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Abstract

It is now indisputable that plastics are ubiquitous and problematic in ecosystems globally. Many suggestions have been made

about the role that biofilms colonizing plastics in the environment—termed the “Plastisphere”—may play in the

transportation and ecological impact of these plastics. By collecting and re-analyzing all raw 16S rRNA gene sequencing and

metadata from 2,229 samples within 35 studies, we have performed the first meta-analysis of the Plastisphere in marine,

freshwater, other aquatic (e.g., brackish or aquaculture) and terrestrial environments. We show that random forest models

can be trained to differentiate between groupings of environmental factors as well as aspects of study design, but—crucially

—also between plastics when compared with control biofilms and between different plastic types and community

successional stages. Our meta-analysis confirms that potentially biodegrading Plastisphere members, the hydrocarbono-

clastic Oceanospirillales and Alteromonadales are consistently more abundant in plastic than control biofilm samples across

multiple studies and environments. This indicates the predilection of these organisms for plastics and confirms the urgent

need for their ability to biodegrade plastics to be comprehensively tested. We also identified key knowledge gaps that should

be addressed by future studies.

Introduction

An estimated total of 7 billion metric tons of plastic waste

has now been produced globally while approximately only

9% of this is recycled and 79% has been discarded in

landfills or the environment [1]. In marine and other aquatic

environments, plastics cause a range of negative environ-

mental impacts: directly, through entanglement [2, 3] or

ingestion [4–8], or indirectly, through the transfer of toxic

chemicals [9, 10]. Despite that the majority of marine

plastic waste originates from land, less is known about the

impacts of plastic waste in terrestrial ecosystems [11], and

there are numerous factors that can affect the fate, transport,

and impacts of plastics in all biospheres.

These factors include transport by air [12], rain [13],

rivers [14] and currents [15], (de)sorption of chemicals [16],

photo- or mechanical degradation or fragmentation [17] and

microbial colonization and possibly degradation [18].

Deleterious impacts of plastics [6], their potential to trans-

port invasive species across entire ocean basins [3, 19–21]

and their biodegradation by isolated bacteria and fungi have

been studied for over half a century [22]. The microbial

communities colonizing plastics—commonly termed the

“Plastisphere” [23]—however, have only been specifically

investigated more recently. A call for research into the

interactions between microorganisms and plastics at the

beginning of 2011 marks almost a decade of Plastisphere

research [24]. On 5 January, 2020 there were 50 publica-

tions that studied the Plastisphere using Illumina Next

Generation Sequencing (NGS) methods. Although this is an

emerging area of research, most Plastisphere studies have

been focussed on the marine environment.

Microbial members of the Plastisphere have been found

to be: (i) different from communities that colonize other
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surfaces [25–27]; (ii) not different from communities that

colonize other surfaces [28]; (iii) only different from com-

munities colonizing other surfaces under specific environ-

mental conditions [29, 30] or at specific time points [31]; (iv)

more diverse than other microbial communities [32]; (v) less

diverse than other microbial communities [33, 34]; (vi)

potentially degrading the plastics that they colonize [35, 36];

(vii) capable of degrading plastic additives [33, 37, 38]; and

(viii) pathogenic and/or carrying antimicrobial resistance

genes [39–42]. The marine Plastisphere has been heavily

reviewed within the last year, e.g., [18, 43–46], and there are

also several recent reviews on plastic biodegradation, e.g.,

[47–49]. However, definitive answers on the metabolic

capabilities of the Plastisphere or the factors that drive its

formation and composition are unknown. Indeed, a re-

analysis of a small subset of Plastisphere studies (n= 5) by

Oberbeckmann and Labrenz [45] revealed that salinity along

with other environmental factors appeared to have a larger

effect on community composition than substrate.

To date, no large-scale meta-analysis of the Plastisphere

has been conducted, despite that all NGS data collected are

theoretically comparable. This is likely because these data

are not always deposited in publicly accessible databases (as

best practice would dictate). In addition, the use of different

methods for processing these data means that direct com-

parisons have not been possible without substantial bioin-

formatic analyses. In this study, we conducted a re-analysis

of all studies from 2010 to 2019 (for which sequencing data

were already accessible or were made available upon

request) that use Illumina NGS to characterize the Plasti-

sphere using the 16S rRNA gene. We aimed to determine

whether taxa identified as potential plastic biodegraders or

potential pathogens -and that were higher in abundance on

plastics than other samples- were significant across multiple

studies and environments. We then investigated which

environmental and methodological factors were shaping the

Plastisphere. We classified all sequences from these studies

to amplicon sequence variants (ASVs) and used a

phylogeny-based method [50] to overcome the problems

presented by the use of different primer pairs. This allowed

us to identify the common taxa between these studies and to

use random forest models to draw conclusions on the over-

arching factors that shape the Plastisphere.

Materials and methods

Experimental design

A literature search was performed on 5 January, 2020 using

the search terms “Plastics plastisphere”, “Plastics microbial

community”, and “Plastics microbial degradation” in both

the Web of Science Core Collection and Science Direct

(Supplementary Table 1A). The search was limited to stu-

dies that fit the following criteria: (i) were published

between 2010 and 2019; (ii) had original data (iii) char-

acterize the biofilm formed on nonbiodegradable plastics;

and (iv) use Illumina NGS. This resulted in 50 studies for

inclusion in this meta-analysis (Supplementary Table S1B);

41 studies that characterized only the 16S rRNA gene

[25, 27–33, 35, 38, 41, 42, 51–79], two studies that char-

acterized only the 18S rRNA gene [34, 80], two studies that

characterized the 16S and 18S rRNA genes [26, 81], two

studies that characterized the 16S and ITS2 rRNA genes

[82, 83], two studies that used shotgun metagenomics

[84, 85], and one study that used shotgun metagenomics

and characterized the 16S rRNA gene [86].

Of these studies, 34 had sequencing data that were

already publicly accessible. Requests for raw sequencing

data and metadata were made to the corresponding and first

authors of the remaining 16 studies, resulting in the provi-

sion of these data for a further five studies. This resulted in

39 studies with datasets that were available for inclusion: 31

that characterized only the 16S rRNA gene [25, 27, 28, 30–

33, 35, 38, 52, 53, 55–59, 61, 62, 64–66, 68, 69, 71–

76, 78, 79], two that characterized only the 18S rRNA gene

[34, 80], two that characterized the 16S and ITS2 rRNA

genes [82, 83], two that used shotgun metagenomics

[84, 85], one that characterized the 16S and 18S rRNA

genes [26], and one that used shotgun metagenomics and

characterized the 16S rRNA gene [86] (Supplementary

Table S1B). Relatively few studies focussed on the 18S and

ITS2 rRNA genes and these used primers that targeted

different regions and were from different environments. We

therefore focussed on the 16S rRNA gene here, meaning

that we included a total of 35 studies [25, 27, 28, 30–

33, 35, 38, 52, 53, 55–59, 61, 62, 64–66, 68, 69, 71–

76, 78, 79, 82, 83, 86] with 2,229 samples between then.

Publicly accessible data containing sequencing reads for the

remaining studies were downloaded (primarily from the

NCBI SRA database) and, if necessary, files were converted

to match a format that was compatible with QIIME2 (i.e.,

GNU zipped FASTQ files). Additional requests for raw

sequencing data were made to the authors of studies where

the forward and reverse reads were already joined, or the

primers were already removed (full details can be found in

Supplementary Table S1B). All available metadata were

collected and supplemented with any additional information

present in the supplementary information of published stu-

dies (Supplementary Table S2). Where details of salinity

and temperature were not given, these were estimated based

on typical characteristics in these areas at the time of year

the samples were collected. If no light regime was specified,

ambient light was assumed. If sample names were not given

that could be matched between supporting information of

the paper and metadata given to the NCBI SRA or plastic
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type was not determined, these were classified as “unknown

plastic”.

We added metadata categories that were not in any of the

original studies: (i) environment—each study was classified

as terrestrial, marine, freshwater, or aquatic (e.g., the envir-

onment was brackish or the experiment was carried out in a

different system, such as in mariculture); (ii) whether the

study was carried out in a laboratory or in the field; (iii)

incubation or collection—whether the plastics used were

incubated for a known length of time or were collected after

an unknown residence time; (iv) general incubation time—

samples were classified as early (≤7 days incubation), late

(>7 days incubation), or collection (samples were collected

after an unknown residence time); (v) water or sediment—the

plastics were from/were incubated either in the water column

or on the sea floor/in soil in the terrestrial environment; (vi)

source—the material used for microbial community char-

acterization was classified to the general categories of plastic,

water, sediment, organic, not plastic (i.e., an inert control

surface, such as glass or metal), other or blanks and positive

sequencing or methodological controls; and (vii) general

plastic type—samples were classified as aliphatic (i.e., PE or

PP), other plastic (i.e., plastics that contain other functional

groups, e.g., PET, PS, and PVC), unknown plastic (the

plastic type was not determined), biofilm (the sample was

from a control substrate, such as glass or a leaf), planktonic,

or blank (i.e., sequencing or methodological controls).

16S amplicon sequence processing (per study)

Data processing followed the standard operating procedure

suggested in Comeau et al. [87] and used QIIME2 (2019.10

core distribution [88]). Raw forward and reverse read files

were imported to the QIIME2 format after an initial

visualization of read quality using the packages FastQC

(Babraham Bioinformatics) and MultiQC [89]. Cutadapt

[90] was used to remove primers from reads and

VSEARCH [91] was used to join paired-end reads. These

steps were omitted for samples where primers were already

removed or reads were already joined, respectively, and for

one study that used three different reverse primers [59]. All

low-quality reads were then filtered using default quality

thresholds before using Deblur [92] to denoise sequences

and resolve ASVs. Deblur was run using trim lengths

determined by the read quality for each study. For Frére

et al. [59], the ends of reads corresponding to the lengths of

primer sequences were also trimmed. The forward reads

only were used for several studies where low reverse read

quality led to too few reads remaining after running Deblur

and for which the forward reads were of high enough

quality to be used (full details of the processing steps carried

out for each study can be found in Supplementary

Table S2).

Combined processing

All studies were merged using QIIME2’s merge and merge-

seqs commands, then classified taxonomically using a

classifier trained on the full-length 16S rRNA gene SILVA

v132 database [93]. Classified sequences were filtered to

remove mitochondria, chloroplasts, those that were

unclassified at the kingdom level and those present at a

cumulative abundance of ten or fewer. This left a median of

20,284 reads per sample (minimum 2 and maximum

995,391). Samples with <2,000 reads were removed, leav-

ing 2,056 samples and 34 studies, and phylogenetic trees

were built using SEPP with a reference phylogeny created

using the SILVA v128 database [50].

Custom scripts that wrapped all commands were used to

carry out further analyses in R (version 3.6.1) and Python

(version 3.8.3) using the data exported from QIIME2 and

the packages Biopython [94], csv, itertools, lifelines [95],

math, matplotlib [96], numpy, os, pandas [97], pdf2image,

pickle, scipy [98], scikit-bio, scikit-learn [99], and sinfo for

Python as well as ape [100], compositions [101], dplyr

[102], exactRankTests [103], ggnewscale [104], ggplot2

[105], ggtree [106], knitr [107], metacoder [108], micro-

biome [109], nlme [110], philr [111], phyloseq [112], reti-

culate [113], and vegan [114] for R. Several normalization

methods were used to address the large disparity in the

sequencing depths of different samples: (i) samples were

rarefied to 2,000 and converted to relative abundance; (ii)

samples were converted to relative abundance; (iii) samples

were converted to a log scale (with a pseudo count of one);

or (iv) samples were converted to a centered log ratio (CLR;

with a pseudo count of half of the minimum nonzero count).

ASVs with a maximum number of reads below 1% of the

median number of reads per sample were removed—below

20 reads for (i) and 202 reads for (ii), (iii), and (iv)—and

sequences were agglomerated at a height of 0.1 based on the

SEPP insertion tree. This resulted in 4,469 ASVs remaining

for (i) and 12,635 ASVs remaining for (ii), (iii), and (iv).

For (i), (ii), and (iii), weighted and unweighted uniFrac

[115] distances were calculated between all samples while

for (iv), the log-ratio transformed data, Aitchison distances

(i.e., Euclidean distances of CLR-transformed data) [116] as

well as Phylogenetic Isometric Log-Ratio Transformation

[111] distances were calculated between all samples. Unless

otherwise mentioned, all analyses used the rarefied data.

Random forest model construction

To determine which taxa were most associated with

groupings within each metadata category (e.g., environment,

plastic type, salinity, incubation time; n= 20 categories),

feature selection was performed using random forest models

(either classification or regression models for discrete or
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continuous data, respectively) built using scikit-learn, each

with 10,000 estimators and 80 and 20% of samples being

used for training and testing, respectively. All taxa were

scaled to the maximum value of taxon abundance prior to

building the models. These were carried out separately for

the taxonomic levels of phylum, class, order, family, genera,

species, and ASV. Where groupings within metadata cate-

gories for samples were not known, these samples were

removed from the model construction. To investigate the

effect of normalization method on the selected features,

these models were constructed for each of the four nor-

malization methods described above. To determine the taxa

that were most associated with different plastic types, ran-

dom forest classification models (built using the same

parameters as above) were constructed separately for each

environment (marine, aquatic, freshwater or terrestrial) for

samples grouped to general plastic type (as described

above). Samples were not further grouped into laboratory

and field studies because not all environments included both.

These were again constructed for the taxonomic levels of

phylum, class, order, family, genus, species, and ASV and

for each of the four normalization methods described above.

The classification accuracy for each random forest model is

defined as the percentage of the time that the model can

classify a sample to the correct grouping (e.g., as marine

within the environment metadata category) and the feature

importance is defined as the proportion that the classification

accuracy would decrease without that taxon (feature)

Fig. 1 Overview of the studies and samples included in the meta-

analysis. Cumulative number of studies per year (A), study location

(B), number of samples (C), relative abundance of sample type (D),

and sample incubation time (E) for studies carried out in the marine,

freshwater, other aquatic, and terrestrial environments. A, B Show all

50 studies whereas, C, D, and E show only studies/samples that were

included. Studies for which data were not provided (neither publicly

available nor provided upon request) are shown with transparent colors

in A and white marker edges in B. Note that those studies shown for

2020 were already in press and available online by 5 January, 2020.

See Supplementary Tables S1 and S2 for full details of all studies and

samples included.
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present. We calculated concordance (using the Python life-

lines package) [95] between the classification accuracies as

well as between mean feature importance values to assess

the similarity of the results obtained by the random forest

models constructed using different normalization methods.

Tests for differential abundance of taxa

ASVs shared between treatments were calculated for sam-

ples grouped by the environment. Differences between

samples at early (≤7 days) or late (>7 days) incubation times

were determined using Wilcoxon Rank Sum tests within the

metacoder R package with holm-bonferroni false discovery

rate correction. ANCOM tests for differential abundance

(with holm-bonferroni false discovery rate correction) were

performed on all taxa (separately for each taxonomic level)

for the taxa normalized using rarefaction.

Results

Summary of included studies and sequences

In this study, we reanalyzed the 16S rRNA gene amplicon

sequencing data obtained from 35 studies (Supplementary

Section 1). All Plastisphere studies to date have examined data

collected in the Northern hemisphere and most of the included

studies were conducted in and around Europe (Fig. 1). After

removing all samples with below 2,000 reads there were

2,056 samples remaining; 1,185, 316, 506, and 49 samples in

the marine, freshwater, aquatic, and terrestrial environments,

respectively. One study [64] was removed from further ana-

lyses because all samples (n= 9) had below 2,000 reads. The

abundance of different substratum types depended on the

environment and most samples were collected from the field

after unknown environmental residence times (Fig. 1).

Fig. 2 nMDS plots showing uniFrac distance between samples.

nMDS plots showing weighted (A, B) or unweighted (C, D) uniFrac

distance (i.e., accounting for taxon phylogeny with or without taxon

abundance, respectively) calculated between all samples and shown in

A and C as samples colored by environment and B and D as samples

colored by study. Results of PERMANOVA and ANOSIM tests for

significance between groups are shown on each plot.
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Normalization method affects the biological
interpretation of results

There was a large disparity in the number of reads and

taxonomic richness per sample between different studies

(Fig. S1). We therefore investigated several different

methods for data normalization (further details are given in

the methods section) on random forest classification accu-

racy and the concordance between taxa identified as

important by each of these methods (Supplementary Sec-

tion 2). These random forest models were constructed for:

(i) all 20 metadata categories—including factors such as

Fig. 3 Average similarity between samples within a study versus

between studies. Average similarity (determined by weighted or

unweighted uniFrac; i.e., accounting for taxon phylogeny with or

without taxon abundance; top or bottom, respectively) between

samples within a study versus between studies, with white boxes

showing samples grouped by environment. Study names are colored

by environment, with green, purple, blue, and orange being for marine,

aquatic, freshwater, and terrestrial, respectively (as in Figs. 1 and 2).
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Fig. 4 Summary of the composition, diversity and shared ASVs

within sample groupings. Similarity of the composition of microbial

communities on different substrata in different environments. Samples

are grouped by weighted uniFrac distance using ward linkage (den-

drogram) between sample types (colored by environment) and mean

community composition at the phylum level is shown. Those phyla

that are grouped into ‘Other’ are phyla that are <1% mean relative

abundance. Mean relative abundance of several orders that have pre-

viously been suggested to be associated with plastics and Simpsons

Index of Diversity (showing median and interquartile range) for each

group is also shown. The number of ASVs that are shared between

different substratum types (that are >1% in relative abundance in these

samples) is shown at the bottom.

Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere 795



environment, geographic location, temperature, primer pair,

and plastic type to varying degrees of specificity—for each

taxonomic level: phylum, class, order, family, genus, spe-

cies, and ASV (i.e., 560 random forest models were con-

structed in total, 140 for each normalization method); and

(ii) general plastic type within each of the four environ-

ments (marine, aquatic, freshwater, and terrestrial) for each

taxonomic level: phylum, class, order, family, genus, spe-

cies, and ASV (i.e., 112 random forest models were con-

structed in total, 28 for each normalization method). For

both sets of random forest models, the models constructed

using rarefied data were on average the least accurate

(61–67% and 53–67% mean classification accuracy across

all metadata categories and all environments for general

plastic type, respectively, for the taxonomic levels of phy-

lum-ASV; Figs. S2 and S3) and the models constructed on

data transformed to relative abundance were on average the

most accurate (82–90% and 72–86% mean classification

accuracy across all metadata categories and all environ-

ments for general plastic type, respectively, for the taxo-

nomic levels of phylum-ASV; Figs. S2 and S3). Models

constructed using the compositionally aware centered log-

ratio transformed data were on average 1.1 and 10% (for all

metadata categories and all environments for general plastic

type, respectively) less accurate than models constructed on

data transformed to relative abundance. Feature importance

values are the proportion that the classification accuracy

decreases without that feature. The features that have

importance values of either above 0.01 or 0.005 are the

same between all normalization methods across all taxo-

nomic levels. Concordance in feature importance values

(whether the ranking of features by their values is the same)

was on average 0.94 across all taxonomic levels between

the relative abundance, log and CLR-transformed data and

0.78 for the relative abundance, log and CLR-transformed

data against the rarefied data (Supplementary Section 2).

Rarefying has previously been found to most effectively

account for large differences in library sizes, including

lowering the false discovery rate when there are large dif-

ferences in library sizes [117]. We therefore compromised

on lower random forest classification accuracy and used the

rarefied data for the remainder of analyses. Most analyses

presented here have also been conducted on the data nor-

malized using the other methods, but these results are pre-

sented in Supplementary Section 2.

Diversity within and between studies

Beta diversity analyses (weighted and unweighted uniFrac

distance) showed that there were significant differences

between samples when they were grouped by study or

environment (PERMANOVA and ANOSIM p= 0.001;

Fig. 2). The largest differences between studies and

environments were due to organisms that were present at

lower abundances, as evidenced by higher pseudo-F and R

statistics with the unweighted (pseudo-F= 100.42 and

55.149 and R= 0.247 and 0.897 for environment and study,

respectively) than weighted (pseudo-F= 93.87 and 53.045

and R= 0.224 and 0.716 for environment and study,

respectively) uniFrac distances (Figs. 2 and 3). Studies that

were clearly less similar to other studies could be explained

by them being laboratory-based [32, 71], focussed on

anaerobic rather than aerobic communities [71], collecting

samples from the deep sea [76] or sequencing amplicons

that did not include the V4 16S rRNA gene region [52, 71].

Those that were particularly similar within [26] or between

[72–74] studies could presumably be explained by very

long incubation times (above 1 year), leading to community

convergence, or having similar experimental setups and

inoculums, respectively (Fig. 3).

When samples are split to environment and substratum

type (i.e., the groupings shown in Fig. 1D), they have a

tendency to group by environment, although this is not true

for all cases (Fig. 4). The Proteobacteria dominate (above

50% relative abundance) in all but the terrestrial environ-

ment, freshwater planktonic, and aquatic control biofilm

groups, which have larger proportions of Actinobacteria and

Planctomycetes, respectively. Medians of Simpson’s diver-

sity indices were above 0.8 for all sample groups apart from

the aquatic blank group (0.3), which had a high relative

abundance of Vibrionales (i.e., above 15%) and was the only

group with >1% of the extremophilic Deinococcus–Thermus

phylum (i.e., almost 7%). The number of ASVs in each

environment (only those that were >1% relative abundance

are shown) was related to the number of samples from that

environment, with there being the highest and lowest num-

bers of both ASVs and samples in the marine and terrestrial

environments, respectively (Figs. 1 and 4), and each sub-

stratum type within each environment had ASVs that were

unique (above 1% relative abundance in that treatment only)

to it.

Environmental variables—and not plastic type—
have the largest impact on microbial composition

To determine which metadata categories have the largest

impact on microbial composition, we constructed random

forest models for all 20 categories—including factors such

as environment, geographic location, temperature, primer

pair, and plastic type to varying degrees of specificity—for

each taxonomic level: phylum, class, order, family, genus,

species, and ASV (i.e., 140 random forest models were

constructed on the rarefied data). We found that models

constructed using the microbial composition at the ASV and

phylum levels were on average the most (67%) and least

(61%) accurate, respectively, and that the light regime
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(whether samples were incubated at ambient or modified

lighting conditions, e.g., shaded or a laboratory 16:8 light:

dark cycle) was the metadata category with the highest

classification accuracy (maximum 94% at the class level;

Fig. 5A). The other metadata categories that were successful

more than 80% of the time were: (i) whether the samples

came from experiments carried out in the laboratory or the

field (maximum accuracy 91% at order or genera level); (ii)

whether the samples were incubated/collected from sedi-

ment or the water column (maximum accuracy 90% at the

ASV level); (iii) the environment that the sample came from

(maximum accuracy 86% at order, genera or species level);

(iv) the primer pair used for sequencing (maximum accu-

racy 85% at order or species levels); (v) whether the sample

was collected (i.e., unknown environmental residence time)

or incubated for a known length of time (maximum accu-

racy 82% at order, genera or ASV level); and (vi) the DNA

extraction method used (maximum accuracy 81% at order

level). Depth consistently produced the models with the

lowest classification accuracy (maximum accuracy 21% at

the ASV level), with temperature also performing poorly

(maximum accuracy 40% at the ASV level) and all other

categories, such as plastic type, specific incubation time,

and geographic location, having intermediate accuracy

levels.

When we examine the taxa with the highest mean feature

importance values (proportion that the classification accu-

racy decreases without that feature), we find that at all

taxonomic levels besides ASV, it is a member of the Bac-

teroidetes with the highest values (maximum 0.159 at the

phylum level; Fig. S4 and Supplementary Section 3); even

though the Bacteroidetes are substantially less abundant

than the Proteobacteria in all but the terrestrial environment

(Fig. 4). The next highest feature importance values are

generally from the Proteobacteria, and in particular the

Alphaproteobacteria (e.g., the ASV with the highest mean

value, ASV1197 Erythrobacter, 0.03), although the latitude

and longitude usually have the highest individual impor-

tance values for both taxonomic groups. There are several

metadata categories for which the taxa with high—or low—

Fig. 5 Classification accuracy

for random forest models.

Classification accuracy (%) for

random forest models

(classification or regression for

discrete or continuous

categories, respectively)

constructed for (A) all samples

grouped within different

metadata categories or (B)

samples within each

environment grouped within

plastic type (general) at different

taxonomic levels. Random

forest models are trained using a

subset of 80% of samples

(chosen randomly) and

classification accuracy is based

on testing using the remaining

20% of samples. Figure S4

shows the top most important

features at the ASV level across

all metadata categories while

Supplementary Section 3 shows

all taxonomic levels as well as

metadata categories.
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feature importance values are strongly correlated, for

example: latitude and longitude (e.g., ASV1954 Lentimonas

and ASV1197 Erythrobacter); study, primer pair, and DNA

extraction method (e.g., ASV0715 AEGEAN-169 marine

group and ASV0496 SAR116 clade); and source, material

type, plastic type and whether the sample comes from an

incubation or collection experiment (e.g., ASV0808

Sphingomonadaceae, and ASV4333 Alteromonas; Fig. S4).

The Plastisphere includes potential plastic
biodegraders and potentially pathogenic species

To determine the taxa that were potentially specific to

plastics, samples were grouped by the environment they

originated from and random forest models were trained on

general plastic type (as in Fig. 1D). Random forest classi-

fication models showed that splitting samples by environ-

ment improved the classification accuracy of the plastic type

metadata category (to a maximum of 83% at the family,

genus or ASV level in the marine environment) and the

accuracy remained at below 50% at all taxonomic levels in

only the aquatic environment (Fig. 5B and Supplementary

Section 3). We were able to identify taxa that were sig-

nificantly differentially abundant between substratum types

in all environments, although in the terrestrial environment

we only found significant differences at the genus level (and

not at any other taxonomic level; Fig. S5 and Supplemen-

tary Section 3). In the marine environment, these included

large numbers of Alphaproteobacteria, that were more

abundant in planktonic samples, while the Bacteroidetes

and Gammaproteobacteria were more abundant in biofilm

samples (either plastics or controls). Of particular interest

were the taxonomic groups contained within the hydro-

carbonoclastic Oceanospirillales (the families Sacchar-

ospirillaceae and Halomonadaceae and genera Alcanivorax

and Oleiphilus) and Alteromonadales (the families Alter-

omonadaceae, Marinobacteraceae and Pseudoalter-

omonadaceae) [118] orders that were more abundant in

plastic samples than control biofilms, with the Oceanos-

pirillales generally being more abundant in the aliphatic

plastic samples and the Alteromonadales generally being

more abundant in the other plastic samples (Fig. S5 and

Supplementary Section 3). The Cyanobacteria and the

hydrocarbonoclastic Halomonadaceae were always more

abundant in the unknown plastic samples (Fig. S5 and

Supplementary Section 3), which were collected from the

ocean after unknown residence times (Supplementary

Table S2).

In the aquatic environment, there were also several

potentially hydrocarbonoclastic taxonomic groups that were

more abundant in plastic than other samples (the families

Thalassospiraceae, Alteromonadaceae, Pseudoalter-

omonadaceae, Saccharospirillaceae and Xanthomonadaceae

and genera Idiomarina and Alcanivorax), however, this dif-

ference was only significant for the potentially PAH-

degrading Spirosomaceae family [119]. In the freshwater

environment, there were also several taxonomic groups that

have either been isolated from hydrocarbon-contaminated

environments (ASV0388 Arcobacter and ASV0394 Arco-

bacter cryaerophilus [120]; ASV3841 Unclassified Xantho-

monadaceae [118]) or have been suggested to be capable of

hydrocarbon (Unclassified Immundisolibacteraceae genera

[121]) or biodegradable plastic (ASV2841 Flavobacterium

[122]) degradation that were significantly more abundant in

the unknown plastic samples. Those that were more abundant

in other plastic samples, were classes (Acidobacteriia and

Thermoanaerobaculia) and orders (OPB56—Ignavibacteria

—Caulobacterales, PB19—Deltaproteobacteria—and Ver-

rucomicrobiales), and it is therefore much more difficult to

speculate on the metabolic potential of these taxa. The same

was true of the terrestrial environment, where many of the

genera that were more abundant in the plastic samples

remained unclassified at the order level (e.g., Frankiales and

Microtrichales), although several genera known to be able to

degrade hydrocarbons were also identified, e.g., Arthrobacter,

Acinetobacter [118], Methylocaldum [123], and Nitrosomo-

nas [124] as being significantly more abundant in the plastic

(unknown plastics only) than control biofilm samples.

Previous studies have indicated the presence of poten-

tially pathogenic hitchhikers in the Plastisphere, e.g.,

[30, 64, 125–128] however, other studies have found that

potentially pathogenic species were actually higher in

abundance on natural substrates, such as wood, e.g., [25].

Therefore, we investigated taxa that could potentially be

pathogenic and that were more abundant on plastics than

other samples. We found several taxonomic groups that: (i)

were potential pathogens of animals—Tenacibaculum

(abundant in marine aliphatic plastic samples) and unclas-

sified Pirellulaceae (abundant in marine other plastic sam-

ples); (ii) contained lower taxonomic levels with human

pathogens—Clostridiales and ASV0589 Thalassospira

(both abundant in marine other plastic samples) and Chla-

mydiae (abundant in marine unknown plastic samples).

However, the ability of a bacterium to be pathogenic is

likely dependent on the presence of specific virulence fac-

tors which are often in mobile genetic elements [129]. The

resolution of amplicon sequencing data is therefore insuf-

ficient to determine pathogenesis. There were also taxa, for

example the genus Vibrio, of which members are potentially

capable of degrading plastics [130] as well as being

pathogens of humans and other organisms [129]. Curiously,

we found that the Vibrionales were more abundant in plastic

samples than control biofilm or planktonic samples in the

marine environment, but in the aquatic environment they

were more abundant in planktonic than any other samples.

This highlights the need for other methods that will enable
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differentiation between pathogens and non-pathogens, as

well as between strains that are capable of plastic degra-

dation and those that are not (as discussed in detail in

[131]).

Microbial community succession on different
material types

When we examined the taxa that discriminate between early

and late incubation times (up to or above 7 days of incu-

bation, respectively), we find some fairly consistent patterns

across the marine and aquatic environments: (i) the Bac-

teroidetes were always significantly more abundant at later

time points (where they differed in abundance between

early and late time points); and (ii) the Alphaproteobacteria

(or orders within the Alphaproteobacteria) are always more

abundant at earlier time points (Fig. 6). Other taxonomic

groups were more dependent upon the specific comparison.

For example, the Gammaproteobacteria, that were more

abundant at later time points in marine plastic samples

(aliphatic and other plastics), but were generally more

abundant at early time points in the aquatic environment,

with the hydrocarbonoclastic Oceanospirillales and Alter-

omonadales in particular being more abundant at early time

points. There were also a large number of phyla that were

significantly (p < 0.05; Wilcoxon rank sum tests with holm-

bonferroni false discovery rate correction) more abundant at

early than late time points in the aquatic control biofilm

samples, namely the Chloroflexi, Verrucomicrobia, Acti-

nobacteria, Cyanobacteria, and Deltaproteobacteria

(Fig. 6). Both other plastic and control biofilm samples in

the freshwater environment showed different successional

patterns than in either the marine or aquatic environments,

although some members of the Bacteroidia were still more

abundant at later time points. In the plastic samples, only

the Methylophilaceae were more abundant at early than late

incubation stages, while in the control biofilm samples there

were no taxa that were significantly more abundant at late

incubation stages.

The differences between substratum types were also

compared at different time points, revealing different pat-

terns between the marine and aquatic environments; there

were more differences between sample pairings at late time

points in the marine and at early time points in the aquatic

environment, with a greater number of differences overall in

the aquatic environment (Supplementary Sections 4 and 5).

These again included the hydrocarbonoclastic Oceanospir-

illales and Alteromonadales, that were more abundant in

aliphatic plastic samples than control biofilms at early time

points, but these differences had largely disappeared by

later time points. In the freshwater environment there were

not enough samples for comparisons to be made for most

sample pairings (only the other plastic and control biofilm

samples had both early and late time points), however,

differences between sample types were only observed at late

incubation times (between other and unknown plastics as

well as other plastics and control biofilms).

Discussion

The re-analysis of 35 Plastisphere amplicon sequencing

studies that we present here has allowed for a comprehensive

characterization of the 16S rRNA gene community that

colonizes plastics in marine, freshwater, other aquatic and

terrestrial environments. We trained random forest models to

classify samples within metadata categories, revealing that,

overall, there were a number of variables—both relating to

study design and environmental factors—that were better

able to differentiate between sample groupings than plastic

type (Fig. 5A). This agrees with the small re-analysis of

studies presented by Oberbeckmann and Labrenz (2020;

n= 5) [45], who reported that geographic location and

salinity, but not substrate type, significantly discriminated

between different samples. They did not, however, investi-

gate different aspects of study design, such as environment,

light regime or DNA extraction methods and only included

studies that used the same primer pair, all of which are

categories that we found to have a higher classification

accuracy than location (latitude and longitude) or salinity

(Fig. 5A). We tried to control for primer pair and DNA

extraction technique by agglomerating sequences based on

phylogenetic placement, which is known to reduce the

variation between different 16S rRNA gene regions [50],

although there are some taxa that will not be amplified by

particular primer pairs, including the hydrocarbonoclastic

groups targeted by many Plastisphere studies [132].

When we split our analyses to different environments

(marine, aquatic, freshwater, and terrestrial), we find that

plastic type could be used to train random forest models that

were up to 83% accurate (Fig. 5B). We were, therefore, able

to show that the differences identified by individual studies

between microbial biofilms on control substrates and the

Plastisphere were the same across the Plastisphere studies

that we re-analysed here, regardless of the methodological

differences between studies. For example, we find that the

hydrocarbonoclastic Oceanospirillales and Alteromona-

dales, both previously suggested to be plastic biodegraders,

e.g., [35, 73], were both important for differentiating

between different substrate types in the random forest

models (i.e., between aliphatic plastics, other plastics,

control biofilms, and planktonic communities). They were

also identified as significantly differentially abundant

between these substrates. Furthermore, we find that the

Oceanospirillales are higher in abundance in aliphatic

plastics while the Alteromonadales are higher in abundance
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in the other plastic types. This is an observation that, to our

knowledge, has not been previously acknowledged. Mem-

bers of both of these orders, e.g., Alcanivorax sp. (Ocea-

nospirillales) [35] and Alteromonas sp. (Alteromonadales)

[133], have been reported to be able to degrade PE (ali-

phatic plastic) or PET (other plastic), respectively. How-

ever, these studies do not incorporate measurements of the

plastic carbon assimilation into biomass (or of respiration)

and therefore fall short of being definitive measurements of

plastic biodegradation [134].

Almost 1,000 toxic chemicals are known to be associated

with plastics [135]. These include manufacturing additives

as well as weathering sub-products, most of which are not

chemically bound and leach from plastics on environmental

exposure [136]. They are more labile and are therefore more

likely to be biodegraded by the Plastisphere than plastics

Fig. 6 Differential abundance of taxa between early and late

incubation times. Heat trees showing differential abundance of taxa

between early and late incubation times (up to or above 7 days,

respectively) within substratum types (aliphatic, other plastic, and

control biofilms) for each of the marine, aquatic and freshwater

environments where samples were taken at different time points.

Strength of colors indicates differential abundance, with gray indi-

cating no significant difference (p > 0.05; Wilcoxon rank sum tests

with holm-bonferroni false discovery rate correction), and strong

yellow or red colors indicating that log2 fold change is at least

threefold higher in the early or late samples, respectively. Some key

taxa are indicated in the empty, larger tree on the left and all are shown

in Supplementary Section 4. Tests between different substrata at the

same time point as well as between different substrata at all time points

are also shown in Supplementary Sections 4 and 5. All terrestrial

samples were collected after an unknown environmental residence

time and could therefore not be included.
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themselves. However, there are only two studies included

here that consider the effect that these have on community

composition [31, 33]. For many plastics, these chemicals

are not only additives but are also likely intermediates of

both biotic and abiotic degradation. Cyclic and noncyclic

dicarboxylic acids, for example, are the most commonly

identified intermediates for the abiotic degradation of PE,

PP, PS, and PET [137] and are also intermediates of biotic

PET [138] and polyester [48] as well as plastic additive

(plasticizer) [37] degradation. It has been suggested that the

microbial community that is likely able to use these more

labile chemicals is only present at earlier time points [31].

Almost all surfaces that enter the environment go through

distinct and well-characterized stages of microbial com-

munity succession, and it is well known that microbial

communities on different surfaces converge at later time

points [139–141]. Here we have defined early incubation

stages as before and later as after 1 week of incubation.

However, due the relatively small number of studies that

characterize the Plastisphere across a wide range of different

incubation times, we do not actually know what early or late

incubation stages are within the Plastisphere. Long resi-

dence times in the order of weeks to months have generally

been favored by Plastisphere studies—the mean incubation

time for all samples included here was 100 days—rather

than the days that it typically takes for microbial commu-

nities to diverge from organisms that are efficient at

degrading the surfaces they colonize to cheaters, cross-

feeders, and grazers [139, 142]. This makes sense when we

know that plastics may take longer than hundreds of years

to be completely mineralized [143], but it also explains why

several studies have found that potential degraders are only

present at very low relative abundances [26] or are abundant

only at early time points [31].

There are also several other areas that we have identified

as needing further research before definitive conclusions

may be made. For instance, there are currently only four

studies performed in the terrestrial environment (and only

two that could be included), all current Plastisphere studies

were performed in the Northern Hemisphere and the

majority were performed in temperate environments

(Fig. 1). Whilst this hinders our ability to draw large-scale

conclusions, it offers an opportunity for researchers to

ensure that future data collected in these areas are com-

parable and address these knowledge gaps. We were unable

to confirm or reject the suggestions that plastics carry higher

abundances of pathogenic hitchhikers, e.g.,

[23, 30, 64, 126–128], and/or antimicrobial resistance

genes, e.g., [39], than control biofilms. We do note, how-

ever, that due to their recalcitrance and buoyancy plastics

present a higher chance of carrying pathogens or anti-

microbial resistance genes across greater distances than

most natural surfaces. We, along with many of the studies

included here, have identified the presence of potential

plastic biodegraders and potentially pathogenic organisms

on plastics. However, the amplicon sequencing used does

not usually give the resolution required to differentiate

between closely related strains of the same species [144],

for example between pathogenic and non-pathogenic Vibrio

spp. [129, 145] or hydrocarbon degrading and nondegrad-

ing Pseudomonas putida (previously P. oleovorans) spp.

[146]. The presence of genes encoding the production of

enzymes used in hydrocarbon biodegradation [118], or

specific virulence factors required for pathogenicity are

often conferred by mobile genetic elements [129] and their

presence is therefore not necessarily based in phylogeny.

The use of metagenomics rather than amplicon sequencing

in future studies would aid in determining whether these

potential plastic biodegraders and potential pathogens are

indeed biodegraders or pathogenic [131]. As discussed

further in [131], it may even generate candidate enzymes

that could be tested for their ability to degrade plastics, such

as in Danso et al. [147] for PET hydrolases.

This study presents, for the first time, a comprehensive re-

analysis of all Plastisphere studies that utilize amplicon

sequencing of the 16S rRNA gene. We have revealed

through machine learning methods that environmental fac-

tors, such as environment and light availability as well as

aspects of study design, such as primer pair and incubation

time play a large role in shaping Plastisphere community

composition. Notably, we have identified members of the

microbial community that are consistently more abundant in

biofilms formed on plastics than control biofilms across

multiple studies and environments. This highlights the

urgent need to determine whether these microbes are capable

of plastic biodegradation or are pathogens of humans or

other organisms. We have also identified a number of other

key areas in which we are lacking even basic knowledge and

where future research should be directed. It is clear that

plastic pollution is a key indicator of the Anthropocene and

we must focus future research on gaps in our knowledge that

we highlight here if we wish to mitigate its effects.

Data availability

All sequencing data used here were either obtained from

publicly accessible databases or directly from the authors of

the studies (full details are in Table S1B) and all scripts used

during these analyses can be found in File S1 and at https://

github.com/R-Wright-1/Plastisphere-MetaAnalysis. This

includes a pipeline with step-by-step instructions and code

for reproducing the analyses carried out here, with or

without the inclusion of additional studies. All files used

and produced during these analyses (e.g., QIIME2 objects,

random forest output files and figures) are available on

Figshare: raw read files in QIIME2 zipped format, https://
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input files, including processed individual study and all

merged study reads, https://doi.org/10.6084/m9.figshare.

12217682; QIIME2 intermediate and output files https://

doi.org/10.6084/m9.figshare.12227522; and all files created
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