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Abstract: The antioxidant activity of protein-derived peptides was one of the first to be revealed
among the more than 50 known peptide bioactivities to date. The exploitation value associated with
food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness
as food preservatives and in disease prevention, management, and treatment. An increasing number
of antioxidant active peptides have been identified from a variety of renewable sources, including
terrestrial and aquatic organisms and their processing by-products. This has important implications
for alleviating population pressure, avoiding environmental problems, and promoting a sustainable
shift in consumption. To identify such opportunities, we conducted a systematic literature review
of recent research advances in food-derived antioxidant peptides, with particular reference to their
biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially
relevant papers were identified from a preliminary search of the academic databases PubMed, Google
Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other
quality-related factors, 52 review articles and 122 full research papers remained for analysis and
reference. The findings highlighted chemical and biological evidence for a wide range of edible
species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant
peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant
defense systems in cellular and animal models. The intestinal absorption and metabolism of such
peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising
ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a
natural alternative to synthetic antioxidants.

Keywords: bioactive peptides; food sources; antioxidant activity; molecular mechanism; stability
and bioavailability; food applications

1. Introduction

Rapid and uncontrolled urbanization, the globalization of unhealthy lifestyles, and
environmental and climatic degradation resulting from human development activities
have contributed to the high prevalence of non-communicable chronic diseases (NCDs)
worldwide. According to statistics, premature deaths due to NCDs exceed 41 million
per year, equivalent to 71% of total global deaths [1]. There is growing evidence that
oxidative stress caused by the disturbance of redox homeostasis in living organisms is
involved in the pathogenesis and development of many chronic diseases, such as cancer,
atherosclerosis, and diabetes [2,3]. Reactive oxygen species (ROS) are a class of free radical
species produced mainly by the mitochondrial respiratory chain and are involved in
oxidative stress signalling in normal cells. However, if the accumulation of ROS exceeds
the capacity of the cellular free radical scavenging system, these reactive species trigger
uncontrolled reactions with non-target biomolecules (lipids, proteins, and DNA) and cells,
and mediate the subsequent activation of pro-inflammatory or pro-apoptotic pathways.
This situation requires additional supplementation to regulate the balance of antioxidants
and oxidants in biological tissues. Since the beginning of this century, the World Health
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Organization has been calling for an increase in the consumption of dietary sources of
antioxidants worldwide, as food is a natural and sustainable source of these compounds [4].
The application of antioxidant active peptides in the prevention and management of
oxidative damage and related pathologies in the body has been extensively studied over
the past decades. As of June 2022, 772 peptide sequences with biological antioxidant
functions were registered in the BIOPEP database, second only to angiotensin-converting
enzyme-inhibiting peptides, reflecting their great commercial exploitation value. The
sources of these active peptides cover a wide range of human edible biological resources
on earth, including animals, plants, and algae. They can be produced from low economic-
value catches or crops, or various edible or non-edible by-products of food processing, even
involving some refined products. Most biofunctional peptides are produced mainly through
enzymatic hydrolysis of proteins, either in vivo during gastrointestinal digestion, controlled
degradation using appropriate exogenous proteases, or during specific food processing
(e.g., ham and milk fermentation) [5] (Figure 1). Traditionally, the characterization of
peptides follows a standardized procedure, which simply includes the selection of the
original protein, enzymatic hydrolysis, isolation, purification, and identification, and after
the last step, information on the activity, amino acid sequence, structure and corresponding
functional properties of the candidate peptide can be largely determined [6]. However,
this approach is expensive and time-consuming, and more importantly, it does not meet
the requirements of industrial scale-up production. In recent years, the establishment
of emerging bioinformatics analysis systems (in silico) has provided a new possibility
for the study of biopeptides including antioxidant peptides. In addition, besides their
potential as therapeutic agents, the research value of antioxidant peptides is also reflected
in their applications as food additives, nutritional fortification in health foods, and anti-
aging and photoprotective components in cosmetics [7,8]. Numerous experiments have
shown that the addition of food-based antioxidant protein hydrolysates or peptides as
antioxidants can effectively inhibit lipid peroxidation during food transportation and
storage, thus maintaining the stability of food flavour and nutritional quality (vitamins and
essential unsaturated fatty acids) [9,10]. Therefore, the development of natural antioxidant
peptides from food or other readily available sources as alternative food preservatives may
help to alleviate consumer concerns about the potential toxicity risks associated with the
widespread use of synthetic antioxidants in current food formulations.
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In this review, we highlight recent advances in the discovery of antioxidant peptides
from edible sea-based and land-based plant and animal sources and food-processing by-
products, particularly those discovered in the past five years. In addition, we present
a detailed review of the latest knowledge on several key issues in the study of such
biopeptides, namely molecular mechanisms, digestive stability, and bioavailability, and
highlight their potential role as food additives and functional ingredients. Finally, the main
challenges for the commercialization of antioxidant peptides and the future directions of
research are also pointed out.

2. Methods of Activity Evaluation and Mechanisms of Action of Antioxidant Peptides
2.1. Chemical Evaluation Methods and Activity Mechanisms
2.1.1. Free Radical Scavenging

Depending on the mechanism of free radical deactivation, antioxidant peptide molecules
can achieve quenching of reactive oxygen/nitrogen species through two pathways, namely,
hydrogen atom transfer (HAT) and single electron transfer (SET) reactions [11]. Specifically,
antioxidant capacity evaluation methods such as oxygen radical absorbance capacity (ORAC)
and total radical capture antioxidant parameter (TRAP) assays using HAT as the reaction
principle to measure the ability of antioxidants to achieve free radical scavenging through
proton donation [12,13]. The bond dissociation energy and ionization potential (IP) of the
hydrogen atom donor group of the antioxidant are key parameters to measure the reaction
strength of the HAT reaction. In contrast, SET-based methods such as DPPH radical (or
DPPH•) scavenging capacity, ferric reducing antioxidant capacity (FRAP), and ABTS radical
(or ABTS•+) scavenging capacity reflect the ability of an antioxidant to reduce a radical,
metal, or carbonyls by losing an electron, and their relative reactivity is influenced by the
deprotonation of reactive functional groups and IP [14]. However, it has been shown that
HAT and SET mechanisms occur together in almost all samples, the dominant mechanism
being determined by the influence of the structure of the antioxidant on its systemic solubility
and partition coefficient [15]. Apart from the above comprehensive evaluation methods, the
antioxidant capacity of peptides can also be investigated by the scavenging efficiency of other
free radicals such as superoxide anion (O2

•-) and hydroxyl radical (•OH). O2
•- is the reduced

form of molecular oxygen with a weak oxidant; however, it can be decomposed to form
more potent and reactive ROS such as •OH, thus causing potential harm to the organism.
It was shown that superoxide radical scavenging assays were positively correlated with
ABTS, DPPH, and FRAP, whereas the quenching mechanism of •OH was more related to the
hydrogen atom transfer ability of antioxidants [14–16].

2.1.2. Chelation of Metal Ions

It is well known that metals play an important role in various physiological activities
of biological systems. Disruption of metal ion homeostasis may lead to the uncontrolled
metal-mediated formation of harmful free radicals, participate in DNA base modification,
enhance lipid peroxidation, and alter calcium and thiol homeostasis [17]. As an example,
the toxic effect of ferrous (Fe2+) overload in human plasma has been shown to catalyse
the production of destructive •OH via the Fenton reaction. Similar to iron, copper plays
a catalytic role in the formation of ROS and catalyses the peroxidation of membrane
lipids [17,18]. In addition, when organisms are exposed to redox inert metals such as
cadmium (Cd), arsenic (As), and lead (Pb), they can show their toxic effects by binding to
protein sulfhydryl groups and depleting glutathione, an endogenous regulatory metabolite
with antioxidant and integrative detoxifying effects [18,19]. Under normal conditions, the
body can maintain stable intracellular metal levels through effective sequestration and
translocation of overloaded metals by various regulatory proteins and peptide detoxifiers.
However, when this burden exceeds the autoregulatory capacity, the supplementation
of exogenous chelators becomes particularly important. Previous studies have shown
that the chelation of redox-active metals such as iron (Fe), copper (Cu), chromium (Cr),
and cobalt (Co) by antioxidant peptides is one of the main ways to convey their activity.
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Specifically, this complexation is manifested as an electrostatic attraction between the
electron-donating group and the electron acceptor, i.e., the metal ion, of a peptide with
multiple available coordination sites. Taking iron redox couple as an example, antioxidant
peptides can prevent their toxic effects by (1) chelating ferrous ions to prevent the reaction
with molecular oxygen or peroxides; and (2) chelating iron to maintain its original valence
so that it cannot reduce molecular oxygen [20,21]. The metal ion chelating activity of
antioxidant peptides is generally calculated by their ability to chelate Fe2+ or Cu2+.

2.1.3. Lipid Peroxidation Inhibition (LPI)

Lipid oxidation in food systems can lead to undesirable flavors and the formation
of toxic compounds. In biological systems, however, a clear link has been established
between lipid oxidation products and the etiology of many diseases such as atherosclerosis,
Alzheimer’s disease, and cancer. As mentioned earlier, lipid peroxidation reactions can
result from direct oxidation by reactive free radicals or can be triggered by the mediation
of redox-active metals. Transition metals such as Fe2+ and Cu2+ are pro-oxidants that
catalyze the breakdown of hydroperoxides into free radicals, thus indirectly initiating the
oxidative degradation of lipids [17]. Thus, like other antioxidants, antioxidant peptides can
act against antioxidants in two established ways, namely by protecting target lipids from
oxidative initiators or by impeding the propagation of chain lipid peroxidation. In the first
case, the active peptide inhibits the production of ROS or scavenges the active species that
cause oxidative initiation such as O2

•-. In the second case, the antioxidant peptide molecule
can intercept lipid peroxyl radicals (LOO•) generated by lipid autoxidation by providing a
hydrogen atom, forming a less reactive hydroperoxide, thus interrupting the chain reaction
of lipid radicals [22,23]. In addition, it is worth mentioning that the strong emulsifying
properties of these antioxidants may give them a unique inhibitory capacity, since this
allows them to adsorb well on the surface of the lipid molecules, blocking their contact
with oxygen. For example, García-Moreno et al. [24] obtained emulsifier peptides from
potato test streams and investigated their antioxidant activity by combining bioinformatics
and top-down proteomics approaches. The results showed that the peptides containing
the FCLKVGV sequence resulted in highly oxidatively stable fish oil-water emulsions and
showed good DPPH antioxidant activity. In another study, carp caviar protein hydrolysates
with free radical scavenging and chelating properties were also reported to be effective
in delaying the loss of tocopherols and polyunsaturated fatty acids in cod liver oil-water
emulsions [25]. Lipid peroxidation assays are usually based on β-carotene/linoleic acid
emulsion systems. In addition, ferric thiocyanate, peroxide, and thiobarbituric acid (TBARS)
assays can also be used for the investigation of lipid peroxidation inhibitory activity of
antioxidant peptides.

In conclusion, chemical evaluation of the antioxidant capacity of peptides is essential
for the understanding of their molecular mechanisms and the subsequent biological work.
However, due to the lack of standardized methods, there is still no single evaluation
tool to describe the overall antioxidant capacity of antioxidant peptides and to support
the comparison between different studies, which has caused a lot of problems for the
advancement of research related to antioxidant active peptides. Here, the continuous
improvement of bioinformatics tools may provide a simple, rapid, and low-cost solution
for the validation and comparison of peptide chemical activities.

2.2. Biological Evaluation Methods and Activity Mechanisms
2.2.1. In Vitro Cell Aspects

The cellular antioxidant assay is the classic tool used to evaluate or screen for biologi-
cally effective active ingredients before in vivo testing. This is not difficult to understand,
partly because cell membranes are lipid- and protein-based and therefore susceptible to
oxidation. More importantly, the cytoprotective effect of antioxidant active peptides on
damaged cells can more directly reflect the oxidation-induced tension of the organism. A
series of human and animal cultured cells have been used to construct oxidative stress
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models to study the ability of peptides to scavenge ROS, inhibit oxidative damage, and
maintain cellular redox homeostasis. The isolated cell lines involved here include human
umbilical vein endothelial cells (HUVECs), neuroblastoma cells (SH-SY5Y), intestinal can-
cer cells (Caco-2), cervical cancer cells (Hela), and hepatocellular carcinoma cells (HepG2);
as well as mouse macrophages (RAW264.7), Saccharomyces cerevisiae BY4741, and rat
hepatocytes and pheochromocytoma cells (PC12) [26]. H2O2 is the most commonly used
inducer of cellular stress formation, characterized by its ability to cross cell membranes in
a free-diffusion manner and then convert to highly reactive •OH by the Fenton reaction
to stimulate the cellular stress response, and the accumulation of •OH can activate the
apoptotic program of cells [26,27]. Besides, LPS (lipopolysaccharide), AAPH (2,2′-azobis(2-
methylpropionamidine) dihydrochloride), and TbOOH (tert-butyl hydroperoxide) can also
be used to evaluate the preparation of the model. At the biological level, dynamic changes
in stress levels and the antioxidant capacity of functional peptides can be assessed by
monitoring the release of biomarkers of oxidative damage. These biomarkers, such as mal-
ondialdehyde (MDA), carbonyl, and 8-hydroxydeoxyguanosine (8-OHdG) originate from
oxidative deterioration of biomolecules, i.e., lipids, proteins, and DNA [20]. On the other
hand, cellular antioxidant activity (CAA), an assay to quantitatively investigate the ability
of active compounds to quench peroxyl radicals induced by AAPH in HepG2 cells, has also
been widely used for in vitro biological analysis and activity comparison of antioxidant
peptides, as the results are usually expressed as micromoles of quercetin equivalent (QE)
per 100 g of peptide [28]. From this perspective, CAA may play an important reference
value in building a database of antioxidative biopeptides.

It is generally accepted that antioxidant molecules have direct and indirect antioxidant
capacities at the cellular and organismal levels, depending on their mechanisms. Direct
antioxidant capacity is manifested by the scavenging of reactive oxygen and nitrogen
species by antioxidants through depletion or chemical modifications. In contrast, the
pathway by which antioxidants protect against oxidative damage by upregulating the ac-
tivity and expression of endogenous antioxidant enzymes and non-enzymes is considered
an indirect antioxidant capacity. Numerous studies have shown that when the balance
between intracellular oxidant production and antioxidant concentration is disrupted, ex-
ogenous antioxidant peptides can act together through both pathways, exhibiting efficient
inter-biomolecular synergism, hence such antioxidants are also referred to as bifunctional
antioxidants [29–31]. The Keap1/Nrf2/ARE (full name Kelch-like ECH-associated protein
1-nuclear factor erythroid 2-associated factor-antioxidant response element) system is a
key transcription factor regulatory pathway that coordinates the expression of cellular
antioxidant protective genes [32] (Figure 2). Nrf2 is a transcription factor that primarily
regulates the cellular response to oxidative stress. Under normal physiological conditions,
intracellular levels of Nrf2 are low because Keap1 (a cytoplasmic protein) can sequester it
in the cell membrane, promoting its ubiquitination and proteasomal degradation. When
cells are exposed to oxidative stress, ARE (a DNA sequence responsible for regulating
cellular antioxidant and cytoprotective responses) induces the decoupling of Keap1 from
Nrf2 ubiquitination. Activated Nrf2 allows for nuclear translocation, where small muscle
neurofibrosarcoma proteins (sMAF) will form a heterodimer with it, and this heterodimer
subsequently acts on the ARE to activate the expression of a large number of genes encod-
ing cellular antioxidant enzymes and proteins [33–38]. Among the endogenous enzymes
and non-enzymatic systems, superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx) and glutathione (GSH) constitute the regulatory system of oxidative
stress. Peptide-mediated detoxification properties can also be investigated by measuring
the activity and levels of these markers. As an example, incubation with the tripeptide
PHP (an antioxidant peptide obtained from Chinese liquor) reversed an AAPH-induced
decrease in CAT, SOD, and GPx activities and ROS, MDA, and GSSG (oxidized glutathione)
production in HepG2 cells, effectively preventing oxidative damage to the cells [39]. This
work also showed that PHP activated the signaling of cellular antioxidant defense by
inducing dissociation of the Keap1/Nrf2 complex. This was corroborated by the results
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of the group of Tonolo et al. [40], which clarified that the antioxidant mechanism of the
milk-derived peptide KVLPVEK is due to its binding to the Nrf2 site in the Keap1 pocket,
which inhibits the interaction between Keap1 and Nrf2 and subsequently triggers the
subsequent activation of the Nrf2 signaling pathway. In addition, some recent studies have
led to the belief that inhibition of apoptosis by antioxidant peptides through regulation of
the expression of related proteins is one of the molecular mechanisms. It is known that
the accumulation of ROS can activate the apoptotic pathway by altering the mitochondrial
membrane potential [30]. It was reported that pretreatment with the pine mushroom-
derived peptides SDLKHFPF and SDIKHFPF could reverse the expression of anti-apoptotic
protein Bcl-2 and pro-apoptotic protein Bax in LPS-induced RAW264.7 macrophages and ef-
fectively improve ROS-induced mitochondrial dysfunction [41]. In vitro biological analysis
of rapeseed-derived peptide, WDHHAPQLR, revealed a consistent antioxidant molecular
mechanism to inhibit apoptosis [42]. H2O2-induced HUVECs cells were incubated with
WDHHAPQLR (0.2 mM), and the fully expressed Bcl-2 could increase the concentration of
intracellular GSH and other reducing agents, which was conducive to the correction of the
dysregulated redox homeostasis in cells.
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normal physiological conditions, the Keap1 dimer binds to two binding motifs, called DLG and ETGE,
in a specific domain of Nrf2, allowing Nrf2 to be sequestered in the cell membrane and maintained
at low levels by Keap1-dependent ubiquitination and proteasomal degradation. Under oxidative
stress, such as the presence of reactive oxygen species (ROS), the conformation of Keap1 changes,
resulting in the release of Nrf2 from Keap1-directed degradation, which translocates in the nucleus
and forms a dimer in sMAF. The polymer formed leads to the induction of ARE-dependent genes
such as Sod, Cat, Gpx, and Gcl. These gene products subsequently exert cytoprotection against ROS.
Ub, ubiquitin.

However, in vitro cell experiments have their limitations, such as expensive detection
reagents, easy contamination of the cell culture process, and not reflecting the real situation
in vivo. In addition, it is worth noting that the dose of in vitro samples is usually much
higher than the actual utilization level of the organism. Therefore, further in vivo evaluation
of the effects is necessary.

2.2.2. In Vivo Animal Aspects

A variety of model organisms can be used to carry out in vivo studies on the effects, ac-
tivity mechanisms, and bioavailability of dietary antioxidant peptides. Among them, mice
and rats are the most commonly used mammalian models. Some non-mammalian models,
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such as Drosophila, Caenorhabditis elegans, zebrafish, and turbot, have also been devel-
oped in recent years as ideal models for the biological analysis of pharmacologically active
compounds due to their short life cycle, ease of cultivation, and stress response consistent
with that of humans [26,43,44]. For example, a recent study investigated the physiological
functions of two novel antioxidant peptides, D2-G1S-1 (VENAACTTNEECCEKK) and
G2-G1S-2 (VEGGAACTTGGEEGCCEKK), using the Caenorhabditis elegans model [45].
After pretreatment with D2-G1S-1 or G2-G1S-2 (1.0 mM) for five days, a significant increase
in nematode resistance to oxidative stress induced by paraquat (treated at 100 mM for
6 h) was observed. In the same animal model, the delipidated round trehalin-derived
peptide ILGATIDNSK was also identified as an antioxidant peptide with protection against
oxidative stress [43]. Two novel peptides isolated from yak collagen (GASGPMGPR and
GLPGPM), were also reported to have similar in vivo antioxidant defense capacity [46].
Another study, based on a zebrafish model, investigated the protective effect of the antler
protein-extracted peptide TAVL against AAPH-induced oxidative stress [47]. A dose-
dependent reduction in apoptosis, ROS production, and lipid peroxidation levels was
observed in peptide-incubated zebrafish embryos. The above study highlights the poten-
tial of several natural antioxidant peptides as functional substances for the prevention
of oxidant damage in the organism. In addition, to investigate the therapeutic efficacy
of antioxidant peptides on postmenopausal osteoporosis in organisms, Mada et al. [48]
group conducted an interesting experiment. They constructed an ovariectomized (OVX)
osteoporosis rat model and then analyzed the physiological function of the novel peptide
VLPVPQK (derived from buffalo milk casein) by continuous gavage treatment. It was
observed that the heptapeptide partially reversed the decrease of SOD and CAT activities,
the decrease of GSH level, and the increase of MDA level in the serum of rats induced
by OVX. In addition, the results also revealed that the antioxidant peptide could alleviate
bone loss in OVX rats by enhancing the stress defense capacity. In another study, the
alleviation of ovarian oxidative stress levels by tilapia skin peptide (TSP) was shown to
improve primary ovarian failure in mice [49]. These studies suggest that the development
of antioxidant peptides as pharmaceutical components may have efficacy in alleviating or
treating multiple pathologies.

Compared to in vitro cellular assays, kinetic assays provide a more realistic picture of
the antioxidant capacity of biopeptides under normal physiological conditions. In addition,
some beneficial functions that could not be explored by chemical and cellular modeling
approaches, such as disease prevention and treatment, life extension, anti-fatigue, and
memory improvement, have been rapidly developed and refined. These insights are critical
for the design and guidance of later clinical trials. However, animal studies and human
trials are costly and complex and have long testing cycles. Therefore, the development
of a simple, rapid, low-cost, high-throughput, and comprehensive antioxidant evaluation
system is important for the commercialization of biofunctional peptides.

3. Sources of Antioxidant Peptides
3.1. Marine Sources

As the world’s population grows and the 2030 Sustainable Development Goals are
advanced, the global fisheries and aquaculture industry is booming in terms of size and
consumer markets. With a record total production of 214 million tonnes and a per capita
consumption of 20.2 kg in 2020, the industry will play an increasingly important role in
providing food and nutrition for the future [50]. The booming fishery industry is driving
the annual growth of fish protein as a percentage of the total protein consumption of the
global population, and the rapid development of the fish protein hydrolysate market. The
global fish protein hydrolysate market was expected to grow at a compound growth rate
of over 4.5%, with a total industry value of over USD 475 million by 2026 [51]. Consider-
ing the unparalleled biodiversity of the vast ocean and the unique adaptability of these
organisms to adverse environmental conditions such as darkness, cold, and high pressure,
many species of aqueous feedstocks such as molluscs, crustaceans, as well as algae, and
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other aquatic plants, including fish, have been reported as high-quality precursor protein
sources for many bioactive peptides such as antioxidant peptides [52–54]. For example,
previous studies have successfully extracted antioxidant active peptide fractions from
Pinctada fucata [55], Ribbon jellyfish [56], shrimp [57], oyster [58], and Palmaria palmata
proteins [59].

The processing of bioactive peptides is not limited to the edible part of fishery prod-
ucts, in other words, the alternative use of fishery by-products to produce these high
value-added products has become a good initiative to improve the environment and gen-
erate profit and income. In the case of fish, for example, with the development of the
fish processing industry, the amount of discarded fish and fish by-products is increasing,
and these waste products include heads, guts, bones, skins, and scales, which may reach
up to 70% of the total weight of the fish [60]. In the past, fish by-products were either
discarded as waste, used directly as feed for aquaculture, livestock, pets, or fur-bearing
animals, or used as fish silage and fertilizer. Based on advances in processing technology
and the potential for bioactive ingredient development, the work of researchers in the
food, nutritional, pharmaceutical, cosmetic, and medical sectors have shifted more towards
the use of these wastes in recent years. Table 1 lists recent studies of antioxidant protein
hydrolysates/peptides found in various parts of marine organisms. It is well known that
by-products of fish processing are an excellent source of collagen (or gelatine), especially in
fish bones and skin. In skipjack tuna, for example, the organic component of fish bones,
which accounts for 30% of the material, is composed of collagen [61]. For this reason,
Yang et al. [62] group investigated the sequence of antioxidant active peptides of bonito
bone gelatine. Five amino acid sequences, GPDGR, GADIVA, GAPGPQMV, AGPK, and
GAEGFIF, were screened. Among them, the half-effective inhibitory concentrations (EC50)
of GADIVA and GAEGFIF against DPPH radicals, hydroxyl radicals, superoxide anion
radicals, and ABTS radicals were 0.57 and 0.30 mg/mL, 0.25 and 0.32 mg/mL, 0.52 and
0.48 mg/mL and 0.41 and 0.21 mg/mL, respectively, indicating that they have strong
chemical antioxidant capacity. Recent work highlighted the cytoprotective mechanism
of grass carp scale gelatine hydrolysate (GSGH) on oxidatively damaged cells [63]. It
was noted that GSGH pretreatment could increase SOD, CAT, and GPx activities, reduce
ROS and MDA content, as well as attenuate cell membrane and DNA damage in HepG2
cells, thereby alleviating H2O2-induced cell damage. Jellyfish proteins are another highly
used precursor protein for antioxidant peptide development and production, as their by-
product gonad contains approximately 50% of the protein [64]. To date, multiple peptide
fragments with chemical and/or biological antioxidant activity such as AAGPAGPDGR,
GCGLGDPPGHGK, WGPGPPGDLGAA, and SY have been identified from jellyfish pro-
teins [56,64]. Among them, the dipeptide SY showed high scavenging efficiency against the
three radicals DPPH•, •OH, and O2

•-, as evidenced by the half-inhibitory concentration
(IC50) values of 84.623 µM, 1177.632 µM, and 456.662 µM, respectively. Also, the excellent
ACE inhibitory activity of SY was observed (IC50 1164.179 µM). This observation may verify
the conclusion of Zheng et al. [65] that the existence of antioxidant amino acid residues
with electron/hydrogen donor capacity, such as Tyr, is the dominant factor for the higher
radical scavenging activity of dipeptides. In addition, the use of all parts of low-value
pelagic fish for the processing of bioactive protein hydrolysates or peptide products has
recently emerged in industries such as food and pharmaceuticals. For example, the global
annual catch of Round scad exceeds 5 million tons, ranking third among all single species
in the world [43]. However, due to its relatively small size, dark colour, susceptibility to
spoilage, and poor taste, it is not suitable for commercial fish consumption [66]. In this
regard, the biological antioxidant capacity and mechanism of Round scad protein-derived
peptides WCPFSRSF and ILGATIDNSK have been confirmed [43,67]. Thus, a broad range
of marine organisms or by-products can be exploited as raw materials for the elaboration of
natural antioxidants, meaning that it has the potential to be used as a functional ingredient
in the food, cosmetic, and pharmaceutical industries.
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3.2. Dairy Sources

The health benefits of milk have been known since ancient times. In particular, in
addition to its high value of nutrients, milk also contains antioxidants. Dairy products
such as milk, yogurt, fermented milk, and cheese have been found to have antioxidant
effects, possibly due to the functional activity of their protein components (casein and whey
proteins) and/or peptide fragments from different protein fractions in the matrix [68,69].
Recent investigations have identified several potentially bioactive peptides from the protein
fractions of mammalian milk and other dairy products that were evaluated for their free
radical scavenging activity (Table 1). Over the past decade, camel milk-derived bioactive
peptides have begun to attract significant interest from many researchers and have been
evaluated for antioxidant, antihypertensive, antidiabetic properties, and antimicrobial
properties. For example, work by the group of Zhang et al. [70] analyzed the content of en-
dogenous bioactive peptides in dromedary and bactrian camel milk and the motifs of these
peptides. The peptide sequencer showed that 14.6% and 15.7% of the quantified peptides
from dromedary and bactrian camels were biologically active, with dipeptidyl peptidase
IV inhibitors (39.93%) predominating, followed by ACE inhibitors (34.85%) and antioxi-
dant activity (8.69%). Ibrahim et al. [71] further characterized the amino acid sequence of
fragment peptides in the antioxidant active fraction of camel milk protein hydrolysate. As
a result, 14 and 8 antioxidant peptides were recorded from casein and whey protein digests,
respectively, and their activity mechanisms were associated with superoxide anion radical
and DPPH radical scavenging capacity. In another study, eleven novel peptides (LLILTC,
AVALARPK, YPLR, LSSHPYLEQLYR, TQDK, LAVP, NEPTE, VSSTTEQK, LAVPIN, KP-
VAIR, and LLNEK), identified from a Lactobacillus plantarum fermented camel milk,
were reported to be effective in the scavenging activity of ABTS radical, hydroxyl radical,
and superoxide radicals [72]. Similarly, two peptide sequences from camel milk protein,
NEDNHPGALGEPV and KVLPVPQQMVPYPRQ, showed antioxidant activities against
DPPH• (IC50 0.04 and 0.02 mg/mL), •OH (IC50 0.05 and 0.05 mg/mL), ABTS•+ (IC50 0.1
and 0.01 mg/mL) and O2

•- (IC50 0.045 and 0.3 mg/mL) [73]. Besides, the results highlight
the excellent and sustained inhibition of peroxidation of linoleic acid emulsion by both
peptides during storage (60 ◦C for seven days). Moreover, cellular experiments revealed
that the peptide KVLPVPQQMVPYPRQ was able to inhibit the proliferation of cancer
cells HepG2 by increasing the endogenous antioxidant defense through the upregulation
of the mRNA expression level of SOD. In terms of protein composition, camel milk has
similar β-casein content as human milk and does not have the allergenic milk protein
β-lactoglobulin [74,75]. For these reasons, camel milk is an exciting and suitable product
both as a future alternative to cow’s milk-based infant formula and as a material for the
production of biopeptides with antioxidant activity.

Apart from camel milk-derived peptides, previous studies have investigated some
potential bioactive antioxidant peptides in the protein fractions of dairy products of bovine
and sheep milk origin. Chhurpi is a traditional cheese product made from the fermen-
tation of lactic acid bacteria (LAB) from cow’s milk, and a recent study evaluated the
antioxidant potential of the enzymatic hydrolysis products of this cheese product [76].
Among the Chhurpi products prepared with different fermentation starters, the high-
est antioxidant activity was observed for cheese produced with Lb. delbrueckii WS4
after digestion with a combination of pepsin and trypsin, exhibiting DPPH• scaveng-
ing activity (0.370 ± 0.005 mg AAE (ascorbic acid)/g sample), O2

•- scavenging activity
(2.214 ± 0.023 mg AAE/g sample), reducing power (1.122± 0.009 mg AAE/g sample) and
total antioxidant activity (1.959 ± 0.023 mg AAE/g sample). A similar work evaluated the
antioxidant properties of water-soluble peptides from fresh buffalo cheese [77]. The results
highlighted the outstanding quenching ability of a 20 mg/mL mixture of water-soluble
peptides against ABTS radical (63.27 ± 0.18%) and DPPH radical (78 ± 0.38–80 ± 0.15%).
During milk fermentation, LAB strains have been reported to release antioxidant peptides
such as VAPFPEVFGK, LLVYPFPGPLH, and FVAPEFVGKEK [78]. Differences in the
peptide profiles of cheese products emerged due to the different specificity of the initiator
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proteases in hydrolyzing milk proteins. These results confirm the superior suitability of
cheese-derived peptides as functional components for free radical scavenging in vitro, the
actual efficacy of which needs to be further validated by cellular and oral administration.

Also of interest is the high sequence homology of milk proteins among different
species (cows, goats, and sheep) [79]. For example, in silico coupled with in vitro analysis
demonstrated that the comparison of amino acid sequences of the four casein αs1-, αs2-,
β-, and κ-caseins of caprine and bovine milk showed that the similarity could reach 88%,
88%, 91%, and 85%, respectively [80]. The in silico proteolysis-based homology analysis
of cow and yak milk casein between the same specie revealed a high degree of amino
acid sequence identity for αs1-, αs2-, β-, and κ-casein (98.99%, 98.07%, 100%, and 97.11%,
respectively) [81]. This implies that extensive studies on the peptide profile and bioactivity
of a given mammalian milk casein can shorten the time required to screen for bioactive
peptides present in different protein sources and could allow the discovery of new and
sustainable precursors of known bioactive peptides.

Table 1. Marine and diary sources of antioxidative hydrolysates and peptides.

Source Extraction
Method(s) Extraction Tool Hydrolysate Name/

Peptide Sequence Activity Evaluation Methods Ref.

Silver carp muscle Enzymatic and SGID Alcalase + Pepsin
and trypsin

LVPVAVF
ISTSLPV

MYPGIGDR
ADLVHVQ

• Chemical
(ORAC, DPPH, FRAP, and LPI)
• in vitro cellular

[82]

Snakehead soup SGID Pepsin and trypsin
PGMLGGSPPGLLG-

GSPP
SDGSNIHFPN

• Chemical
(DPPH, Fe2+ chelating, •OH

scavenging, and reducing power)
• in vitro cellular

[83]

Salmon Chemical
synthesis -

PMRGGGGYHY
PMRGGGYHY
PMRGGYHY
PMRGYHY
PMRYHY

YHY

• Chemical (ORAC)
• in vitro cellular [84]

Mackerel muscle Enzymatic Protamex
ALSTWTLQLGSTSF-

ASPM
LGTLLFIAIPI

• Chemical (DPPH)
• in vitro cellular [85]

Barred mackerel
gelatine Enzymatic Alcalase and

actinidin

Fraction 1
Fraction 2
Fraction 3

• Chemical
(DPPH, FRAP, Fe2+ chelating, and

•OH and O2
•- scavenging)

[86]

Rainbow trout frames

Microwave
pretreatment assisted
(MPA) + enzymatic +

SGID;
MPA + SGID

Alcalase +
Pepsin and trypsin

SGID-MPCE
SGID-NPME

• Chemical
(ABTS and FRAP) [87]

Jellyfish Enzymatic Flavourzyme Jellyfish flavourzyme
hydrolysate

• Chemical
(DPPH, ABTS, and FRAP) [88]

Defatted round scad Enzymatic Alcalase ILGATIDNSK • in vitro cellular [43]

Shrimp Enzymatic Alcalase MTTNI
MTTNL

• Chemical
(DPPH and •OH scavenging)

• in vitro cellular
[89]

Skipjack tuna bone SGID Pepsin and trypsin

GPDGR
GADIVA

GAPGPQMV
AGPK

GAEGFIF

• Chemical
(DPPH, ABTS, and •OH and O2

•-

scavenging)
[62]
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Table 1. Cont.

Source Extraction
Method(s) Extraction Tool Hydrolysate Name/

Peptide Sequence Activity Evaluation Methods Ref.

Milk casein Enzymatic Trypsin LHSMK

• Chemical
(DPPH, FRAP, and •OH and O2

•-

scavenging)
• in vitro cellular

[90]

Fresh buffalo cheese Water extraction Ultrapure water Water-solution
peptides

• Chemical
(DPPH and ABTS) [77]

Bovine and caprine
sodic caseinate Enzymatic Serine protease

Bovine caseinate
hydrolysates

Caprine caseinate
hydrolysates

• Chemical
(ABTS and Cu2+ chelating) [91]

Milk β-casein and
κ-casein

Chemical
synthesis -

ARHPHPHLSFM
AVPYPQR
NPYVPR

KVLPVPEK

• in vitro cellular [40]

Buffalo casein Chemical
synthesis - VLPVPQK • in vitro cellular [48]

Fermented Rubing
cheese Water extraction Deionized water YPFPGPIH

• Chemical (DPPH)
• in vitro cellular [92]

3.3. Animal Sources

Despite growing concerns about the environment, dietary health, and animal welfare
associated with meat production and consumption, data showed that global meat pro-
duction continues to rise and is expected to reach 366 million tons by 2029, especially in
developing countries [93]. Meat processing generates large amounts of animal waste and
by-products unsuitable for human consumption, including bones, skin, feathers, blood,
and offal, which can often account for more than half of the total weight of ketones [94].
These by-products are rich in nutrients such as proteins, fats, carbohydrates, and minerals.
However, the underutilization of by-products is commonly reported in the meat industry.
In recent years, advances in processing technology and improvements in waste recovery
rates have not only created favorable conditions for the high-value utilization of these
by-products but have also contributed positively to the reduction of environmental burden.
Considering the importance of active proteins in human immune response, the develop-
ment of proteins and their bioactive compounds from animal by-products has become an
important strategy to seize the frontiers of life science and technology [95,96].

In this regard, biofunctional peptides have been identified from various livestock animal
sources and processed meat products, including chicken, duck, goose, pig, sheep, and cattle,
as well as fermented and dry-cured meat products. The biological activities of peptides cover
a wide spectrum of actions such as antioxidant, antibacterial, anticancer, and antihyperten-
sive [97]. Among them, antioxidant activity is a commonly found property of protein-derived
peptides from various meat products and by-products. Recent reports of antioxidant protein
hydrolysates/peptides obtained from edible parts of meat, waste or by-products, and pro-
cessed meat products are shown in Table 2. Collagen is the most abundant protein among the
various by-products obtained from the meat industry such as bone, cartilage, tendon, skin, and
connective tissue, especially found in bovine bone, hides, and tendons [98]. A series of amino
acid sequences with antioxidant activity have been identified from various collagen sources
and validated in different oxidative systems [99,100]. Recently, Wang et al. [46] investigated
the chemical and biological antioxidant effects of GASGPMGPR and GLPGPM, novel peptides
derived from yak collagen. The activity mechanism of these two peptides was observed to be
related to DPPH•, ABTS•+, •OH, and O2

•- scavenging. Biologically, both GASGPMGPR and
GLPGPM exhibited improved heat tolerance to heat-induced oxidative stress in Caenorhab-
ditis elegans. The modulation of the antioxidant defense system of the model organism by
GLPGPM was highlighted, as demonstrated by the pretreatment of 0.1 mg/mL of the peptide
that increased the activity of SOD and CAT (33.18% and 101.80%, respectively) and reduced
ROS and MDA accumulation (17.89% and 48.90%, respectively). Another work evaluated
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the antioxidant capacity of enzymatic hydrolysates of bovine bone collagen [101]. The results
pointed out the DPPH• (40.7%), •OH (31.8%), and O2

•- (73.2%) scavenging activities of the hy-
drolysate (30 mg/mL). In addition, based on the good hygroscopic properties, the hydrolysate
here is also considered to be added as a natural moisturizing ingredient in cosmetics. The
multiple physiological activities of collagen peptides recovered from animal by-products, as
well as their beneficial effects on bone, joint, and skin health, have been confirmed, and several
drugs containing collagen hydrolysates have been introduced for joint injuries [99,102,103].

Moreover, more recent studies have focused on the discovery of antioxidant active
peptides in fermented and dry-cured meat ready-to-eat products. The best-known intact
antioxidants of meat origin are myostatin (β-alanyl-L-histidine) and anserine (N-β-alanyl-
1-methyl-L-histidine). These are two endogenous antioxidant peptides, the concentration
of the first peptide varies depending on the type of meat, while the latter is abundant
in chicken meat. Their antioxidant activity is mainly related to the chelating activity
of transition metals [104]. Additionally, the amino acid sequences of peptides that play
a key antioxidant role in several regional types of ham have been identified; these are
AEEEYPDL, SNAAC, GLAGA, and SAGNPN (Spanish dry-cured ham) [105–107], GKFNV
and LPGGGHGDL (Chinese Jinhua ham) [108] and DLEE (Chinese Xuanwei ham) [109].
Also, three short peptides MWTD, APYMM, and FWIIE with ABTS•+ scavenging antioxi-
dant capacity (IC50 0.40, 0.12, and 0.23) were described as characteristic antioxidant peptides
formed during the ripening of Chinese dry-cured mutton ham [110]. Interestingly, these
peptides are produced naturally during ham maturation, which means that they are the
result of proteolytic phenomena exerted by intramuscular peptidases [111]. Of course, the
content and biological effects of active peptides in various types of dry-cured hams vary
depending on the genetics of the ham used as raw material and the processing conditions
and time [112,113]. For example, Wang et al. [114] quantified the number of endogenous
peptides in Xuanwei ham, Jinhua ham, and lamb ham. Peptide composition analysis by
UPLC-Q-TOF-MS/MS resulted in the identification of 346, 203, and 296 peptides from the
three hams, respectively. Myosin, actin, myoglobin, troponin, and pyruvate kinase proteins
were identified as the main reasons for the differences in peptide concentrations in the
three dry-cured hams, which were essentially the result of genetic differences among the
raw meat species.

3.4. Plant Sources

Plants, like animals, are an exemplary source of natural biopeptides, although the
abundance of plant proteins in phytophagous crops or their agro-industrial by-products
is relatively low. However, considering the advantages of high production volume, low
unit cost, short yield cycle, freedom from regional religious or socio-cultural bias, and
exquisite biological efficacy, phytogenic proteins are being more widely investigated as
ideal precursor materials for biofunctional peptides. Antioxidant protein hydrolysates or
peptides have been identified and characterized by numerous phytophagous crops and
their by-products, such as legumes, grains, vegetables, fruits, seeds, husks, and leaves
(Table 3). Given the global distribution of cultivation and protein content, the three major
crops, rapeseed, cereals, and legumes, are the main phytochemical protein sources [115]. In
this sense, this offers more potential opportunities for the availability, affordability, and
diversity of bioactive peptides, including antioxidant peptides, as amply demonstrated by
the qualitative and quantitative relationships between animal-derived biopeptides and their
protein precursors [97]. However, numerous studies have shown that cereal and legume
proteins do contain the most abundant peptide fragments with antioxidant activity among
all investigated crop proteins. Among the major cereal cash crops, antioxidant peptide
sequences have been identified in oats [116], rye [117], wheat [118], buckwheat [119],
rice [2], corn [120], millet [121,122] and canary seeds [123]; meanwhile, among the legumes,
soybean peptides have received the most attention, followed by chickpea, faba bean and
mung bean [9,124–126].
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Fruits and vegetables are known to be excellent sources of natural antioxidants such as
phenols, flavonoids, alkaloids, saponins, and terpenoids with strong physiological activities.
Recently, the biological activities of various antioxidant peptides from fruits and vegetables
have attracted much attention from scientists. For instance, peptide fractions or amino acid
sequences with organismal antioxidant protective capacity have been identified from edible
parts or seeds of watermelon [127], sacha inchi [128], perilla [129], mulberry leaves [130],
tricholoma matsutake singer [131], amaranth [132], and yam [133] by using enzymatic
digestion or microbial fermentation. Of interest, mushrooms were reported to have the
highest protein content among the 20 commonly consumed vegetable species [134]. Consid-
ering its considerable growth rate and impressive biological category, these undoubtedly
provide an ideal material basis for the discovery of antioxidant mushroom peptides. In this
regard, Agaricus bisporus is an extensively studied mushroom with a protein content of up
to approximately 40% on a dry basis [134]. In a study reported on the antioxidant potential
of A. bisporus protein hydrolysates, alcalase, pancreatin, and Flavourzyme were used
individually or in combination for the preparation of hydrolysates [135]. It was found that
alcalase hydrolysate and its 1–3 kDa fraction showed the strongest Fe2+ chelating ability
(EC50 0.96 and 1.2 mg/mL) among all hydrolysates and ultrafiltration fractions, respectively.
It was also observed that the fractions with molecular weights of 1–3 kDa in the trypsin
hydrolysate showed excellent DPPH radical scavenging activity (EC50 0.13 mg/mL). The
gastrointestinal enzyme hydrolysates of Agaricus bisporus and Terfezia claveryi proteins
also exhibited antioxidant activity [136]. The hydrolysate of Agaricus bisporus protein
exhibited excellent DPPH radical scavenging activity (73.68%), while the latter was more
effective in inhibiting linoleic acid oxidation (85.85%) and Fe2+ chelation (21.36%). Another
work performed a comparative analysis of the antioxidant activity of different fractions
of King boletus mushroom protein hydrolysates [137]. The results highlighted the radical
quenching ability of the fraction with a molecular weight below 1 kDa, i.e., this fraction
(1 mg/mL) had the highest DPPH• and ABTS•+ scavenging activities (12.08 and 94.14 mmol
TE/mg protein, respectively). This result is consistent with previous reports on the <1 kDa
fractions of corn gluten meal hydrolysate [138] and pea protein hydrolysate [139], probably
because the shorter amino acid sequences of the low-molecular-weight peptides facili-
tate the exposure of reactive groups and thus enhance the accessibility of free radicals.
Nevertheless, further experiments should be more concentrated on the bioactivity and
mechanism to offer a theoretical basis for the digestive behaviour and the construction of
the delivery system of mushroom peptides.

Furthermore, recent studies have shown that watermelon seeds can also be used as
an alternative raw material for antioxidant-active peptide discovery because of their high
protein content (30.63–43.60%) and balanced amino acid structure (Arg, Glu, Asp, and
Leu) [140,141]. For example, Wen et al. [127] group identified five novel antioxidant pep-
tides RDPEER, KELEER, DAAGRLQE, LDDGRL, and GFAGDDAPRA from watermelon
seed protein hydrolysate using ultrasound pretreatment-assisted enzymatic assay. All these
peptides were effective in improving the viability of H2O2-injured HepG2 cells, among
which RDPEER was observed to have a prominent cytoprotective effect, as demonstrated
by the increased CAT, SOD, and GPx activities and reduced ROS, Ca2+ and MDA levels
in HepG2 cells at incubation doses of 12.5–100 µmol/L. In addition, these peptides were
reported to have ideal DPPH• clearance (IC50 0.216 ± 0.01–0.435 ± 0.03), ABTS•+ clearance
(IC50 0.54 ± 0.02–1.23 ± 0.03), and ORAC (82.36 ± 1.2–130.67 ± 2.2 µM TE/mg). Another
study by the same group highlighted the modulation of signaling pathways of biological
antioxidant protection by watermelon seed protein hydrolysates [140]. They indicated that
these antioxidants could activate the Nrf2/HO-1 (an inducible stress protein) pathway
to enhance the resistance of RAW264.7 cells to H2O2-mediated oxidative damage. These
results suggest that watermelon seed protein hydrolysate/peptide has potential as an
alternative to synthetic antioxidants in food and as an active ingredient in drugs.

Besides, tomato seeds (GQVPP) [142], rapeseed (WDHHAPQLR) [42], peony seeds
(SMRKPPG) [143], rhizomes (VTYM) [144], cherry (NLPLL) [145], spinach (YWTMWK) [146],
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almonds (LLPH) [147] and walnuts (PPKDW) [3] have also been reported to contain peptide
antioxidants with chemical or biofunctional properties.

Table 2. Animal sources of antioxidative hydrolysates and peptides.

Source Extraction
Method(s) Extraction Tool Hydrolysate Name/

Peptide Sequence Activity Evaluation Methods Ref.

Spanish dry-cured
ham

Chemical
synthesis - SNAAC • Chemical

(ORAC, ABTS, and LPI) [105]

Porcine plasma Enzymetic Alkaline protease WGPGVE

• Chemical
(DPPH, ABTS, Fe2+ chelating, and

•OH scavenging)
• in vitro cellular

[148]

Yak bones collagen Chemical synthesis -
GASGPMGPR

GLPGPM

• Chemical
(ABTS, DPPH, and •OH and O2

•-

scavenging)
• in vitro cellular

[46]

Bovine bone collagen Enzymetic Thermolysin-like
Protease A69

Bovine bone collagen
hydrolysate

• Chemical
(DPPH, •OH and O2

•-

scavenging)
[101]

Dry-cured Xuanwei
ham

Chemical
synthesis - DLEE

• Chemical
(DPPH, ORAC, ABTS, and O2

•-

scavenging)
• in vitro cellular

[29]

Pork sarcoplasmic
and myofibrillar

protein

Microbial
fermentation

Lactobacillus
plantarum CD101,

Staphylococcus
simulans NJ201

Sarcoplasmic protein
hydrolysate;

myofibrillar protein
hydrolysate

• Chemical
(DPPH, ABTS, and Fe2+

chelating)
[149]

Chicken breast
Acid extraction,

SGID + acid
extraction

Porcine pepsin,
trypsin,

chymotrypsin,
porcine pancreatic
α-amylase, and

porcine pancreatic
lipase,

HCl (0.01N)

Cooked protein
extracts;

Cooked protein +
SGID extracts

• Chemical
(ORAC, ABTS, DPPH, and FRAP) [150]

Spanish dry-cured
ham

Chemical
synthesis - AEEEYPDL • Chemical

(ORAC and ABTS) [107]

Duck plasma Enzymetic Alcalase

LDGP
TGVGTK

EVGK
RCLQ

LHDVK
KLGA

AGGVPAG

• Chemical
(DPPH, FRAP, ABTS, and Fe2+

Chelating)
[151]

Chinese dry-cured
mutton ham Salt extraction Phosphate

MWTD
APYMM
FWIIE

• Chemical
(ABTS and LPI)
• in vitro cellular

[110]

Duck breast Enzymetic neutrase
AGPSIVH
LLCVAV
FLLPH

• Chemical
(DPPH, FRAP, and ABTS) [152]

Mutton ham,
Xuanwei ham, Jinhua

ham
Salt extraction Phosphate

Mutton ham peptides
Xuanwei ham

peptides
Jinhua ham peptides

• Chemical
(DPPH, ABTS, Fe2+ chelating, and
•OH and O2

•- scavenging)
[114]
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Table 3. Plant sources of antioxidative hydrolysates and peptides.

Source Extraction
Method(s) Extraction Tool Hydrolysate Name/

Peptide Sequence Activity Evaluation Methods Ref.

Lotus seed Enzymetic Flavourzyme Lotus seed protein
hydrolysates

• Chemical
(DPPH, FRAP, and H2O2

scavenging)
[153]

Wheat glutenin Enzymetic

Flavourenzyme
Savinase
Subsitilin
Savinase

Flavourenzyme
treated hydrolysates

Savinase treated
hydrolysates

Subsitilin treated
hydrolysates

Alcalase treated
hydrolysates

• Chemical
(FRAP and ABTS) [154]

Soybean isolate
protein Enzymetic Protease from strain

ERMR1:04
Soybean protein

hydrolysates

• Chemical
(FRAP, DPPH, ABTS and Fe2+

chelating)
[155]

Germinated
amaranth SGID Pepsin and trypsin

GAD 90
GADW 90

F1
F2
F3

• Chemical (ORAC) [132]

Walnut Chemical
synthesis - PPKDW • Chemical (ABTS) [3]

Corn gluten protein Enzymetic Alcalase

AGLPM
HALGA
AGIPM
HAIGA

• Chemical
(ORAC and •OH scavenging) [156]

Rhizome of white
turmetic, turmeric

and ginger
SGID Pepsin and trypsin

HVVV
WTLTPLTPA

VTYM
RGPFH
AEPPR

GSGLVP
KMSPV

• Chemical
(DPPH and ABTS) [144]

Watermelon seed MPA + enzymetic Alcalase

RDPEER
KELEEK

DAAGRLQE
LDDGRL

GFAGDDAPRA

• Chemical
(DPPH, ABTS, and ORAC)
• in vitro cellular [127]

Pecan meal Enzymetic Alcalase LAYLQYTDFETR
• Chemical

(DPPH, ABTS, and •OH
scavenging)

[157]

Tartary buckwheat
albumin Enzymetic Alkaline protease

GEVPW
YMENF
AFYRW

• Chemical
(DPPH and •OH scavenging) [119]

Peony seed dreg Enzymetic Alcalase Peony seed dreg
protein hydrolysates

• Chemical
(DPPH, ABTS, Fe2+ chelating, and

•OH scavenging)
[143]

Sorghum kafirin Enzymetic Papain
Fraction 1
Fraction 2
Fraction 3

• Chemical
(DPPH, ORAC, and Fe2+

chelating)
[158]

Finger millet seeds Enzymetic Pepsin
Trypsin

TSSSLNMAVRGG-
LTR

STTVGLGISMRSA-
SVR

• Chemical (DPPH) [122]

Pine nut meal protein Enzymetic Alcalase KWFCT
QWFCT

• Chemical
(FRAP, DPPH, and ABTS)
• in vitro cellular (CAA)

[159]

Rapeseed Chemical synthesis - WDHHAPQLR • in vitro cellular [42]

4. Digestive Stability and Bioavailability of Antioxidant Peptides

As an ideal alternative to synthetic antioxidants at this stage, the stability and ac-
cessibility of functional protein hydrolysates or peptide derivatives in the complex and
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demanding digestive environment of the human body are undoubtedly decisive aspects in
the biological validation of known and novel food-derived antioxidant peptides. However,
the reality is that bioactive peptides, including antioxidant peptides, are still far from clini-
cal application due to the lack of mature delivery and bioavailability support and the fact
that the necessary biological analysis is still mostly at the in vitro cellular level. Like drug
molecules and other functional components, in addition to their direct physiological effects
in the intestinal wall, which effectively induce antioxidant defense mechanisms in the body,
peptide molecules as therapeutic agents or health-promoting supplements must enter the
portal circulation in their active form and exert systemic or local antioxidant effects.

To achieve this expectation, the bioactive peptides after oral administration need
to be subjected to modification or degradation triggered by proteolytic enzymes in the
gastrointestinal (GI) tract, while the peptide activity and function are also subjected to the
possible impact of the toxic environment in the GI lumen such as potentially damaging
secretions (including bile salts, acids and other digestive enzymes such as elastase) and
various food-derived oxidants and toxins [87]. Peptides that survive gastrointestinal diges-
tion or their released fragments must also overcome further hydrolysis by brush border
peptidases and/or cell membrane peptidases of the intestinal membrane epithelium before
they can be absorbed into the internal circulation by intestinal wall cells; there are four
main mechanisms for the trans-cortical flux of peptides in this process as shown in Figure 3,
including active transport by H+-coupled PepT1 and PepT2 transporters, Na+-coupled
oligopeptide transport systems SOPT1 and SOPT2, passive bypass diffusion by intercellular
tight junctions (TJs), and trans-cellular action in the form of endocytosis, depending on
molecular size and structural properties such as hydrophobicity of peptides [126,160,161].
Finally, these cell-penetrating peptides also need to escape the breakdown of vascular
endothelial tissue peptidases and soluble plasma peptidases, as well as the first-pass ef-
fect in the liver [162]. In fact, due to peptidase activity, most exogenous peptides have
low stability and fast clearance in plasma [7]. In conclusion, in the face of the metabolic
activity of peptidases in the gastrointestinal tract and plasma and the low permeability
of the intestinal barrier, many therapeutic peptides have difficulty in maintaining their
full activity or reaching the target site in very low amounts (1~2%) and are less likely to
elicit a pharmacological response outside the GI tract [163]. Considering the strict ethical
regulations of animal studies and the high cost and resource intensity of human trials, the
evaluation, and integration of information on the digestive permeation behavior of bioac-
tive molecules based on in vitro digestion and intestinal absorption models may provide
valuable guidance for their in vivo effects and the subsequent development of co-delivery
and bioavailability strategies.

To exert their biological activity, hydrolysates or peptides must be evaluated for
digestibility and subsequent release of bioactive peptides in relevant in vitro intestinal
models and the in vivo GI tract lumen. In vitro methods using cultures such as monolayers
of human intestinal Caco-2 epithelial cells and in vivo models to determine permeability
can aid in the prediction of oral bioavailability. The selective permeability of the intestinal
barrier to candidate peptides is based on an understanding of the structural and chemical
properties of the active compounds, the interactions in the gastrointestinal tract, and
knowledge of the physiology of the GI tract [164]. As previously mentioned, it has long been
known that hydrolysates with many short peptides, especially dipeptides and tripeptides,
can lead to their better absorption and are more efficient than free amino acids and larger
precursor peptide molecules [165]. If the MW of the molecule increases above 500 Da,
the oral bioavailability decreases dramatically [162]. For example, the bioavailability of
fractions of casein-derived peptides less than 500 Da was 16.23%, compared to 9.54%
for fractions in the molecular weight range of 500–1000 Da [166]. Also of interest is that
the length of the peptide chain provides a clue as to whether a transdermal transporter
is involved. Specifically, dipeptides and tripeptides have been described as substrates
for PepT1 binding and transport, which is a peptide transporter with a transmembrane
electrochemical protein gradient located on the apical membrane of enterocytes [167]. In
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contrast, the TJs-mediated paracellular pathway is responsible for the translocation of
oligopeptides containing four to nine amino acid residues [168,169]. This conclusion is
corroborated by the work of the group of Xu et al. [42]. In an assay evaluating the uptake
mechanism and bioavailability of rapeseed protein-extracted peptide WDHHAPQLR (RAP)
in Caco-2 cell monolayers, they found that RAP is degraded by brush border peptidases,
and then longer fragments of RAP, DHHAPQLR and WDHHAP are transported via the
paracellular pathway, while tripeptide QLR is taken up via PepT1. In addition, through
pharmacokinetic tests, they found that the absolute bioavailability of RAP (100 mg/kg
BW) could reach 3.56% in rats after oral gavage, although the effective permeation rate of
the basal side of Caco-2 monolayer measured in the preliminary screening test was only
1% at most, which was not sufficient to exert antioxidant effects. These results suggest
that RAP may be developed as an efficient radical scavenging peptide. An earlier study
by the same group showed that 65.57% of YWDHNNPQIR was resistant to hydrolysis by
brush border peptidase and could be absorbed by the intestinal epithelium intact. More
importantly, the absorbed peptides could still exhibit favorable antioxidant activity [170].
Wang et al. [82] reported an interesting work to screen and identify antioxidant peptides
with digestive stability and bioaccessibility in muscle hydrolysates of silver carp. Two
digestion products, i.e., viniferase and papain-induced hydrolysate fractions with molecular
weight less than 1 kDa after SGID, showed 9.21% and 11.45% permeability by trans-cortical
transport analysis of the Caco-2 monolayer. Then further identified by LC-MS/MS, the
fragmented peptide LVPVAVF in the permeate showed the strongest DPPH• cleavage
(EC50 0.65 mg/mL) and ROS quenching activity (27.23% at 50 µg/mL). Similarly, Feng and
Betti [171] reported that digestion products of bovine collagen hydrolysate could reach up
to 21.4% transport efficiency across Caco-2 cell monolayers. These studies support the idea
that protein digests screened by in vitro permeability assays to obtain highly permeable
fractions have greater potential as natural resistance components in food and drug systems
than single or purified peptides. However, further studies focusing on the relationship
between intestinal absorption of antioxidant peptides and subsequent in vivo metabolism
are needed.
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In conclusion, given the properties of antioxidant peptides, such as molecular weight,
charge, hydrogen bond potential and hydrophobicity sensitivity to peptidase and intestinal
transport, and the correlation between intestinal epithelial transport of peptides and pepti-
dase catalysis, most oligopeptides exhibiting in vitro antioxidant activity rarely maintain
their integrity or activity after transmembrane transport and subsequently affect their
bioavailability, even though small amounts of target peptides may be detected in plasma.
The presence of small amounts of the target peptide may be detected in plasma. As recently
novel antioxidant peptides LHSMK [90], YFCLT and GLLLPH [169], WDHHAPQLR [42],
GNPDIEHPE, SVIKPPTDE and VIKPPTDE [172] were reported as such. Therefore, to
maximize health benefits, future work needs to shift more towards the development of
promotion strategies for the stability and bioavailability of bioactive peptides.

5. Application of Antioxidant Peptides in Food Systems

Thanks to the natural properties and generally high biological activity of antioxidant
protein hydrolysates or peptides, the use of these high value-added products as functional
and nutritional fortification ingredients in specialty formulations is an area of increasing
interest. Currently, the application of these active compounds is focused on four main areas:
(1) as matrix enhancers, preservatives, or nutritional supplements in food systems; (2) as
therapeutic agents to be incorporated into pharmaceutical systems; (3) as feed additives
to improve animal immunity; and (4) development of anti-aging and photoprotective
pharmaceuticals. Unlike living organisms, the quality features of food products suffer
from irreversible decay from the date of production, which can be postponed from a few
hours to months or even years if appropriate strategies are adopted. In this case, it turned
out to be a common trend for the food industry to prioritize the use of synthetic antioxi-
dants such as BHA (butylated hydroxyanisole), BHT (dibutylated hydroxytoluene), and
TBHQ (tert-butylated hydroquinone) to promote food stability and extend shelf life [11].
However, given the potential health hazards of synthetic antioxidants, the current con-
sumer trend is a dramatic increase in demand for ‘clean label’ foods and functional foods
enriched with natural active ingredients. This trend has reinforced the demand of the
food industry and researchers to obtain and apply food additives of natural origin that
also exert bioactivity to prevent the development of NCDs. In this respect, antioxidant
peptides have acted, at the laboratory level, as potential food additives. Few studies have
evaluated the effects of antioxidant peptides in real food matrices, which could support
their potential use as additives (Table 4). Meat products are a more studied food system as
they are susceptible to lipid oxidation and require exogenous antioxidants to scavenge the
active substances. For example, Shen et al. [173] reported that the addition of silver carp
protein hydrolysate (2 and 4%, w/w) to surimi attenuated the formation of myofibrillar
protein carbonyls, inhibited the reduction of free sulfhydryl content, and slowed down the
formation of peroxidized lipid MDA and the rate of change of flavor compounds. Similarly,
Lin et al. [174] proved that the incorporation of bighead carp gills hydrolysate (1 and 2%,
w/w) treated with neutral protease to surimi increased the concentration of sulfhydryl and
salt-soluble proteins, enhanced Ca2+-ATPase activity, reduced disulfide bonds, carbonyls,
and hydrophobicity, and improved gel strength and texture. Nowadays, rarely commercial
foods containing antioxidant active peptides exist on the market, despite the considerable
literature on them. The possible reason is the lack of sufficient evidence for the biological
effectiveness, processing and matrix stability, and toxicological safety of most antioxidant
peptides. The stability of peptides during food processing and storage is critical for their
application as functional ingredients, as peptides are vulnerable to chemical modifications
of the backbone or side chains. These chemical reactions involve disulfide bond formation,
dehydration, glycation, and aromatic ring oxidation, inducing changes in the structure and
bioactivity of peptides [99,175]. The interaction between peptides and food matrix com-
ponents such as proteins, lipids, and polysaccharides during food processing and storage
could trigger a number of physicochemical reactions, such as hydrophobic interactions,
disulfide interactions, and Maillard reaction, thereby favorably or adversely impacting the
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biological activity, solubility, sensory profiles, and color and texture parameters of peptide-
based functional foods [99,176]. Over the decades, remarkable progress has been made in
exploring the role of peptides in textural, sensory, and health aspects. Previous studies have
focused on how peptides shape textural and technical functional properties, such as how
mackerel gelatine hydrolysate affects flavor, color, emulsion activity and stability, and foam-
ing properties and stability of carbonated beverage [86]. However, understanding how and
to what extent peptides affect the functional properties of foods requires a comprehensive
consideration of multiple complexities (e.g., peptide amphipathicity, solubility, and gelation
capacity, food composition and ingredient distribution, and food processing and storage
conditions) for better tailoring the type of hydrolysate in the formulated product to obtain
the desired functional properties. Thus, further studies are requested to assess the impact of
antioxidant bioactive peptides on the technical properties and consumer acceptance of final
products, even though promising outcomes have been recorded in literatures (especially
for minced meat and beverages).

Table 4. the use of antioxidant protein hydrolysates (peptides) in food systems.

Source Extraction Tool Hydrolysate/
Peptide Product Effects Ref.

Silver carp Protamex
Silver carp protein

hydrolysate
(2 and 4%, w/w)

Surimi

Delayed the formation of MDA
and unfavorable flavor volatiles;
inhibited the oxidation of free
sulfhydryl and the formation of
carbonyls in myofibrillar proteins

[173]

Bovine Pepsin TSKYR
(0.1 and 0.5%, w/w) Ground beef

0.5% TSKYR provided similar
protection against lipid oxidation as
0.1 and 0.5% BHT

[177]

Bighead carp

Flavourzyme
Alcalase

Neutral protease
Papain

Bighead carp gill
protein hydrolysate

(1 and 2%, w/w)
Surimi

Increased sulfhydryl and
salt-soluble protein concentrations,
enhanced Ca2+-ATPase activity,
reduced disulfide bonds, carbonyls
and hydrophobicity, and improved
gel strength and texture

[174]

Barred mackerel Alcalase and
actinidin

Barred mackerel
gelatine hydrolysate

(<3 kDa)
Carbonated beverage

No adverse effects on
emulsification activity and stability,
foam expansion and stability, color,
and flavor

[86]

Faba bean seed
Pepsin
Trypsin
Alcalase

Faba bean
hydrolysate (1%,

w/v)
Apple juice No adverse effects on

organoleptic acceptability [9]

Capelin
Alcalase
Neutrase
Papain

Capelin protein
hydrolysate

(0.5–3.0%, w/w)
Ground pork

Inhibited 17.7–60.4% of TBARS
production; increased cooking yield
(up to 4% at 3.0%)

[178]

Goby Grey triggerfish
proteases

Goby protein
hydrolysate

(0.01–0.2%, w/w)
Turkey meat sausage

0.02% and 0.04% hydrolysate
showed higher MDA inhibition
capacity than 0.2% vitamin C

[179]

6. Future Perspectives and Conclusions

As with other bioactive substances such as carotenoids, polyphenols, and flavonoids,
the search and exploitation of protein hydrolysates or peptides with biological antioxidant
activity has been guided by market demand since the beginning. Through the efforts of
numerous researchers, a set of database-assisted bioinformatics evaluation methods has
been established to complement the traditional proteomics approach, with the functions
of identifying, characterizing, modifying, elucidating bioactive mechanisms, predicting
structure-activity relationships, describing molecular interaction mechanisms, and produc-
ing bioactive peptides of food origin, which has contributed to the rapid development of
bioactive peptide research. The rapid development of bioactive peptide research has been
promoted. However, despite the benefits of antioxidant peptides, their commercialization
faces multiple challenges. First, there is a lack of technically and economically feasible
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strategies for the preparation of bioactive peptides on an industrial scale. Current pro-
duction methods are still relatively small-scale, time-consuming and expensive, and there
is a lack of efficient and economical scale-up production techniques for the isolation and
enrichment of peptide fractions. Second, the structure-activity mechanism of peptides has
not been fully established. The clarification of this relationship can, on the one hand, help to
directly predict the biological or chemical activities of peptide molecules by their quantita-
tive structural characteristics (and vice versa), and on the other hand, provide a theoretical
basis for peptide mutagenesis studies to design and construct peptides with specific bio-
logical functions or enhanced activities. Third, studies to establish the correlation between
chemical and biological measurements are extremely limited. Further work is needed to
explore in depth the possible links between chemical and biological measurements such as
activity, digestive stability, and bioaccessibility. In addition, more in vivo investigations
and clinical trials should be conducted here to provide the necessary biological support
data for the health claims of active peptides. Fourth, as mentioned in Section 5, the activity
and functional stability of peptides are easily disturbed by food matrix and food processing
conditions. Moreover, their bitter taste, which cannot be easily removed, can reduce the
sensory acceptability of fortified foods. Fifth, ensuring the stability and maximum bioavail-
ability of peptides after ingestion is the most challenging part for researchers. However,
many of the issues outlined previously can be addressed in a focused manner through
nanoencapsulation. This is an economically and industrially effective delivery strategy for
biofunctional components. In food systems, nanostructures can be used to protect peptides
from a variety of adverse environmental conditions, enhance their water dispersibility,
improve their matrix compatibility, and mask or reduce their unpleasant off-flavors. After
ingestion, this means of delivery can optimize the release profile of peptides, improve its
biostability, enhance its solubility in aqueous gastrointestinal solutions, and prolong its
circulating half-life, thus allowing it to reach the target organ at an effective concentration.
However, given the differences in bioactive properties, functional requirements, and the
characteristics of food matrices and food processing, delivery systems must be carefully de-
signed for each biopeptide’s practical application. Only a few studies have been conducted
to introduce encapsulated biological components into food products. Last but not least,
the hidden risk information of bioactive peptides, such as sensitization and toxicity, if any,
must be fully uncovered in order to provide more complete evidence to support the market
access of such substances.

In conclusion, this review provides a comprehensive summary of recent research
advances on various food-derived antioxidant peptides. As a high value-added product
with a sustainable source, the commercialization of antioxidant protein hydrolysates and
purified peptides needs no further elaboration. With the rapid development of a range
of emerging complementary production, analytical and bioavailability technologies, and
their integration with multidisciplinary disciplines such as computer science, mathematical
and statistical techniques, as well as animal and clinical medicine, the long-term goal of
commercializing antioxidant peptides for edible products will be achieved.
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