciency by increasing biomass yield more than twofold
and reducing the cost of goods by more than half, as
demonstrated by Rasche et al. (2016) [113]. This could pave
the way for increased use of PCTCs in the commercial
production of food [96] and food ingredients.
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