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Ambient temperatures are predicted to rise in the future owing to several reasons

associated with global climate changes. These temperature increases can result in

heat stress- a severe threat to crop production in most countries. Legumes are well-

known for their impact on agricultural sustainability as well as their nutritional and health

benefits. Heat stress imposes challenges for legume crops and has deleterious effects

on the morphology, physiology, and reproductive growth of plants. High-temperature

stress at the time of the reproductive stage is becoming a severe limitation for

production of grain legumes as their cultivation expands to warmer environments and

temperature variability increases due to climate change. The reproductive period is vital

in the life cycle of all plants and is susceptible to high-temperature stress as various

metabolic processes are adversely impacted during this phase, which reduces crop

yield. Food legumes exposed to high-temperature stress during reproduction show

flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed

filling, leading to smaller seeds and poor yields. Through various breeding techniques,

heat tolerance in major legumes can be enhanced to improve performance in the

field. Omics approaches unravel different mechanisms underlying thermotolerance,

which is imperative to understand the processes of molecular responses toward

high-temperature stress.

Keywords: food legumes, high temperature stress, functional mechanisms, reproductive function, ‘Omics’

approach

INTRODUCTION

Legumes belong to the family Fabaceae/Leguminosae (with about 700 genera and 18,000 species).
Legume crops can be divided into two groups according to their ability to grow in different seasons,
namely cool-season food legumes and warm- or tropical-season food legumes (Miller et al., 2002;
Toker and Yadav, 2010). Cool-season food legumes include broad bean (Vicia faba), lentil (Lens
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culinaris), lupin (Lupinus spp.), dry pea (Pisum sativum),
chickpea (Cicer arietinum), grass pea (Lathyrus sativus), and
common vetch (Vicia sativa) (Andrews and Hodge, 2010).
Warm-season food legumes include pigeonpea (Cajanus cajan),
cowpea (Vigna unguiculata), mungbean (Vigna radiata var.
radiata), common bean (Phaseolus spp.) and urd bean (Vigna
mungo), which are mainly grown in hot and humid conditions
(Singh and Singh, 2011). Legumes rank third in world crop
production, after cereals and oilseeds (Popelka et al., 2004);
these crops are important source of food, feed, and fodder in
several agricultural systems and are grown on a large scale in
the semi-arid tropics (Popelka et al., 2004; Varshney and Dubey,
2009). The principal grain legumes, in order of their respective
worldwide consumption, are common beans (Phaseolus spp.),
field pea, chickpea, broad bean, pigeon pea, mungbean, cowpea,
and lentil (Duc et al., 2015). Grain legumes alone contribute 33%
of human protein nutrition and can fix atmospheric nitrogen
in symbiotic association with Rhizobium bacteria, to fulfill the
nitrogen requirement of the succeeding crop. Legumes are
cultivated in crop rotation worldwide along with other crops but
their production potential is constrained by high temperatures
(McDonald and Paulsen, 1997; Considine et al., 2017). Legume
production and harvested area worldwide and in Asia in 2014–
2015 are shown in Figure 1.

Various abiotic stresses, such as temperature, drought and
salt, affect the growth of legumes at different developmental
stages (Suzuki et al., 2014). Abiotic stresses are the primary
cause of crop losses worldwide, reducing the yield of most
plants by >50% (Rodríguez et al., 2006). Abiotic stresses result
in a series of morphological, physiological, biochemical and
molecular alterations, which negatively influence plant growth,
productivity and yield (Wang et al., 2001; Bita and Gerats, 2013).
Plants experience multiple effects of these stresses including
physiological functions such as photosynthesis, respiration,
nitrogen fixation, reproduction, and oxidative metabolism (Iba,
2002; Farooq et al., 2008). Temperature stress has the widest
and most far-reaching effects on various crops leading to a
severe reduction in yield potential (Bita and Gerats, 2013). This
review emphasizes responses and adaptations of various food
legumes to heat stress—focusing on the reproductive phase—
intrinsic tolerance mechanisms and strategies toward the genetic
improvement of legume crops to heat stress.

HIGH-TEMPERATURE STRESS AND ITS
THRESHOLD IN PLANTS

Temperature is a major factor affecting seed yield and quality
in legumes (Ruelland and Zachowski, 2010; Christophe et al.,
2011). Increases in air temperature, even by one degree above a
threshold level, is considered heat stress in plants (Teixeira et al.,
2013). Heat stress for most subtropical and tropical crops is when
temperatures increase above 32–35◦C (Bita and Gerats, 2013);
however, a daily maximum temperature above 25◦C is considered
the upper threshold for heat stress in cool-season crops (Wahid
et al., 2007). The impact of heat stress depends on the intensity,
duration of exposure, and the degree of the elevated temperature.

Extreme variations in temperature, both high and low, can have
serious implications on plant development by impairing plant
growth and function (Wahid et al., 2007). Temperature stress
imposes challenges in plants at various organizational levels
with deleterious effects on vegetative and reproductive growth
(Hamidou et al., 2013). Furthermore, increased frequency of
temperature stress can disrupt the physiological processes of
plants resulting in photosynthetic inhibition, reduced nitrogen
anabolism, higher protein catabolism, and accumulation of
the end products of lipid peroxidation (Jagtap et al., 1998;
Jiang and Huang, 2001a,b). Heat-stressed plants show shorter
vegetative and pod-filling periods (Adams et al., 2001), poor
crop stand and consequently reduced yield. High-temperature
stress affects reproductive development, as reported in legumes
such as chickpea (Kaushal et al., 2013; Kumar et al., 2013),
pea (Guilioni et al., 1997), common bean (Gross and Kigel,
1994; Vara Prasad et al., 2002), mungbean (Tzudir et al., 2014;
Bindumadhava et al., 2016), cowpea (Ahmed et al., 1992) and
cereals such as rice (Oryza sativa; Madan et al., 2012), wheat
(Triticum aestivum; Wahid et al., 2007), barley (Hordeum vulgare;
Barnabás et al., 2008), and maize (Zea mays; Kumar et al., 2012a).
High temperature negatively affects flower initiation, pollen
viability (germination and tube growth), stigma receptivity, ovule
viability, ovule size, fertilization, seed/fruit set, seed composition,
grain filling, and seed quality (Barnabás et al., 2008). Cool-season
food legumes are more sensitive to heat stress than warm-season
food legumes. The critical temperature for heat tolerance seems
to be higher in chickpea than in faba bean, lentil, and field pea,
and the reverse is true for cold tolerance (Devasirvatham et al.,
2013). The threshold temperatures of various legume crops are
shown in Table 1.

HEAT STRESS SENSING AND SIGNAL
TRANSDUCTION

Plants detect even mild increases in temperature due to
presence of sensing mechanisms on their membranes
(Wise et al., 2004). Under high-temperature stress,
membranes show increase in fluidity, which is detetced by
membrane sensors resulting in conformational changes and
phosphorylation/dephosphorylation events (Kaushal et al., 2016;
Sehgal et al., 2016). Four sensors are reported to perceive heat
stimulus (Mittler et al., 2012), which include plasma-membrane-
bound Ca2+ channels (Saidi et al., 2009), two unfolded protein
sensors—one in the endoplasmic reticulum (ER) (Deng et al.,
2011; Srivastava et al., 2014) and the other in the cytosol (Sugio
et al., 2009), and a histone sensor in the nucleus (Kumar and
Wigge, 2010).

Most studies have revealed that moderate increases in
temperature are initially sensed by plasma membrane leading
to the activation of Ca2+ channels, which causes an inward
flux of Ca2+ into cells to activate the heat shock response
(HSR) (Bokszczanin and Fragkostefanakis, 2013). The inward
flux of Ca2+ is an important indicator of heat stress as indicated
by various pathways including calcium channel blockers or
chelators. In plants, this inward flux of Ca2+ regulates various
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FIGURE 1 | Total legume production and area harvested worldwide an in Asia in 2014–2015 (modified from FAOSTAT, 2014).

signaling pathways. AtCaM3 (a calmodulin) is required for heat
stress signaling as reported in Arabidopsis thaliana (Liu et al.,
2008; Zhang et al., 2009), which in turn activates the various
transcriptional factors such as WRKY39 (Li et al., 2010) and heat
shock transcription factors (HSFs) (Liu et al., 2011). Moreover,
Ca2+ influx leads to the activation of several calcium-dependent
protein kinases (CDPKs), which in turn activate variousmitogen-
activated protein kinases (MAPKs) (Sangwan et al., 2002) or
the reactive oxygen species (ROS)-producing enzyme NADPH
oxidase (Figure 2) (Suzuki et al., 2011). The Ca2+/calmodulin
binding protein kinase (CBK) is also activated by AtCaM3,
which phosphorylates members of the HSF family such as HSF1a
(Liu et al., 2008). Heat stress activates lipid signaling where
phospholipase-D (PLD), phosphatidylinositol-4-phosphate-5-
kinase (PIPK), and various other lipid signalingmolecules such as
phosphatidic acid, phosphatidylinositol-4,5-bisphosphate (PIP2),

and D-myo-inositol-1,4,5-triphosphate (IP3) (Mishkind et al.,
2009) are activated.

Heat stress also activates unfolded protein response (UPR)
signaling pathways in cells. Two UPR pathways operate in plant
cells, one in the ER and the other in the cytosol (Sugio et al., 2009;
Pincus et al., 2010; Deng et al., 2011).

Activation of the ER UPR pathway leads to proteolytic
cleavage and the release of different bZIP transcription factors
(Tfr) from the ER membrane (Che et al., 2010; Deng et al.,
2011). These transcription factors enter the nucleus and activate
the transcription of specific genes, which in turn leads to the
accumulation of ER chaperone transcripts and activation of
brassinosteroid signaling (Che et al., 2010). Unfolded proteins in
the cytosol trigger the cytosolic UPR pathway, which is regulated
by HSF, HSFA2, and bind to HSF-binding elements in the
promoters of HSR genes (Sugio et al., 2009).
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TABLE 1 | The heat stress threshold temperature range of some leguminous

crops.

Legume crop Threshold

temperature (◦C)

Reference

Chickpea 15–30 Kaushal et al., 2011

Common bean 20–24 Kigel et al., 1991; Vara Prasad et al., 2002

Cowpea 18–28 Laing et al., 1984; Craufurd et al., 1997

Faba bean 25 Bishop et al., 2016

Groundnut 30–35 Vara Prasad et al., 2001; Hatfield et al., 2008

Lentil 15–30 Barghi et al., 2012

Lupins 20–30 Bordeleau and Prévost, 1994

Mungbean 28–35 Kumar et al., 2011

Pea 15–25 Gladish and Rost, 1993

Pigeon pea 18–30 Duke, 1981; FAOSTAT, 2014

Soybean 23–26 Boote et al., 1998

Urd bean 25–35 Shirsath and Bhosale Agro India Ltd, 2017

High-temperature stress leads to histone acetylation,
methylation, phosphorylation, ubiquitination, glycosylation,
ADP-ribosylation, and sumoylation (Clapier and Cairns, 2009).
The active or repressed state of the associated DNA sequence is
regulated in a code-like manner by the above-listed modifications
of amino-terminal histone tails protruding from the nucleosome
(Jenuwein and Allis, 2001; Li et al., 2010).

VEGETATIVE STAGE

Heat stress primarily influences the rate of plant development,
which increases to a certain point and diminishes afterward
(Howarth, 2005; Wahid et al., 2007). Seed germination is
fundamentally reliant on temperature (Hasanuzzaman et al.,
2013). Declined germination percentage, seedling emergence,
abnormal seedlings, poor seedling vigor, and reduced radical
and plumule growth in germinated seedlings are major impacts
of heat stress in various legume crops (Hasanuzzaman et al.,
2013). The temperature that seeds germinate best depends
largely on plant species; for example, soybean performs best at
10–35◦C, maize at 10–40◦C, and wheat at 20–40◦C (Probert,
2000). Reduced seed germination at high temperatures has
been reported in many legumes including soybean (Ortiz and
Cardemil, 2001; Ren et al., 2009), pea (Nemeskeri, 2004; Ren
et al., 2009), lentil (Chakraborty and Pradhan, 2011), mungbean
(Kumar et al., 2011; Devasirvatham et al., 2012a), and chickpea
(Kaushal et al., 2011; Piramila et al., 2012). A study by Nemeskeri
(2004) on heat tolerance in three prominent legumes (beans,
pea, and soybean) revealed that exposure to 28◦C for 8 days
seedling stage resulted in 50.4 and 36.2% dead seeds in non-
irrigated soybean and beans, respectively, and 87.6 and 36.8%
in irrigated soybeans and beans, respectively. Similarly, seed
germination and vigor index in mungbean seeds exposed to 10,
20, and 30 min of 50◦C decreased significantly (Piramila et al.,
2012). In lentil, seeds exposed to 35–40◦C for 4 h had reduced
germination and retarded seedling growth (Chakraborty and
Pradhan, 2011).

Vegetative plant parts show various morphological symptoms
in response to heat stress, such as scorching and sunburning
of leaves, twigs, branches and stems, senescence of leaves
followed by abscission, inhbition of shoot and root growth, and
discoloration of fruits, which can severely reduce yield (Bita and
Gerats, 2013). Heat stress also causes leaf wilting, leaf curling,
leaf yellowing, and reduced plant height and biomass (Siddiqui
et al., 2015). Exposure of plants to severe high temperature
often reduces shoot growth, root growth, root number, and root
diameter (Xu et al., 2000). Heat stress severely affects vegetative
growth in legumes such as peanut (29 and 33◦C) (Bolhuis and
De Groot, 1959), pea (28–30◦C) (Poehlman, 1991), and chickpea
(22–25◦C) (Singh and Dhaliwal, 1972). Heat stress results in
water loss from cells, reduced cell size and growth, and hence
reduced leaf area and biomass. When growing conditions are
favorable, plants continue vegetative growth without setting pods
or filling fewer pods (Davies et al., 1999; Liu et al., 2003). High
temperature can severely reduce the length of the first internode
resulting in premature death (Reddy et al., 2003).

REPRODUCTIVE STAGE

High temperature stress affects reproductive development in
legumes such as chickpea (Kaushal et al., 2013; Kumar et al.,
2013), mungbean (Tzudir et al., 2014; Kaur et al., 2015), and
lentil (Bhandari et al., 2016; Sita et al., 2017). The reproductive
phase is divided into flower initiation, differentiation of male and
female floral parts, micro and megasporogenesis, development
of male and female gametophytes (pollen grain and embryo
sac), pollination, micro and megagametogenesis, fertilization
and seed development. Each stage responds differently to
high-temperature stress, but collectively all responses result in
undesirable effects and reduce net yield (Thakur et al., 2010).
The phenology of a crop differs with species, sowing season,
particular area, and atmospheric phenomenon (Anbessa et al.,
2006). Most yield losses are related to metabolic alterations due
to heat stress, reduction of developmental stages in terms of
time and size, and the consequent reduction in light interception
over the shortened life cycle. The processes related to carbon
assimilation (photosynthesis and respiration) are also disrupted
markedly, which may result in deformed and smaller organelles
(Maestri et al., 2002; Barnabás et al., 2008).

Reproductive growth is more sensitive and causes various
effects such as depletion of buds, flowers, fruits, pods, and seeds
to result in marked reductions in yield potential (Thakur et al.,
2010; Kaushal et al., 2016). Heat stress influences crop yield by
impacting reproductive components during development that
contribute to a reduction in harvest index and these responses
differ with the severity and duration of the stress (Hedhly et al.,
2009; Harsant et al., 2013). Heat stress reduces the number of
flowering branches and thus the number of flowers per plant
(Vara Prasad et al., 2001, 2002; Young et al., 2004; Harsant et al.,
2013). Heat stress disrupts male and female gametophytes, results
in poor pollen viability, poor pollen germination, inhibition
of pollen tube growth, loss of stigma receptivity and ovule
function, fertilization arrest, limited embryogenesis, decreased
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FIGURE 2 | Sensing and signaling in plants in response to heat stress. Heat stress affects the plasma membrane to activate calcium channels, which induces Ca2+

influx and activates the heat shock response. Thus, the MAPK cascade leads to gene expression. Secondary signals such as ROS, H2O2, NO, and ABA lead to

stress tolerance. CaM3, calmodulin; HSFs, heat shock factors; CDPKs, calcium-dependent protein kinases; MAPKs, mitogen-activated protein kinases; ROS,

reactive oxygen species; NO, nitric oxide; HK, histidine kinase; UPR, unfolded protein response; ER-UPR, endoplasmic reticulum unfolded proteins; Cyt-UPR,

cytosolic unfolded proteins.

ovule viability, increased ovule abortion and poor seed set
(Kumar et al., 2013; Gupta et al., 2015) (Figure 3).

Flowering Initiation and Development
During flower development, male and female organs are sensitive
to high temperature, especially ≥30◦C (Figure 4; Lavania et al.,
2015). Heat stress severely affects flower bud initiation, and this
sensitivity prevails for 10–15 days (Hedhly et al., 2009; Bita and
Gerats, 2013) as reported in faba bean (Bishop et al., 2016),
common bean (Vara Prasad et al., 2002), and soybean (Kitano
et al., 2006). Heat stress influences the reproductive stage by
decreasing the number and size of flowers, deforming floral
organs, resulting in loss of flowers and young pods, and hence
reduction in seed yield (Morrison and Stewart, 2002), as reported
in chickpea and mungbean (Tickoo et al., 1996), common bean
(Gross and Kigel, 1994; Suzuki et al., 2001), cowpea (Hall, 1992),
pea (Stanfield et al., 1966), and peanut (Vara Prasad et al., 1999a).
A mild heat stress during floral development severely reduced
yield in faba bean (Bishop et al., 2016). The flowering stages
are more susceptible to heat stress, and high temperatures are

likely to coincide with gametophyte development and anther
dehiscence in faba bean and some other legume species (Bishop
et al., 2016).

Meiosis and Gametophyte Development
Meiosis is an important stage in the sexual life cycle of a
plant to allow the diploid sporophytic cells to produce haploid
gametophytes (Thakur et al., 2010). After the inception of
meiosis, the sensitivity of the male gametophyte to stress
increases dramatically, with negative consequences for anthesis,
pollen fertility, pollination, female fertility, early zygote
development, and seed yield (Boyer and McLaughlin, 2007). In
microsporogenesis of chickpea, meiosis and pollen development
are most affected by heat stress (Devasirvatham et al., 2012a).
Sexual reproduction and flowering, in particular, are extremely
sensitive to heat stress, and often results in reduced crop
productivity (Thakur et al., 2010; Bita and Gerats, 2013). Heat
stress mainly accelerates the onset of anthesis, thereby initiating
the reproductive stage prior to the accumulation of sufficient
resources (Zinn et al., 2010; Bita and Gerats, 2013).
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FIGURE 3 | The life cycle of a typical angiosperm showing target sites of heat stress. The sporophyte phase is the main phase, which generates microspores that

produce pollen grains as the male gametophytes (microgametophyte), and megagametophytes (megaspores), which form an ovule that contains female

gametophytes.

Male Gametophyte
Male reproductive development in higher plants is very sensitive
to heat stress at all growth stages (Bita and Gerats, 2013; Sage
et al., 2015). In particular, high temperature stress results in
a lower seed set due to male sterility in most legume crops,
including chickpea (Devasirvatham et al., 2012a), common
bean (Monterroso and Wien, 1990), cowpea (Warrag and Hall,
1983), and field pea (Jiang et al., 2015). In most legumes,
the male gametophyte is more sensitive to high temperature
than the female gametophyte (Devasirvatham et al., 2012a;
Sage et al., 2015; Bhandari et al., 2016). Development of the
male gametophyte (pollen grains) starts with the separation
of reproductive tissue from the anther, followed by meiosis
of the pollen mother cell, mitosis and microspore maturation,
and the formation of mature pollen grains (Bita and Gerats,
2013). Specialized anther tissue has non-reproductive (tapetum
for support, stomium for dehiscence) or reproductive functions
(pollen mother cell for pollen formation). Male fertility depends
on both the status of the tapetum and microspore development

(Zinn et al., 2010; Bita and Gerats, 2013). Heat stress alters gene
expression, which is possibly connected to tapetum degeneration
and pollen sterility, in most plant species (Oshino et al.,
2007; Endo et al., 2009). Sakata et al. (2010) suggested that
understanding heat stress effects on pollen development will
involve observations on carbohydrate turnover during this stage.
Mature pollen grains are more tolerant to heat stress than any
other stage of male gametophyte development (Hedhly, 2011).
Tolerance of pollen grains to high temperature may be associated
with its low plasma content, low metabolic activity to its
protective structures, or its carbohydrate content and dynamics
(Kaushal et al., 2013; Figure 5). Pollen grains penetrate the
stigmatic surface, and pollen tube growth starts within the style
and within the ovary toward the female gametophyte; the pollen
tube growth rate is the first and most important characteristic
to check under heat stress (Hedhly, 2011). Heat stress affects
male sterility in most sensitive crop plants, by impairing pollen
development to severely reduce yield (Wassmann et al., 2009;
Bita and Gerats, 2013), as reported in cowpea (Ahmed et al.,
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FIGURE 4 | Effects of heat stress during the reproductive phase (at different functional stages).

1992), chickpea (Devasirvatham et al., 2012a, 2013; Kaushal
et al., 2013), common bean (Gross and Kigel, 1994), groundnut
(Vara Prasad et al., 1999b), soybean (Djanaguiraman et al.,
2013), chickpea (Devasirvatham et al., 2013), field pea (Jiang
et al., 2015), and faba bean (Bishop et al., 2016). Developing
anthers are a strong resource sink and heat stress affects the
development of tapetum cells and microspores, which involve
DNA, carbohydrates, proteins, and lipids synthesis (Ma, 2005;
Sage et al., 2015). Tapetal cells and microspores are separated
symplastically from other anther tissue, and tapetal cells are
metabolically highly active to nourish the growing microspores.
The high transport and metabolic activity of the tapetum layer
is indicated by the presence of some cell organelles such as
plastids, mitochondria, peroxisomes, and endomembrane and
cytoskeleton systems involved in processing and transporting
metabolites (Bagha, 2014). Suzuki et al. (2001) found that
heat stress caused early degeneration of the tapetum layer and
disrupted ER in Phaseolus vulgaris.

Heat stress delinks source and sink strength leading to
depletion of available carbohydrates at the reproductive stage
of plant development, ultimately reducing fruit set and other
yield attributes in chickpea (Nayyar et al., 2005; Kaushal et al.,
2013) (Figure 5) and lentil (Bhandari et al., 2016; Sita et al.,
2017). High temperature also influences early abortion of
tapetal cells which leads to pollen sterility (Parish et al., 2012),
structural abnormalities in developing microspore-associated
tapetal degeneration due to deformity in ER (Peet et al., 2002),
fertilization arrest and abrupt embryo development (Barnabás
et al., 2008), reduced seed germination, loss of vigor, and reduced
seedling emergence in many crop plants (Akman, 2009; Ren
et al., 2009; Bita and Gerats, 2013). Heat stress results in
premature abortion of tapetal cells causing the pollen mother
cells to rapidlly progress toward meiotic prophase and undergo
programmed cell death (PCD) resulting in pollen sterility (Sakata
and Higashitani, 2008; Parish et al., 2012). For example, the
structural abnormalities in developing microspores of snap bean
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anthers under heat stress were associated with degenration of
tapetum as a result of malformations in the ER (Suzuki et al.,
2001). Heat stress caused reduction in dehiscence of anthers,
accompanied by closure of the locules, and thus decrease in
pollen dispersal in several crop plants (Peet et al., 2002). Exposure
to high temperature after fertilization can impair subsequent
embryo development (Barnabás et al., 2008). The reproductive
failures in chickpea due to high-temperature stress are the result
of disrupted sucrose metabolism in leaves as well as anthers
(Kaushal et al., 2013).

Female Gametophyte
The female gametophyte in plants is also called the embryo
sac and is mostly a seven-celled structure (Thakur et al.,
2010). Female gametophyte development occurs over two
stages referred to as megasporogenesis and megagametogenesis.
The female gametophyte is less sensitive to heat stress than
the male gametophytic (Kaushal et al., 2013, 2016). Elevated
temperatures probably inhibit style length and consequently
induce abnormalities in ovary development, as observed in
chickpea (Srinivasan et al., 1999). Temperatures >30◦C reduce
stigmatic receptivity and stigmatic pollen germination (Harsant
et al., 2013), stigma and style growth (Snider et al., 2011; Song
et al., 2015), and ovule penetration (Saini et al., 1983). Heat
stress abruptly affects almost all aspects of female gametophyte
development, e.g., reduced stigma receptivity in chickpea at 40/30
and 45/35◦C (Kumar et al., 2013), and reduced ovule number
and viability in common bean at 30◦C (Suzuki et al., 2001).
The female gametophyte produces important cells within the
ovule viz. egg, central cell and synergids, which are developed by
mitotic divisions (Sage et al., 2015). Synergids produce attractants
into the micropylar end that guide pollen tube growth to the
ovule (Chae and Lord, 2011). Heat stress alters the secretion of
pollen tube attractants (Higashiyama et al., 1998), and reduces
penetration of the ovule by the pollen tube (Saini et al., 1983). The
effects of heat stress on expansion, division, and differentiation of
egg and synergids in female gametophytes have been reported in
bean (Sage et al., 2015).

Both male and female plant parts coordinate to make certain
the deposition of pollen when the stigma becomes receptive,
and this involves appropriate positionining of anthers nearby
to the stigma for capturing the pollen after dehiscence (Sage
et al., 2015). Heat stress disrupts this coordination by changing
the structural positioning of anthers related to the stigma, the
timing of dehiscence of anthers, and maturation and recetivity
of stigma/style due to alteration in cell division and elongation
(Basra, 2000; Giorno et al., 2013; Sage et al., 2015). These changes
ultimately prevent pollen deposition on the stigma and alter the
fertilization process.

Pollination and Fertilization
For establishment of seed, the pollen grains must interact with
a receptive stigma, followed by pollen tube growth to reach the
ovules for fertilization, and embryo and endosperm development
(Barnabás et al., 2008). Some of these events may be impacted
by the adverse environmental conditions frequently encountered
by crop plants (Driedonks et al., 2016). High temperature may

arrest fertilization by inhibiting the development of male (Jain
et al., 2007) and female gametophytes (Snider et al., 2009).
Reduced fertilization is a common problem associated with
heat due to disruption of meiosis and fertilization in various
species, such as chickpea, cowpea, and barley (Kaushal et al.,
2013; Jagadish et al., 2014; Bac-Molenaar et al., 2015; Driedonks
et al., 2016). Reduced fertilization efficiency due to heat stress
has been attributed to increasing oxidative stress, reduced
carbohydrates, ATP concentration in gynoecium and decreased
leaf photosynthesis, in mungbean (Suzuki et al., 2001), soybean
(Board and Kahlon, 2011), and chickpea (Kumar et al., 2013).
High temperatures during pollen development limit fertilization
and seed development (Porch and Jahn, 2001) by reducing
the number of mature pollen grains available for pollination
(Erickson and Markhart, 2002; Sato et al., 2002), which causes
abnormal pollen development, and reduces the viability and
germinability of available pollen grains (Firon et al., 2006; Sato
et al., 2006; Jain et al., 2007).

Heat stress (>30◦C) from early meiosis to pollen maturity
reduces the viability of pollen grains in chickpea resulting
in fertilization failure leading to reduced seed set (Saini and
Aspinall, 1981; Kaushal et al., 2016). Heat stress results in
abnormal anther morphology and limits anther dehiscence
at anthesis (Dupuis and Dumas, 1990), and prevents the
accumulation of carbohydrates in developing anthers and pollen
grains, which accounts for poor pollen viability at anthesis (Porch
and Jahn, 2001; Kaushal et al., 2013). Gross and Kigel (1994)
reported that high temperatures of 27/32◦C at sporogenesis
reduced pollen viability and yield in heat-sensitive genotypes
of bean, due to failed anther dehiscence,pollen sterility, low
pod and seed set,. In soybean, high temperatures of 38/28◦C
during flowering reduced in vitro pollen germination. Pollen
grains were deformed, with a thicker exine and a disintegrated
tapetum layer (Djanaguiraman et al., 2013). In chickpea, heat
stress late in the season produced more structural abnormalities
in anthers and pollen grains such as changes in anther locule
number, anther epidermis wall thickening and pollen sterility in
sensitive genotypes ICC-4567, ICC-10685 (Devasirvatham et al.,
2013). Temperatures of 35/20 and 40/25◦C pre- and post-anthesis
reduced pollen viability, pollen production per flower and
percentage of pollen germination in chickpea (Devasirvatham
et al., 2012b). The effects of heat stress on both male and female
reproductive tissue in some legume crops are shown in Table 2.

Seed Filling and Yield
Temperature fluctuations during seed filling drastically reduce
yield in legumes such as common bean (Rainey and Griffiths,
2005), pea (McDonald and Paulsen, 1997), chickpea (Kaushal
et al., 2013; Kumar et al., 2013), mungbean (Kaur et al., 2015),
lentil (Barghi et al., 2012; Bhandari et al., 2016; Sita et al., 2017),
and cowpea (Ahmed et al., 1992). Seed filling is the completion of
growth and development in crop plants, which involves transport
processes to import constituents and biochemical processes
related to the synthesis of carbohydrates, proteins, and lipids
in seeds (Yang and Zhang, 2006; Awasthi et al., 2014). High-
temperature stress causes yield loss in legumes (Canci and Toker,
2009; Kumar et al., 2016) and other crops due to poor seed
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TABLE 2 | Effect of heat stress on both reproductive function, male and female reproductive tissue in some legume crops.

Crop species Temperature stress Effects Reference

Soybean Above 35◦C Flower abscission, reduced yield Koti et al., 2005; Salem et al., 2007

Soybean 26◦C Reproductive development Boote et al., 1998

23◦C Post-anthesis Boote et al., 2005

30.2◦C Pollen germination Boote et al., 2005

36.1◦C Pollen tube growth Hatfield et al., 2008

Cowpea 33/30◦C Anther indehiscence due to degeneration of tapetal cells Ahmed et al., 1992

Common bean 33/29◦C Degeneration of tapetal cells Suzuki et al., 2001

Soybean 38/28◦C Decreased in vitro pollen germination Djanaguiraman et al., 2013

Common bean 33/30◦C Anther indehiscence due to degeneration of tapetal cells Ahmed et al., 1992

Chickpea 33/27◦C Anther indehiscence and pollen sterility Gross and Kigel, 1994

Chickpea 35/20◦C Lack of pollen germination and tube growth in style Devasirvatham et al., 2010

Chickpea 32/26◦C Abnormal embryo sac development Polowick and Sawhney, 1987, 1988

Chickpea 45/35◦C Reduced stigma receptivity Kumar et al., 2013

Chickpea (≥40/30◦C) Reproductive failure, reduced yield Gaur et al., 2014

Peanut/groundnut 29–33◦C Anthesis Bolhuis and De Groot, 1959

Pod, seed yield Hatfield et al., 2008

development (Hall, 2004). Moreover, heat sensitivity differs for
different crop species (Sung et al., 2003); on average, a one-
degree rise in temperature will reduce plant yield by at least 10%.
Under high temepratures, seed filling is accelerated, to reduce the
duration of this stage to limit the yield potential (Boote et al.,
2005). The reduction in starch accumulation was suggested to be
the primary reason of yield reduction since starch acumulation
accounts for substantial dry weight of the seeds. The reduction in
seed weight in response to heat stress during the early stages of
seed filling can be attributed to fewer endosperm cells (Nicolas
et al., 1985), while during the later stages, heat stress impairs
starch synthesis by limiting the supply of assimilates to the seed
(Blum, 1998) or directly affecting the synthetic processes in the
seed (Yang et al., 2004).

The number of endosperm cells determined early in grain fill,
and the final size of the cells influence the extent of starch and
protein accumulation in each seed, the rate and duration of grain
fill also affect the accumlation of the seed reserves (Egli, 1998;
Barnabás et al., 2008).

Reductions in various yield attributes due to heat stress has
been reported in many crops such as cowpea (Hall, 1992), pea
(Guilioni et al., 1997), common bean (Vara Prasad et al., 2002;
Rainey and Griffiths, 2005), peanut (Vara Prasad et al., 1999a,
2000), soybean (Board and Kahlon, 2011), lentil (Barghi et al.,
2012), and chickpea (Krishnamurthy et al., 2011; Kaushal et al.,
2013; Kumar et al., 2013).

High-temperature stress reduces seed size due to the
insufficient accumulation of photosynthates during seed filling
(Kumar et al., 2016). A few days of heat stress (30–35◦C) during
seed filling accelerates senescence, decreases seed set and seed
weight, and reduces yield in legumes (Siddique et al., 1999;
Kumar et al., 2016). High yield losses have been reported in
snap bean under heat stress (Tsukaguchi et al., 2003). Gutiérrez-
Rodríguez et al. (2003) studied the biomass and yield of bean
plants raised in two different seasons, i.e., winter and summer,
and found that the winter-sown crop had 41 and 38% higher

biomass and yield, respectively than the summer-sown crop.
In soybean, even short-term exposure to stressful temperatures
above 40◦C reduced seed production and yield (Kitano et al.,
2006; Board and Kahlon, 2011; Djanaguiraman et al., 2011).
Vara Prasad et al. (2006) reported that increasing temperatures
from 32/22◦C to 36/26◦C and 40/30◦C, reduced seed yield in
sorghum (Sorghum bicolor) by 10 and 99%, respectively. High-
temperature stress increased the percentage of shriveled seed and
reduced seed size in common bean (Vara Prasad et al., 2002)
and groundnut (Prasad et al., 2003). In chickpea, Jumrani and
Bhatia (2014) reported that increased temperatures during the
reproductive stage severely reduced yield (by 10, 23, 64, and
78%) at different temperature ranges (26/16, 30/18, 34/20, and
38/28◦C), respectively. Kaushal et al. (2013) observed a 63–
64% yield reduction in chickpea exposed to 32/20◦C. In similar
studies, chickpea yields declined by 34–50% (Gan et al., 2004)
and 34% (Wang et al., 2006) when exposed to temperatures
>32/20◦C. Other studies have reported inhibitory effects of high
temperature on yield in pea (McDonald and Paulsen, 1997),
cowpea (Ismail and Hall, 1999; Thiaw and Hall, 2004), peanut
(Prasad et al., 2003), soybean (Puteh et al., 2013), field pea
(Vijaylaxmi, 2013), faba bean (Kirra et al., 2014), mungbean
(Kaur et al., 2015), and lentil (Bhandari et al., 2016; Sita et al.,
2017).

Regulation of Seed Filling and
Maturation
During seed filling, carbohydrates, proteins, and lipids
accumulate in developing seeds (Thakur et al., 2010). Heat
stress alters the activities of carbon metabolism enzymes, starch
accumulation, and sucrose synthesis by down-regulating specific
genes in carbohydrate metabolism (Ruan et al., 2010). Plant
hormones such as ABA and cytokinins play an important role in
the regulation of seed filling (Brenner and Cheikh, 1995). These
phytohormones are involved in the determination of sink size
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and strength, and the capacity of the seed to accumulate biomass
(Thakur et al., 2010). Auxins, gibberellins, and ABA mediate
cell division, enlarge endosperm cells, and regulate the direction
and rate of assimilate flow from source to sink tissues (Hansen
and Grossmann, 2000). Heat stress can influence seed filling by
changing the concentration and amount of phytohormones as
well as the expression of enzymes (Thakur et al., 2010). Low leaf
photosynthetic rates during seed filling in heat-stressed plants
are a major cause of reduced seed size (Singh, 1987; Leport et al.,
1998). The accumulation of various seed components (mainly
starch and proteins) may be inhibited by heat stress due to the
inactivation of enzymatic processes involving starch (Ahmadi
and Baker, 2001) and protein synthesis (Triboï et al., 2003).

Auxins regulate reproductive processes; in plants, a naturally
occurring auxin is indole-3-acetic acid (IAA) (Ozga et al., 2017).
However, in legume species, particularly those in the Fabaceae
family such as pea, grass pea (Lathyrus sativus L.), lentil and
faba bean, also contain the naturally occurring chlorinated
form of auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), which is
biologically more active than IAA in auxin bioassays (Reinecke,
1999; Ozga et al., 2017). Heat stress suppresses auxin biosynthesis
and signaling in developing anthers, resulting in pollen
abnormalities (Higashitani, 2013; Ozga et al., 2017). Similarly,
gibberellins play an important role in stamen and pollen
development (Plackett et al., 2012). Some studies have revealed
that jasmonic acid signaling is required for stamen development
and fertility because stamen development can be restored only
in jasmonic acid biosynthesis mutants by exogenous jasmonic
acid (Yan et al., 2007). Elevated temperature stress affects ethylene
biosynthesis/signaling pathways in developing anthers, which
leads to reduced anther dehiscence. Pollen development and
pollen germination can be enhanced by pre-treatment with an
ethylene-releasing agent, ethephon (Firon et al., 2012).

At the stage of fruit set, high temperature reduces auxin flux
through the pedicel, allowing ethylene-facilitated pedicel
abscission and fruit abscission/loss (Ozga et al., 2017).
Developing seeds of pea and pericarp contains GAs and
auxins (4-Cl-IAA and IAA) (Rodrigo et al., 1997; Ozga et al.,
2017). Heat stress leads to seed abortion by altering seed-derived
auxins and other seed signaling molecules transported to the
pericarp, potentially having a negative effect on pericarp growth
and facilitating pedicel abscission.

Elevated temperatures during seed filling and maturation
can increase the proportion of seeds that are shriveled and
abnormal at physiological maturity and result in seeds that
exhibit reduced germination and seedling vigor in soybean (Egli
et al., 2005). Furthermore, in legumes such as soybean, heat
stress leads to the retention of chlorophyll in mature seeds,
which can reduce seed quality (Teixeira et al., 2016). Low leaf
photosynthetic rates during seed filling in heat-stressed plants are
a major cause of reduced seed size (Awasthi et al., 2014). The
accumulation of various seed components (mainly starch and
proteins) may be inhibited by heat stress due to inactivation of
enzymatic processes involving starch (Ahmadi and Baker, 2001)
and protein synthesis (Triboï et al., 2003). Reduced seed weight
was associated with reduced starch biosynthesis enzyme activities
(ADP-glucose pyrophosphorylase and soluble starch synthase)

in the endosperm during seed filling when the temperature
increased above a threshold level (Singletary et al., 1994). Heat
stress also reduces invertase activity associated with reduced
carbon degradation (from sucrose to hexose) and partitioning (to
starch synthesis) within endosperm, rather than being associated
with limited carbon supply to the seed (Ozga et al., 2017).
The legume embryo, being a strong terminal sink for sucrose,
is not vascularly connected to the maternal seed coat tissue
(Hardham, 1976). In faba bean, Weber et al. (1996), proposed
a model for invertase-mediated unloading of sucrose for legume
embryos during early seed development. Heat stress interrupts
seed invertase activity and may alter nutrient portioning and
seed growth and maturation in legumes (Ozga et al., 2017).
During seed development and maturation, hormone regulation
plays an important role in legume (Jameson and Song, 2016).
Heat stress reduces cytokinin levels in seed leading to reduced
seed cell numbers and growth rates (Emery et al., 2000; Jameson
and Song, 2016). According to Yang et al. (2016), treatment
with CK (6-benzylaminopurine) diminishes the inhibitory effect
of heat stress on seed filling rate, division rate of endosperm,
endosperm cell number, and seed weight in soybean. Heat
stress regulates GA biosynthesis and catabolism in developing
seeds to reduce GA-associated seed growth and development
processes (Ozga et al., 2017). High-temperature stress increases
the levels of ethylene, leading to reduced growth and enhanced
senescence and abscission of various plant organs (Kukreja et al.,
2005; Abeles et al., 2012). Heat stress induces ethylene, which
can reduce photosynthesis and grain filling rates, and cause
embryo abortion in some crops such as wheat (Rajala and
Peltonen-Sainio, 2001; Hays et al., 2007). The effects of heat
stress on different growth hormones at various reproductive
developmental stages in legumes are listed in Table 3.

Physiological and Metabolic Basis for
Reproductive Failure under Heat Stress
There are limited studies on the response of stage-specific
functional physiology from flowering and post-flowering
in legumes during high-temperature stress. Though the
susceptibility to heat stress in plants varies with plant
development, the reproductive stage due to its sensitive
organelle makeup is bound to experience greater impact and
surrender to temperature vagaries. The response depends upon
the species and genotype, with profuse inter- and intra-specific
differences (Sakata and Higashitani, 2008; Bita, 2016). Heat
stress alters photosynthesis and respiration to shorten the life
cycle and thus to reduce the plant productivity (Barnabás et al.,
2008). A reduction of photosynthesis will in due course deplete
the energy reserves and limit the availability of resources for
reproduction in parental and gametophytic tissues (Sumesh et al.,
2008). Heat stress often hastens the onset of anthesis, to start
the reproductive phase of development before ample resources
are gathered (Zinn et al., 2010). Several genes are alterted under
high-temperature stress to result in degenration of tapetum and
pollen sterility in many plant species (Oshino et al., 2007; Endo
et al., 2009). Elevated temperatures target the enzymes involved
in carbohydrate metabolism (e.g., cell wall, vacuolar invertase,
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and sucrose synthase) and sugar-transporters to reduce the
pollen viability (Hedhly, 2011). Particularly, enzymes invertase
and sucrose synthase isomorphs are down-regulated, which
affects the turnover of starch and sucrose in pollen grains to
decrease accumulation of soluble carbohydrates (Hedhly, 2011).

Male sterility has been observed in many heat-stressed food
legumes, such as chickpea (Kaushal et al., 2013) and mungbean
(Kaur et al., 2015), and impaired pollen development has been a
vital reason linked to yield losses due to heat stress (Wassmann
et al., 2009). Anthers developing under high temperature showed
cell-proliferation arrest, distended vacuoles, altered chloroplast
development and mitochondrial abnormalities (Sakata et al.,
2010). Heat stress decreases accumulation of carbohydrates in
pollen grains and stigmatic tissue by changing partitioning of the
assimilates and the proportion between symplastic and apoplastic
loading of the phloem (Taiz and Zeiger, 2006), which affects
pollen viability (Kaushal et al., 2013). Heat stress decreases the
activity of sucrose synthase and many cell wall and vacuolar
invertases in developing pollen grains; as a result, the turnover
of sucrose and starch turnover is impaired to reduce the
accumulation of soluble carbohydrates in chickpea (Sato et al.,
2006; Kaushal et al., 2013). Similar findings have been reported
in chickpea (Devasirvatham et al., 2012a; Kaushal et al., 2013),
lentil (Bhandari et al., 2016), and mungbean (Kaur et al., 2015).
Heat stress also decreases the starch, protein and total oil yield in
many crop species such as soybean (Rotundo andWestgate, 2009;
Thuzar et al., 2010), and has been linked to high temperatures
during seed development (Banowetz et al., 1999). Thus, for crop
production under elevated temperatures, it is highly desirable to
know which developmental stages and plant processes are most
sensitive to heat stress, as well as whether high day or high night
temperatures are more detrimental.

PHYSIOLOGICAL RESPONSES

Heat stress may result in many physiological abberations such as
leaf and stem scorching, leaf abscission and senescence, shoot and
root growth inhibition, and fruit damage, which consequently
lead to reduced plant productivity (Vollenweider and Günthardt-
Goerg, 2005). The initial impacts of thermal stress involve
structural alterations in chloroplast protein complexes and
reduced enzyme activity (Ahmad et al., 2010). Heat stress at the
cellular level leads to membrane damage, protein denaturation,
enzyme inactivation in mitochondria and chloroplasts, impaired
protein and carbohydrate synthesis, protein degradation, new
protein synthesis, and impaired carbon metabolism (Schoffl
et al., 1999; Kaushal et al., 2013). Further, heat stress alters
the permeability of membranes by direct injuries, impacts the
differentiation, elonagtion and expansion of cells by changing the
organization of microtubules and eventually to the cytoskeleton
(Rasheed, 2009; Bita and Gerats, 2013).

Membrane Damage
Among the components of a plant cell, plasma membranes are
considered the most heat-sensitive, as they are the primary sites
of injury under heat stress (Blum, 1988; Wise et al., 2004).
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Elevated temperature severely affects membrane structure and
function, thereby increasing the fluidity of membranes due
to protein denaturation and increased unsaturated fatty acids,
causing a phase transition from solid gel structure to flexible
liquid crystalline structure (Wahid et al., 2007). Due to the
presence of double bonds in fatty acids (unsaturated state), these
are less tightly packed into a membrane (Horváth et al., 2012),
which facilitates the activation of lipid-based signaling cascades,
elevated Ca2+ influx and reorganization of cytoskeletal (Ruelland
and Zachowski, 2010; Bita and Gerats, 2013). Heat stress injury
can be determined by loss of membrane integrity due to
structural modifications of component proteins, which increase
membrane thermostability and leakage of organic and inorganic
ions from cells (Salvucci and Crafts-Brandner, 2004). Therefore,
an electrolyte leakage value serves as an indicator of membrane
damage and reflects stress-induced changes and has been used
to evaluate membrane thermostability under high-temperature
stress conditions (Liu and Huang, 2000; Xu et al., 2006). The
effects of heat stress on membranes have been reported in various
legume crops. In soybean, enhanced membrane permeability
and electrolyte leakage was noticed under heat stress (Lin et al.,
1984), which decreased the capacity of the plasma membrane
to hold water and solutes. Similarly, membrane injury was
noticed in chickpea genotypes, especially sensitive genotypes,
at 40/30◦C, which was further intensified at 45/35◦C (Kumar
et al., 2013). Chickpea is the most heat sensitive legume, as per
observations based upon membrane thermostability and PSII
function, compared with other grain legumes such as pigeon pea,
groundnut, and soybean (Devasirvatham et al., 2012b). Other
cool-season legumes such as faba bean and lentil have also been
evaluated for membrane thermostability, which is closely related
to plant heat tolerance (Ibrahim, 2011; Barghi et al., 2012).
Membrane thermostability has been successfully employed to
assess thermotolerance in many food crops worldwide.

Photosynthesis
Structural changes in thylakoid membranes with moderately
high temperature stress have been observed using the freeze-
fracture technique (Gounaris et al., 1984; Sharkey, 2005). The
three major heat-sensitive sites in photosynthetic machinery
are the photosystems, mainly photosystem II (PSII) with its
oxygen-evolving complex (OEC), and the ATP generating and
carbon assimilation processes (Mohanty et al., 2007; Murata
et al., 2007). Photosystems I and II show damage under high
temperature, with PSII more sensitive in chickpea (Kaushal et al.,
2016). PSII in the electron trasnport chain of light reaction
(Heckathorn et al., 2002) and RuBisCO activase in the carbon
fixation cycle (Crafts-Brandner and Salvucci, 2000) are both
sensitive to high temperature (Sinsawat et al., 2004; Kaushal et al.,
2013). Heat stress damages the chlorophyll and photosynthetic
apparatus by producing ROS (Guo et al., 2007; Bita and
Gerats, 2013). In chickpea, Kumar et al. (2013) reported that
damage to chloroplast membranes, mainly due to deterioration
of photosynthetic pigments, reduced photosynthesis under high-
temperature stress. A reduction in chlorophyll under elevated
temperature has been reported in beans (Petkova et al., 2007) and
chickpea (Kumar et al., 2013).

Higher temperature reduces the photosynthetic rate by
decreasing leaf chlorophyll and nitrogen contents. In soybean,
heat stress (38/28◦C) significantly reduced chlorophyll content
and, as a result, sucrose content. High-temperature stress
reduces carbohydrate synthesis and carbohydrate transport
from leaves; as a result, carbohydrates are diverted into
vegetative organs at the expense of reproductive organs
(Plaut et al., 2004; Suwa et al., 2010; Zhou et al., 2016).
Heat stress negatively affects photosynthesis, carbohydrate
synthesis, and flower and bud numbers, and ultimately leads
to reduced sucrose content, the primary end product of
photosynthesis translocated to reproductive organs (Lalonde
et al., 1999). Leaf photosynthesis directly affects sucrose import
into reproductive organs (Boyer and McLaughlin, 2007).
Sucrose import and utilization are affected by invertase
activity (breaks down sucrose), which regulates carbon
allocation and sugar signaling (Roitsch and González,
2004), and could affect flower and fruit set due to high-
temperature stress (Zhou et al., 2016), as observed in chikcpea
(Kaushal et al., 2013). The effects of high temperature on the
process of photosynthesis in some legume crops are listed in
Table 4.

Water Relations
Heat stress is frequently associated with rapid loss of water from
the plant surface resulting in dehydration (Koini et al., 2009).
Heat-induced hikes in transpiration and water movement is a
necessary tool for plant survival under extreme temperatures
(Kolb and Robberecht, 1996; Hasanuzzaman et al., 2013).
Increased transpiration during the day siphons out excess
moisture from plants resulting in reduced turgor pressure and
ultimately disturbed key physiological processes (Tsukaguchi
et al., 2003). High-temperature stress influences plant water
relations due to the faster depletion of water from soil
profiles which affects soil temperatures and transpiration. High-
temperature stress indirectly affects osmotic adjustments through
impaired photosynthesis (especially damage to PSII), increased
respiration, reduced leaf osmotic potentials, and decreased sugar
concentrations (Huve et al., 2005; Vara Prasad et al., 2008). In
snap bean (Phaseolus vulgaris), under heat stress, loss of water
during the day time was more common because of increase in
trasnpiration than night time, resulting in generation of water
deficit stress (Tsukaguchi et al., 2003). Leaf transpiration rate
increases once the threshold temperature is reached increase
leaf cooling under heat stress (Levitt, 1980). High stomatal
conductance under heat stress enhances transpirational heat
dissipation in tolerant chickpea genotypes as long as soil water
is available (Kaushal et al., 2013). However hastening drought
stress will have further physiological implications, not least on
photosynthesis (Liu et al., 2004). On the other hand, under
severe heat stress, stomatal conductance decreases markedly,
as in tobacco (Tan et al., 2011) to agagravate the damage to
leaves.

Nitrogen Fixation
Drought and heat stress conditions in the semi-arid tropics
restricted nitrogen fixation efficiency (Naya et al., 2007). Elevated
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TABLE 4 | Effects of high temperature on the process of photosynthesis in some legume crops.

Plant Temperature Effects Reference

Soybean 42/43◦C Damaged PSII Ferris et al., 1998; Li S.J. et al., 2009; Li

W. et al., 2009

Reduced Fv/Fm

Soybean 45/40◦C Damaged PSII Srinivasan et al., 1999

Broadbean 42◦C Decreased photosynthesis Hamada, 2001

Beans 30◦C Reduced Q10 Pastenes and Horton, 1996

Beans 30–35◦C Limited carbon assimilation and reduced supply of NADPH Pastenes and Horton, 1996

Sorghum 40/30◦C for 45 days Decreased photosynthetic rate Djanaguiraman et al., 2010

Chickpea 45/35◦C Inhibited chlorophyll content and photochemical efficiency;

reduced photosynthesis and Fv/Fm

Kumar et al., 2013

Chickpea Above 32/20◦C Reduced RuBisCO and sucrose activities Kaushal et al., 2013

Chickpea 45/35◦C Damaged PSII Srinivasan et al., 1999

Soybean and bird’s foot trefoil Above 40◦C Disrupted normal functioning of PSII and impaired structure and

functioning of related proteins and enzymes

Sainz et al., 2010; Board and Kahlon,

2011

Soybean 38/28◦C Reduced Chl content (by 18%) and photosynthesis (to 20%) Tan et al., 2011

Groundnut 45/40◦C Damaged PSII Srinivasan et al., 1999

Faba bean 30–40◦C Decreased chlorophyll variable, reduced photosynthetic rate,

impaired chloroplast activity

McDonald and Paulsen, 1997

Lentil 30–35◦C Limited electron flow Redden et al., 2014

Mungbean Impaired photosynthetic efficiency Bansal et al., 2014

Mungbean >40◦C Decreased sucrose in leaves due to reduced RuBisCO activity

and sucrose synthesizing enzymes

Bindumadhava et al., 2017

Pea 25–35◦C Decreased photosynthetic activity Haldimann and Feller, 2005

Pea 40◦C Inhibited electron donation by OEC Oukarroum et al., 2013

Pigeon pea 45/40◦C Damaged PSII Srinivasan et al., 1999

temperatures can affect N2 fixation directly or indirectly. Direct
inhibition by temperature is a consequence of decreased nodule
development (Dart and Mercer, 1965; Piha and Munns, 1987;
Junior et al., 2005), functionality (Hernandez-Armenta et al.,
1989) and accelerated nodule senescence whereas indirect
inhibition is related to temperature effects on root hair formation,
reduction of nodulation sites (Frings, 1976), and modified
adherence of bacteria to root hairs (Frings, 1976). Heat stress
impacts on rhizobia have been thoroughly studied (Lira et al.,
2005). The maximum temperature for rhizobial growth ranges
from 32 to 47◦C (Hungria and Vargas, 2000). Rahmani et al.
(2009) established that heat tolerance in Bradyrhizobium directly
affects the symbiotic efficiency between Bradyrhizobium and
the soybean host. All stages of legume–rhizobium symbiosis
are susceptible to high temperature (Hungria and Vargas,
2000; Nehra et al., 2007; Yadav and Nehra, 2013). Hungria
and Franco (1993), studied the effect of high-temperature
exposure on nodulation and efficiency of N2 fixation in
common beans; under high-temperature treatment (35 and
38◦C/8 h/day), nodules formed but were inefficient at N2

fixation. The control plants (grown at 28◦C), when exposed
to even higher temperatures (40◦C/8 h/day) at flowering, had
reduced nitrogenase activity and N2-fixation efficiency. No
nodules formed in peanut at 40◦C or soybean at 37◦C (Hungria
and Vargas, 2000). Therefore, the selection of temperature
tolerant N2-fixing rhizobial strains may be used as an efficient
tool for mitigating temperature stress (Yadav and Nehra,
2013).

PHYTOHORMONES AND SIGNALING
MOLECULES

Various phytohormones (ABA, brassinosteroids, etc.) as well
as many signaling molecules (nitric oxide, etc.) purportedly
play important roles under heat stress to confer heat tolerance
(Hasanuzzaman et al., 2013; Asthir, 2015). Interactive effects of
ABA and osmolytes were investigated in chickpea; exogenous
application of ABA (2.5 µM) considerably alleviated seedling
growth at 40/35 and 45/40◦C by enhancing the levels of osmolytes
(Kumar et al., 2012b). ABA-treated Phragmites communis plants
had less oxidative damage than their non-treated counterparts,
and reduced levels of MDA and H2O2 and increased levels of
SOD, CAT, APX, POX (Ding et al., 2010). High temperatures
of 35/25 and 45/35◦C (as day/night 12 h/12 h) applied
to chickpea plants under controlled environment, resulted
in increased activities of antioxidants, such as glutathione,
and proline (Kumar et al., 2011). Exogenous application of
2.5 µM ABA at 35/30, 40/35, and 45/40◦C as day/night
increased growth, reduced oxidative damage and decreased
MDA and H2O2 concentration in chickpea (Kumar et al.,
2012b).

Brassinosteroids (BRs) improved the growth and biomass of
French beans under heat stress (Upreti and Murti, 2004) by
stimulating cell elongation (Salchert et al., 1998). Vegetative
growth, total yield and quality of pods, and total phenolic acids
in pods increased in Phaseolus vulgaris after spraying with 25
and 50 mg L−1 BRs at 34.7–35.2 and 25◦C (El-Bassiony et al.,
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FIGURE 5 | Effect of heat stress in normal-sown and late-sown (heat-stressed) plants Chickpea [(A: Biomass in control (a) and heat-stressed (b), Pollen load in

control (c) and heat-stressed (d), Pollen viability in control (e) and heat-stressed (f) pollen viability in control (g) and heat-stressed (h), Stigm receptivity in control (i) and

heat-stressed (j) (Kaushal et al., 2013)], Mungbean [(B; Pollen viability in control (a) and heat-stressed (b), pollen germination in control (c) and heat-stressed (d), and

SEM observations on pollen morphology in control (e) and heat-stressed (f) (Kaur et al., 2015)], and lentil [(C; Pollen viability in control (a) and heat-stressed (b), Pollen

germination in control (c) and heat-stressed (d), Pollen load in control (e) and heat-stressed (f), stigma receptivity in control (g) and heat-stressed (h), ovule viablity in

control (i) and heat-stressed (j)]. Notice reduction in pollen load, pollen viability, in vitro pollen germination, stigma receptivity and ovule viabilty in heat-stressed plants

of all the legumes (Kaushal et al., 2013; Kaur et al., 2015). Figures are being reproduced with the permission from the copyright holder.

2012). Salicylic acid (SA) is a natural derivative of phenols formed
by phenylpropanoid metabolism. It is an important signaling
molecule under stress conditions and an effective protectant
under heat stress (Yuan Z.C. et al., 2008; Hasanuzzaman et al.,
2013). SA modifies the activity of many enzymes and enhances
chlorophyll and carotenoid level along with photosynthetic rates.
In addition, SA has improved plant growth, flower induction,
ion uptake and thermogenesis, and can affect stomatal movement
and ethylene biosynthesis (Hayat et al., 2009).

Plants pre-treated with SA showed enhanced heat tolerance
in some species (Clarke et al., 2004; Larkindale and Huang,
2004). In heat-stressed mungbean seedlings, pre-treatment
with SA decreased lipid peroxidation to improve membrane
thermostability and antioxidant activity (Saleh et al., 2007). Pan
et al. (2006) observed an increase in endogenous levels of SA in
pea plants in response to heat stress. SA applied exogenoulsy at
0.1–0.5 mM checked wilting in common beans and tomato under
heat stress (Senaratna et al., 2000).
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Nitric oxide (NO) is an important concentration-dependent
and redox-related signaling molecule (Fancy et al., 2017). NO
regulates various physiological processes and has a vital role in
conferring tolerance to plants under abiotic stress including heat
stress (Hasanuzzaman et al., 2010, 2011, 2012, 2013; Waraich
et al., 2012). Treatment of heat-stressed mungbean plants with
NO as sodium nitropruside assisted in maintaining the stability
of chlorophyll a fluorescence, membrane integrity, H2O2 content,
and antioxidant enzyme activity (Yang et al., 2006).

GENETIC APPROACHES FOR HEAT
TOLERANCE IN LEGUMES

The deleterious effects of abiotic stresses on agricultural
productivity can be minimized through a combination of cultural
practices and genetic improvement. Genetic improvement can
develop cultivars that perform better under high temperatures
leading to improved economic yields (Tilman et al., 2002;
Varshney et al., 2011). In the field, screening for heat stress
tolerance faces significant challenges due to interactions with
other environmental factors, but multiple screenable traits are
available for successful selection (Hall, 2011). Heat-tolerant
genotypes can be selected under controlled conditions, which
although expensive but do not allow other factors to interfere
that interact with the high-temperature tolerance mechanisms
under field conditions (Souza et al., 2012). The development of an
effective set of thermotolerance markers is the key for breeders,
which can be used further to confer tolerance (Bita and Gerats,
2013). The development of superior varieties with increased
tolerance requires an understanding of the response mechanisms
for stress in legumes, including variations in gene expression
and the resultant changes in the transcriptome, metabolome, and
proteome (Ramalingam et al., 2015). Due to the limited number
of genetic inheritence studies, there exist less understanding of
genetic basis of high temperature tolerance in grain legumes (Jha
et al., 2017). Various genetic analysis have been performed based
on theMendalian and quantitative genetics to unravel the genetic
basis of heat stress tolerance in legumes (Patel and Hall, 1988;
Baiges et al., 1996; Miklas et al., 2000). At first, in grain legumes
genetic inheritence of essential agronomic traits contributing to
yield performance, directly or indirectly, under high temperature
stress and governed mainly by major/single has been worked
out (Patel and Hall, 1988; Hall, 1993). For example, in cowpea
genetic control of heat tolerance was attributed to single gene
on the basis of analysis of various traits such as number of
pods per peduncle and proportion of tolerant plants under high
temperature stress in contrasting populations derived from heat-
sensitive (Barnbey 23, “Magnolia” and 7964) and heat-tolerant
(“Prima” and TVu4552) genotypes (Marfo and Hall, 1992).
Through analysis of various traits such as pods/plant, seeds/plant,
and seed weight in heat-tolerant genotypes multiple mechanisms
for thermotolerance were unvieled in common bean (Rainey
and Griffiths, 2005). Thus, by deciphering the genetic basis of
thermotolerance, performance of plants under stress conditions
can be improved leading to their enhanced performance.

Conventional Breeding Approach toward
Heat Tolerance
Traditional breeding programs focus on developing cultivars
with high yield traits under non-stress conditions. Such
efforts have helped to enhance crop production per unit
area and increased total agricultural production (Warren,
1998). Plant improvement for heat stress tolerance through
genetic engineering is an economically better solution for
crop production under stressful conditions (Blum, 1988). Heat
sensitivity varies across developmental stages which makes
the development of thermotolerant crops a challenging task
(Driedonks et al., 2016). While breeding approaches have made
significant advances in generating heat-tolerant lines in various
crops, the genetic basis and range of heat tolerance largely remain
unrevealed, especially in legumes. Development of new varieties
is time-consuming and costly; therefore, understanding heat
tolerance mechanisms would facilitate in developing strategies
for screening germplasm of various legumes for traits related
to heat tolerance. Using and exploring wild varieties along with
landraces in breeding will enhance genetic diversity in crops
(Driedonks et al., 2016).

High-temperature tolerance through conventional breeding is
one approach to minimizing the damaging effects of heat stress
on crop yield (Krishnamurthy et al., 2011). Breeding programs
are generally conducted in a climactic region having similarity to
where the crop will be grown. For relatively hot regions, selection
of breeding lines occurs under hot conditions (Mickelbart et al.,
2015). This technique has been reasonably successful considering
that crops grown in warmer regions are often more tolerant
of high temperatures than those in cooler regions (Kugblenu
et al., 2013; Gaur et al., 2014). The chickpea genotype ICCV
92944, which is heat tolerant in screening experiments, has been
released in three countries (as JG14 in India, Yezin6 in Myanmar
and Chinadesi2 in Kenya) (Gaur et al., 2014). Two faba bean
varieties (Shendi and Manami) with heat tolerance have been
released in Sudan (Gaur et al., 2014). A new variety of cowpea has
been produced with higher grain yield during high temperatures
in the reproductive stage (Ehlers and Hall, 1998). Many heat-
tolerant genotypes of legumes have been developed using various
conventional breeding methods. By using rapid generation
advancement methods, heat-tolerant index and earlier empirical
methods, tolerant chickpea genotypes have been developed (Gaur
et al., 2008; Krishnamurthy et al., 2011). Heat-tolerant common
bean has been developed using the stress tolerant index (STI),
geometric mean (GM) and recurrent selection techniques (Porch,
2006). Sultana et al. (2012) developed heat-tolerant genotypes of
lentil using rapid initial growth habit and earliness. Mungbean,
pea and snap bean have also been made tolerant to heat stress
using the temperature-induction response and pedigreemethods,
respectively (Porch and Hall, 2013; Bindumadhava et al., 2017).
Other crops such as groundnut and cowpea have been developed
for improved performance under elevated temperatures using
varied conventional breeding methods namely solute leakage,
chlorophyll fluorescence and STI (in the case of groundnut),
cross combination, breeding, pedigree breeding/backcrossing,
and pedigree method (cowpea only) (Patel and Hall, 1990;
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Hall, 1992, 1993, 2011; Craufurd et al., 2003; Lucas et al.,
2013).

While conventional breeding has been successful in
developing heat-tolerant lines, the physiological and genetic
basis of improvement remains unsure. This prevents the
identificationof molecular biomarkers which would help
in screening germplasm for enhanced heat tolerance and
permit effectual breeding of this complex trait. Moreover, in
conventional breeding, the potential gain in tolerance to heat
stress is restrained by low genetic diversity (Paran and van
der Knaap, 2007). Genetic diversity exists for heat tolerance
in legumes (Kumar et al., 2016; Bindumadhava et al., 2017).
Legume breeding programs, with various classical breeding
methods, have potential in the application of technology that
could promote their global production.

Genetic and Quantitative Trait Locus
(QTL) Mapping
Genetic and quantitative trait locus (QTL) mapping has become
a successful method for detecting specific chromosome segments
that have candidate genes for heat tolerance (Argyris et al.,
2011; Zhang et al., 2012). To improve knowledge regarding heat
tolerance at the genetic level, attempts have been made to identify
QTLs in segregating mapping populations. Till now a wide range
of QTLs governing heat tolerance has been discovered in cereal
crops (Chen et al., 2008; Zhang et al., 2008; Kumar et al., 2010;
Mason et al., 2010; Wei et al., 2013), but very few heat-tolerant
QTLs have been reported so far in legumes mainly including
cowpea (Lucas et al., 2013; Pottorff et al., 2014) and azuki bean
(Kaga et al., 2003; Vaughan et al., 2005). QTLs for several traits
related to heat tolerance have been identified, such as increased
chlorophyll fluorescence and reduced canopy temperature during
vegetative and reproductive stages in wheat (Vijayalakshmi et al.,
2010; Lopes et al., 2012). Reduced canopy temperatures show
that efficient water uptake is ultimately associated with deep
rooting, and increased chlorophyll fluorescence reflects heat-
tolerant photosynthesis (Pinto and Reynolds, 2015). Studies have
been conducted on the effect of heat stress on reproductive
characters, mainly pollen germination, pollen tube growth, grain
filling, grain weight, fruit set and post-anthesis senescence of
leaves (Driedonks et al., 2016). A QTL study on rice (Oryza
sativa) recently focused on spike fertility under heat stress (Ye
et al., 2015). This study was based on earlier work (Ye et al.,
2012) and confirmed that a recessive QTL on chromosome
4 is present, which is responsible for a 15% increase in rice
spikelet fertility under high temperatures (Ye et al., 2015). The
use of a multiparent advanced generation inter-cross (MAGIC)
populationmay lead to the introduction ofmore genetic variation
and identification of thermotolerant genes for spikelet fertility
(Ye et al., 2015).

Quantitative trait locus can also be dedicated to the
investigation of natural populations. As observed earlier, linkage
mapping may be able to detect crucial genes and QTLs. However,
the restricted number of generations and recombination events
often results in QTLs covering a comparatively large region
and the identification of genes involves a tedious process of

fine mapping (Driedonks et al., 2016). Therefore, fine mapping
is generally inefficient for the detection of candidate genes
(Bergelson and Roux, 2010). Different studies on QTLs revealed
multiple QTLs per trait, ranging from two in azuki bean and
rice (improved pollen viability and spikelet number under high
temperatures, respectively) to 34 in barley for traits related to
heat stress. As such, heat tolerance depends on a variety of
factors and QTLs, which differ among the crops (reviewed in
Jha et al., 2014). Kaga et al. (2008) identified HQTL-1 and
HQTL-2 in azuki beans involving traits for pollen viability. In
cowpea, many QTLs have been detected, in particular Hbs-1,
Hbs-2, and Hbs-3 for heat-induced browning of the seed coat
(Pottorff et al., 2014), afot 1.1, afot 1.2, afot 1.3 and afot 2
for flower opening (Andargie et al., 2013), and Cht-1, Cht-2,
Cht-3, Cht-4, and Cht-5 for male heat sterility (Lucas et al.,
2013). In pigeon pea, qPD4.1 have been detected for pods per
plant, and qFL4.1 and qFL5.1 for flowering (Kumawat et al.,
2012). Currently, association mapping is acquiring popularity
as a trait mapping technique which complements conventional
QTL mapping (Yu et al., 2008; Jha et al., 2017). Recently, GWAS
(genome-wide association study) was carried out in a panel
of 300 accessions to scrutinize the marker-trait association for
thermotolerance in chickpea (Thudi et al., 2017). Therefore, to
accelerate the transfer of heat tolerance causative gene(s)/QTL(s)
in major grain legumes, available molecular markers can be
used in marker-assisted breeding programs (Jha et al., 2017).
Futher, unrivaled improvements in next-generation sequencing
(NGS) has paved way to unfold the complex genomic regions
which are important in regulating complex traits (Elshire et al.,
2011; Edwards and Snowdon, 2013). Genotype-by-sequencing
(GBS) is one such technology that produces large number
of SNP markers (Elshire et al., 2011), which are applied to
develop genetic maps and decipher complex traits in legumes
(Jaganathan et al., 2015; Kujur et al., 2015; Tayeh et al., 2015;
Verma et al., 2015). The rising availability of refrence genome
sequences in many grain legumes such as mungbean (Kang
et al., 2014), soybean (Schmutz et al., 2009), groundnut (Bertioli
et al., 2016; Chen et al., 2016), chickpea (Jain et al., 2013;
Varshney et al., 2013), adzuki bean (Kang et al., 2015; Yang
et al., 2015), pigeonpea (Varshney et al., 2012a), and common
bean (Teixeira et al., 2005; Schmutz et al., 2014), provide great
endevours to focus on important agricultural traits including
thermotolerance.

Quantitative trait locus analysis in heat-sensitive and tolerant
crops is gaining attention. The main advantage of QTL-based
approaches is that they allow loci linked to heat stress to be
identified (Bita and Gerats, 2013). Identification of adaptive
QTLs for heat stress is one way of understanding tolerance
mechanisms, and various studies have been conducted to detect
genetic markers for various abiotic stresses, including heat stress
(Roy et al., 2011). Markers linked to QTLs could be used to
enhance thermotolerance in available germplasm. Currently,
QTL identification for thermotolerance is being carried out
using different traits, such as thousand grain weight (TGW),
canopy temperature depression (CTD), grain filling duration
(GFD), yield (Pinto et al., 2010), and traits related to senescence
(Vijayalakshmi et al., 2010).
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Association genetics has recently been used to assist in QTL
detection in various crop species (Ahuja et al., 2010). Themarkers
associated with QTLs, once isolated, the candidate QTLs can be
introgressed in elite lines via MAS technology. The traits are
usually controlled by small effect QTLs or multiple pleiotropic
genes which are the main drawback of generating tolerant
genotypes for heat stress (Bita and Gerats, 2013). Marker-assisted
recurrent selection (MARS), pyramiding various QTLs from a
large number of populations in the same genetic background
or GS (Genomic Selection) techniques can be used to overcome
this (Tester and Langridge, 2010; Varshney et al., 2012b). The
MAS approach, however, for complex traits such as heat tolerance
are not efficient due to the genotype–environment and gene–
gene interactions, which eventually lead to reduced breeding
efficiency (Collins et al., 2008). When characters like heat stress
tolerance are involved, recurrent selection is an adequate method
in plant breeding. There is a small probability of obtaining
a superior genotype in multiple crosses, which combines all
of the required alleles. The substitute is recurrent selection to
accumulate gradually, through recombination cycles, the desired
and available alleles in different parents (Donà et al., 2013). The
main focus of recurrent selection is to enhance the frequency of
desirable alleles for favorable traits, conserving genetic variability.

‘Omics’ Technology in Heat Tolerance
‘Omics’ technologies, such as genomics, proteomics,
transcriptomics, and metabolomics, have revolutionized
research in plant sciences (Yuan J.S. et al., 2008). The enormous
progress in the field of “omics” has made possible to elucidate
different candidate genes involved in response to complex abiotic
stresses in crop plants (Vij and Tyagi, 2007; Urano et al., 2010;
Deshmukh et al., 2014; Kujur et al., 2015). These technologies
involve various disciplines, and new advances in these areas
have markedly contributed to a better understanding of the
molecular and genetic basis of the heat stress response that has
been a crucial bottleneck for molecular and transgenic breeding
(Reddy et al., 2012). As the technology has progressed, omics
approaches have improved over the last decade (Deshmukh et al.,
2014). Research in recent years has provided an understanding
of the function of proteins, metabolites, and many key genes
and molecular processes involved in plant responses to heat
stress. The mechanism of heat stress tolerance, however, is quite
complex because of the multiple genes and post-transcriptional
regulation influence (Ramalingam et al., 2015). Moreover, gene
expression is affected by stress conditions due to alterations in
plant proteome and metabolome composition. Therefore, to
understand plant stress tolerance, omics technology has become
mandatory (Ramalingam et al., 2015).

Transcriptomics

Various moden techniques such as RNA sequencing have led to
many deep expression studies ultimately unraveling many heat-
tolerant candidate genes in various crops (Xin et al., 2010; Wang
et al., 2011; Priest et al., 2014; Gonzalez-Schain et al., 2016). Few
studies have been conducted for heat tolerance via transcriptomic
analysis in legumes. Initially cDNA – AFLP technique was used
to analyze the expression of various thermotolerant genes in

cowpea (Simões-Araújo et al., 2002). Owing to the importance
of heat shock factors (HSF) for survival under heat stress, 19
and 21 HSF ESTs in Lotus japonicas and Medicago truncatula
respectively and 25 candidate HSF ESTs in soybean were found
(Soares-Cavalcanti et al., 2012). Kumar et al. (2015a) suggested
that the transcript expression of VfHsp17.9CII gene in faba bean
showed a considerable 620-fold change when subjected to high
temperature treatment. Taking the advantage of NGS technology
(which has made it possible to achieve greater resolution
and improved description of candidate genes in trancriptome
sequences) in ICC4958 genotype of chickpea DNAJ, HSP 70
and HSP 91 genes have been identified using Illumina/Solexa
sequencing (Hiremath et al., 2011; Martin et al., 2013). In
a recent experiment, employing RNA-sequencing, a complete
trancriptome analysis of heat-responsive genes in heat-sensitive
chickpea genotypes (ICC 5912, ICC 4567, and ICC 10685)
and heat-tolerant genotypes (ICC 15614, ICC 1356, and ICC
92944) was reported (Kudapa et al., 2014). Later, in chickpea
through RNA-sequencing analysis of leaf, flower and roots at
different growth stages, five HSP 90 candidate genes (Ca_25811,
Ca_23016, Ca_09743, Ca_17680, and Ca_25602) were obtained
(Agarwal et al., 2016). To further explain the role of HSP 20
in thermotolerance, 47 genes of 51 GmHsp20 were identified
based on an in vivo analysis to be heat responsive in soybean
(Lopes-Caitar et al., 2013). Lee et al. (1994) cloned ClpB/HSP100
gene of soybean and unraveled evident underlying candidate gene
Glma05 g00540. Later on, in soybean GmHsfA1 gene was cloned
successfully which was responsible for thermotolerance (Chen
et al., 2006; Zhu B. et al., 2006). VfHsp17.9-CII gene in faba
bean (mainly belonging to sHSP CII) has been recently cloned
(Kumar et al., 2015a). Increased accumulation of VfHsp17.9-
CII at 38◦C in pollen grains of faba bean was observed in
this study thereby pointing out its protective role against heat
stress in faba bean. It might be worthwhile to explore specific
strategies to reduce ovary abortion as seen in maize with respect
to drought stress induced seed loss (Guan and Koch, 2015). For
example in case of maize, it has been found that increase in
the expression of trehalose-6-phosphate phosphatase, the yield is
improved under drought stress condition (Nuccio et al., 2015).
Similar strategies should be looked in to the legumes growing
under heat stress. Advancing trends in transcriptomics alongwith
increasing knowledge about the sequence technologies coupled
with improvements in computational tools would help us in
understanding heat stress response in legumes.

Proteomics and Metabolomics

Proteomics and metabolomics are rapidly emerging fields that
provide large-scale and precise information about the proteins
and metabolites produced in response to various abiotic stresses
in plants including legumes (Arbona et al., 2013; Rodziewicz
et al., 2014; Ramalingam et al., 2015). In some model legume
species such as Medicago truncatula and Lotus japonicus, along
with crop legumes like soybean, proteome and metabolome
profiling using high-throughput based systems have been used
extensively to study nodule symbiosis, cellular and developmental
processes, and stress signaling pathways. Furthermore, the
available protein reference maps, proteomics, and metabolomics
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databases have been used extensively in research to unfold the
various processes in legumes (Ramalingam et al., 2015).

During high temperature stress, protoemics study allow
deciphering the role of heat-responsive proteins like HSPs or
chaperones, proteins involved in various signal transduction
pathways, redox homeostasis, metabolic pathways and protection
(Kosová et al., 2011; Zou et al., 2011). The integration of
proteomics with genetic information in legumes will give
way to exciting opportunities to achieve crop improvement
and sustainable agriculture (Rathi et al., 2016). The foremost
challenge faced by proteomics is the presence of multiple
proteins, all of which undergo various post-translational
modifications (PTMs). Nonetheless, proteomics is proceeding
quickly with a primary focus on PTMs, protein quantity and
protein interactions (Champagne and Boutry, 2013).

Proteomics has made a major contribution to plant biological
research and stress responses, mainly because of the increasing
number of plant genomes being sequenced and released
(Weckwerth, 2011; Jorrín-Novo et al., 2015). Additionally, mass
spectroscopy advancements, bioinformatics, and quantitative
methods have made it possible to comprehensively identify,
validate and characterize a variety of proteins from specific
organ/tissue/cells (Glinski and Weckwerth, 2006). The
knowledge obtained from these advanced techniques is essential
for interpreting the structure of proteins and regulatory functions
of proteins encoded by specific genes (Wienkoop et al., 2010;
Nanjo et al., 2011; Abdallah et al., 2012). Moreover, approaches
like proteomics provide crucial information, such as the levels
of proteins linked to stress tolerance, alterations in proteomes
under stress conditions that associate analyses of transcriptomics
and metabolomics, along with the role of genes expressed in the
genome’s functionally translated regions linked to desirable traits
(Kosová et al., 2011).

In legumes, proteomic studies have been mainly conducted
on Medicago to understand stress tolerance, plant growth,
and the physiology of seeds and development, which is of
great importance to agricultural research (Colditz and Braun,
2010; Jorrín-Novo et al., 2015). There has been a considerable
contribution to proteomic studies in soybean at subcellular,
organ and whole plant levels, with 2D-GE (gel electrophoresis),
MALDI-TOF-MS, LC–MS/MS and protein sequencing used to
unravel the heat tolerance mechanism in soybean seedlings.
Using these techniques in “heat-sensitive” soybean genotype,
42 protein spots were identified at different time scales that
were involved in 13 metabolic processes (Wang et al., 2012).
Further, proteomic analysis on leaves of soybean revealed the
expression of 25 different proteins which have roles in important
metabolic pathways, such as RuBisCo regulation, Calvin cycle,
electron transport under high temperature (Das et al., 2016).
In an experiment to highlight root proteome dynamics during
heat stress, using normal root hairs and heat stressed root
hairs, 30 commonly upregulated and downregulated proteins
were obtained (Valdes-Lopez et al., 2016). Many peroxidases
along with heat shock class I and II proteins were found
in heat-treated soybean roots, indicating their role in heat
tolerance. This information will allow further experiments
to be conducted for proficient proteomics application for

crop legumes, primarily by characterizing proteins linked with
development and stress tolerance, to identify unambiguous
candidate genes (Ramalingam et al., 2015). Similar reference
maps have been obtained in crop legumes such as peanut and
soybean. Some proteins (5702) have been identified for single
root hair cells via proteome reference maps, generated in soybean
(Brechenmacher et al., 2012). Development of proteomemaps for
chickpea, pigeonpea and groundnut is underway at ICRISAT.

Heuss-LaRosa et al. (1987) proposed role of two proteins (70
and 80 KD) in thermotolerance and adaptation in cowpea. In
Mungbean, two HSP 70 isotypes were identified under heat stress
(Wu et al., 1993). Zhu J. et al. (2006) observed the expression
of HSP-interacting proteins for improved heat stress tolerance
in soybean. In another study on, soybean seedlings, increased
accumulation of various other proteins with chaperone functions
(Chaperonin 60b subunit CPN60-b, HSP 90, Chaperonin CPN-
10 and chloroplast chaperonin) occurred under heat stress
(Ahsan et al., 2010). On the basis of differential expression of 35,
54, and 61 proteins from stems, leaves, and roots, respectively
in response to high temperature role of tissue-specific proteins
in safegaurding soybean against heat stress was reported (Ahsan
et al., 2010). Role of ERD-related proteins (also serves as
chaperones), HSP70 and HSP 91 in dehydration (and probably
in thermotolerance) was observed in chickpea via trancriptome
analysis (Hiremath et al., 2011). Presence of ClpB/HSP100
protein was detected under heat stress in Phaseolus lunatus
(Keeler et al., 2000). It has been observed that accumulation
of ClpB/HSP100 during high temperatures increased the pollen
viability in faba bean (Kumar et al., 2015b). Recently, in faba
bean VfHsp17.9-CII (a novel HSP protein) was identified which
implements heat tolerance (Kumar et al., 2015a). Das et al. (2016)
reported increased levels of Ef-Tu protein in soybean which
are mainly involved in protecting key enzymes and proteins
from heat stress that are required for photosynthesis. Therefore,
the proteomic analysis of plants can unravel various underlying
thermotolerant proteins that can further act as biomarkers in
breeding program for producing thermotolerant grain legume
varieties (Rathi et al., 2016).

Metabolomics, in addition to proteomics, is a vital approach
to functional genomics that provides a method to identify
and quantify metabolomes within a cell, tissue or organism
(Weckwerth, 2003; Weckwerth and Kahl, 2013). Metabolomics
plays a vital role in crop breeding programs as metabolites
can be used as selection biomarkers because they can integrate
complex interactions between genotype and environment (Fernie
and Schauer, 2009). Tremendous progress in the field of
metabolomics has made possible to achieve greater insights
regarding various tolerance mechanisms at metabolic levels
under heat stress (Kaplan et al., 2004; Obata and Fernie, 2012;
Bokszczanin and Fragkostefanakis, 2013). Metabolite profiling
performed in soybean genotypes revealed that anti-oxidants
such as flavanoids, tocopherols, phenylpropanoids, and ascorbate
refine heat tolerance in tolerant genotypes (Chebrolu et al.,
2016). Little information exists on metabolomics for heat stress
in plants, particularly legumes. This area needs to be exploited
to comprehend the underlying mechanisms of heat stress
(Ramalingam et al., 2015).
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With proteomics and metabolomics emerging as powerful
tools for unfolding various unknown plant mechanisms, there is
great interest in applying these techniques to understand stress-
related responses in crops (Pandey et al., 2016).

These advanced approaches along with genomics knowledge
will support our efforts to accurately detect candidate genes
and pathways responsible for important traits that will be
invaluable for crop breeding programs (Langridge and Fleury,
2011). The information obtained from ‘omics’ studies will need
to be combined with breeding so that breeders can move
toward ‘knowledge-driven breeding’ as opposed to ‘chance-
driven breeding’ (Kulwal et al., 2011). It is evident that these
technologies will contribute to legume improvement programs in
the future.

CONCLUSION

Heat stress causes severe agricultural losses, which is a risk
to world food security with consequences that will challenge
human welfare. Among the crop growth cycle, the reproductive
phase is more susceptible to high-temperature stress than
the vegetative phase. While the male reproductive organs are
more sensitive to heat stress than the female counterpart,
the complete reproductive process from gamete formation
to fertilization and seed maturation are highly vulnerable to
raised temperatures. Microsporogenesis is disrupted at high
temperatures due to damage caused by the tapetal layer and
nutrient imbalance in developing pollen, resulting in sterility.
Heat stress has detrimental effects on ovule development and
viability. Fertilization is impaired due to reduced pollen viability,
stigma receptivity, and pollen tube growth. Further, reduced
seed filling, increased seed abortion and smaller seeds affect
the seed weight. All these effects may occur due to diminished
photosynthetic rates, which result from metabolic and cellular

dysfunction, and lead to reduced photosynthate supply to
developing seeds. During heat stress, plants undergo numerous
adaptations which confer tolerance, such as the induction of
signal cascade leading to profound changes in specific gene
expression. Of the signaling molecules synthesized under stress
conditions, Ca2+ plays a critical role. Heat shock proteins that
accumulate and act as molecular chaperones help to fold and
unfold proteins under heat stress. The application of ‘omics’
(genomics, transcriptomics, proteomics, and metabolomics) is
essential for exploiting the molecular basis and processes
underlying the plant response to heat stress and mechanisms of
tolerance. Molecular-linked functional physiology will pave the
way for engineering plants with improved tolerance, coupled with
higher economic yields, to counter the harsh climates of arid to
semi-arid zones of the world.
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