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Abstract

Food recognition is difficult because food items are de-
formable objects that exhibit significant variations in ap-
pearance. We believe the key to recognizing food is to ex-
ploit the spatial relationships between different ingredients
(such as meat and bread in a sandwich). We propose a
new representation for food items that calculates pairwise
statistics between local features computed over a soft pixel-
level segmentation of the image into eight ingredient types.
We accumulate these statistics in a multi-dimensional his-
togram, which is then used as a feature vector for a discrim-
inative classifier. Our experiments show that the proposed
representation is significantly more accurate at identifying
food than existing methods.

1. Introduction

Automatic food recognition is emerging as an important
research topic in object recognition because of the demand
for better dietary assessment tools to combat obesity. The
goals of such systems are to enable people to better under-
stand the nutritional content of their dietary choices and to
provide medical professionals with objective measures of
their patients’ food intake [18]. People are not very ac-
curate when reporting the food that they consume. As an
alternative to manual logging, we investigate methods for
automatically recognizing foods based on their appearance.
Unfortunately, the standard object recognition approaches
based on aggregating statistics of descriptive local features
perform poorly on this task [5] because food items are de-
formable and exhibit significant intra-class variations in ap-
pearance; the latter is the case even for relatively standard-
ized items from fast food menus.

Our research is motivated by the observation that a food
item can largely be characterized by its ingredients and their
relative spatial relationships. For instance, sandwiches are
often composed of a layer of meat surrounded on either side
by slices of bread, while salads consist of assorted greens
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Figure 1. Exploiting spatial relationships between ingredients us-
ing pairwise feature statistics improves food recognition accuracy.

whose spatial layout can vary widely. Our hypothesis is that
although detectors for any given ingredient are likely to be
unreliable, one can still derive sufficient information by ag-
gregating pairwise statistics about ingredient types and their
spatial arrangement to reliably identify food items, both at
the coarse (e.g., sandwich vs. salad) and fine (e.g., Big Mac
vs. Baconator) levels. Fig. 1 illustrates how we can exploit
the spatial relationship between ingredients to identify this
item as a Double Bacon Burger from Burger King.

Although this hypothesis has intuitive appeal, applying it
to food recognition is challenging for several reasons. First,
even a simple food item can contain numerous visually dis-
tinct ingredients, not all of which may be visible in a given
image due to occlusion or variations in assembly. In partic-
ular, we cannot rely on the presence of distinctive low-level
features nor on reliable edges between ingredients. Second,
although perfect accuracy is not required at the ingredient
level, the proposed method does require the pixel-level seg-
mentation to generate distributions over ingredients from
very small local patches. Finally, there can be significant
intra-class variation in the observed sizes and spatial rela-
tionships between ingredients, requiring us to build repre-
sentations that can cope with this appearance variability in
a principled manner.

Our proposed approach is illustrated in Fig. 2 and can be
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Figure 2. Framework of proposed approach: (1) Each pixel in the
food image is assigned a vector representing the probability with
which the pixel belongs to each of nine food ingredient categories,
using STF [16]. (2) The image pixels and their soft labels are
used to extract statistics of pairwise local features, to form a multi-
dimensional histogram. (3) This histogram is passed into a multi-
class SVM to classify the given image.

summarized as follows. First, we assign a soft label (dis-
tribution over ingredients) to each pixel in the image using
a semantic texton forest [16]. For instance, the distribution
corresponding to a pixel in a red patch could have a high
likelihood for “tomato” and low for “cheese” while another
pixel might have high values for “bread” and “cheese” but
not “tomato”. Next, we construct a multi-dimensional his-
togram feature where each bin corresponds to a pair of in-
gredient labels and discretized geometric relationships be-
tween two pixels. For example, the likelihood of observing
a pair of “bread” and “tomato” labels that are 20–30 pix-
els apart at an angle of 40–50 degrees. Since we use soft
labels, each observation from a pair of pixels contributes
probability mass to a number of bins. Thus, the histogram
aggregated from many samples of pixel pairs in the image
serves as a representation of the spatial distribution of in-
gredients for that image. Finally, we treat this histogram as
a feature vector in a discriminative classifier to recognize
the food item. Our representation is not specific to food and
could also be suitable for recognizing objects or scenes that
are composed of visually distinctive “ingredients” arranged
in predictable spatial configurations.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 details our
proposed approach. Section 4 describes our experimental
methodology. Section 5 presents food recognition results on
the PFID [5] dataset. Finally, Section 6 presents our conclu-
sions and proposes directions for future work in this area.

2. Related Work

There has been relatively little work on the problem of
food recognition. Shroff et al. [17] proposed a wearable
computing system to recognize food for calorie monitoring.
Bolle et al. [2] developed an automatic produce ID system
called VeggieVision to help with the produce checkout pro-

cess. Yang et al. [5] introduced the PFID dataset for food
recognition along with benchmarks using two baseline al-
gorithms: color histogram and bag of SIFT [11] features.
Russo et al. [14] monitored the production of fast food us-
ing video. Wu and Yang [20] analyzed eating videos to rec-
ognize food items and estimate caloric intake.

Object category recognition has been a popular research
area in computer vision for many years (see [6] for a com-
prehensive survey). These include approaches based on lo-
cal features such as the SIFT [11] descriptor or global fea-
tures such as color histograms or GIST [12] features; im-
ages are typically represented as “bags” of these features
without explicit spatial information. Other approaches,
such as the “constellation model” [3] and its numerous ex-
tensions, model objects as a collection of parts with a pre-
dictable spatial arrangement.

Of particular interest to food recognition are methods
that explicitly address deformable objects. Shape con-
text [1] picks n pixels from the contours of a shape, obtains
n − 1 vectors by connecting a pixel to the others, and uses
these vectors as a description of shape at the pixel. Felzen-
szwalb proposes techniques [7] to represent a deformable
shape using triangulated polygons. Leordeanu et al. [10]
proposed an approach that recognizes category using pair-
wise interaction of simple features. A recent work [8] learns
a mean shape of the object class based on the thin plate
spline parametrization.

These approaches work well for many problems in ob-
ject recognition, but two issues make them hard to apply to
foods. First, these approaches all require detecting mean-
ingful feature points, such as edges, contours, key points
or landmarks. But precise features like these are typically
not available in images of food. Second, shape similarity in
food images is hard to exploit with these approaches, since
the shape of real foods is often quite amorphous.

To overcome these challenges, our approach does not
rely on the detection of features like edge or keypoints.
Instead, we use local, statistical features defined over ran-
domly selected pairs of pixels. The statistical distribution of
pairwise local features effectively captures important shape
characteristics and spatial relationships between food ingre-
dients, thereby facilitating more accurate recognition.

3. Pairwise local feature distribution (PFD)

In this section, we give the definition of our image repre-
sentation — the statistics of pairwise local features, namely
pairwise feature distribution (PFD). Using this representa-
tion, each image can be represented by a multi-dimensional
histogram.



3.1. Soft labeling of pixels

Before obtaining the statistics of local features, we clas-
sify all image pixels into several categories based on the
appearance of the image patch around the pixels. The local
features will later be gathered separately based on different
pixels categories. We use nine handpicked categories repre-
senting eight common fast food ingredients: beef, chicken,
pork, bread, vegetable, tomato/tomato sauce, cheese/butter,
egg/other, plus a category for the background.

Rather than labeling every pixel as a member of a single
category, we use soft labeling to create a vector of proba-
bilities corresponding to the likelihood that the given pixel
belongs to each of the nine categories. Soft labeling defers
commitment about the identity of a pixel, allowing for un-
certainty about the true label for a pixel, and for the fuzzy
distinction between ingredient categories.

Many methods could be used for pixel classification. We
chose to employ the Semantic Texton Forest (STF) [16].
STF is a method for image categorization and segmenta-
tion that generates soft labels for a pixel based on local,
low-level characteristics (such as the colors of nearby pix-
els). This is achieved using ensembles of decision trees that
are each trained on subsets of manually-segmented images.
A pixel is classified by descending each tree from root to
leaf based on low-level features computed around the given
pixel. The leaves contain probabilistic class distributions
(over ingredients) that our algorithm uses to compute its
soft labels. We chose to use STF because it incorporates
human knowledge in the form of manually labeled training
images, and because it has proven effective for soft label-
ing in other challenging domains like the PASCAL Visual
Object Classes (VOC) task.

With STF, each pixel is assigned a vector of K probabil-
ities, where K is the number of pixel categories. K = 9 in
our case. Fig. 3 is a visualization of the soft labeling of an
image.

3.2. Global Ingredient Representation (GIR)

The simplest way to use the soft pixel labels produced
by STF to represent a food image is to create a single one-
dimensional histogram with 8 bins representing how fre-
quently each of the 8 food ingredient categories appear in
the image. To create an overall histogram representing the
distribution of ingredients for the image, we sum up the soft
labels for the 8 food ingredients for all the non-background
pixels in an image. Then we normalize the histogram by
the number of non-background pixels in the image. This
global ingredient representation (GIR) is intuitive and easy
to compute, but it does not capture the spatial relationships
between ingredients that are important for distinguishing
one food from another. It will serve as a useful benchmark
for comparison with the more sophisticated, pairwise local

(a)

!!!!"##$!!!!!!!!!!!!!!!!!!!!%&'()#*!!!!!!!!!!!!!!!!!!+,-)

!!"-#./!!!!!!!!!!!!!!!!!0#1#2.34#!!!!!!!!!!!!!!5,6.2,

!!%&##7#!!!!!!!!!!!!!!!!!!!!811!!!!!!!!!!!!!!!!!".()1-,9*/

(b)

Figure 3. Visualization of soft labeling: (a) original food image. In
(b), each of the nine images represents the probability that a given
pixel belongs to that category. The brighter the pixel is, the larger
its probability.

features described below.

3.3. Pairwise Features

We attempt to capture the spatial relationship between
pixels of different food ingredients using pairwise local fea-
tures. Fig. 4 is an explanation of the four pairwise features
we have explored.

Pairwise distance reflects the distance between two pix-
els in an image. Similar to the feature descriptors in the
Shape Context method [1], the pairwise distance feature
is defined to be greater when the two pixels in the pair
are close to each other. We employ Sturges’ formula [19],
k = log2dn + 1e and use the log of the distance between
the pair of pixels P1 and P2.

D(P1, P2) = logd|P1, P2|+ 1e (1)

Pairwise orientation, O(P1, P2), is defined as the angle
of the line connecting the pixel pair. It ranges in [0o, 360o),
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Figure 4. Four pairwise local features. In the table in (a), column
1 is the name of the feature; column 2 is a description of the fea-
ture; column 3 shows the expression of the feature in the following
text; column 4 refers to their illustration figures. (b) (c) (d) (e) are
illustrations of these pairwise local features.

and positive is counter clockwise.
Pairwise midpoint, M(P1, P2), is a discrete feature de-

fined as the soft label of the pixel at the midpoint of the line
connecting the two pixels. When this feature is added to the
multi-dimensional histogram, the midpoint pixel’s soft label
(distribution over ingredient types) determines the weight of
its contribution to the relevant bins.

Like the pairwise midpoint feature, the between-pair
feature captures information about the pixel labels lying
on a the line connecting the two pixels in the pair. But
rather than picking only the soft label of the midpoint, the
between-pair feature incorporates all pixel soft labels along
the line connecting the pair of pixels. So the feature for
each pixel pair has t discrete values, t being the number of
pixels exist along the line between a pair of pixels. We use
B(P1, P2) = {Ti|i = 1, 2, ..., t} to represent the feature set
for pixels P1 and P2.

In addition to these individual features, we also explore
joint features that are composites of the above features, such
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Figure 5. Joint pairwise features

as a joint feature of distance and orientation, DO(P1, P2),
a joint feature of orientation and midpoint, OM(P1, P2), as
shown in Fig. 5.

3.4. Histogram representation for pairwise feature
distribution

Computing the complete set of pairwise features in an
image can be computationally expensive since, for an image
with M pixels, we would need to consider

(
M
2

)
) pairs. It

suffices to consider
(
M
2

)
rather than M2 pairs because our

pairwise relationships are symmetric; we convert directed
orientation to a symmetric form by averaging counts in both
directions. Nonetheless,

(
M
2

)
can still be prohibitively large

for high-resolution images.
Thus, for computational efficiency, we randomly sample

N (N = 1000) pixels from the non-background portion of
the image and estimate pairwise statistics using these

(
N
2

)
pixel pairs. We use a set P to represent the N pixels we
randomly pick from an image: P = {P1, P2, ..., PN}. The
soft labels of the N pixels are represented as S = {Sik|i =
1, 2, ..., N ; k = 1, 2, ..., 8}. We calculate pairwise local
features (D(Pi, Pj), O(Pi, Pj), M(Pi, Pj) and B(Pi, Pj))
for all pixels, and accumulate their values into a distribu-
tion. The distribution is weighed by the soft labels of the
two pixels. Specifically, this weight is the product of the
probabilities that a pixel is assigned to the ingredient label
corresponding to the given bin.

We use a multi-dimensional histogram to represent the
distribution of pairwise local features, as detailed in Fig. 6.
The first two dimensions of the histogram are the ingredi-
ent labels. The other dimensions are the weighted pairwise
features calculated for the given pair of pixels.

The first and second dimensions of the above multi-
dimension histograms have 8 bins, representing the eight
pixel categories (excluding the background). The other di-
mensions have either 12 bins for pairwise distance or orien-
tation, or 8 bins for midpoint or between-pair category.

3.5. Histogram normalization

We normalize the distribution of certain pairwise fea-
tures to achieve invariance to transformations such as ro-
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Figure 6. Histogram representation of PFD

tation and scaling. We compute the mode of pairwise dis-
tance or orientation, and shift the corresponding dimension
of the multi-dimension histogram so that it is centered on
the mode. Since we apply a logarithm to the distance fea-
ture, changing the scale of an image becomes equivalent
to shifting its histogram in the distance dimension, result-
ing in scale invariance. Similarly, centering the orientation
histogram at its mode value results in rotation invariance.
Since we only measure relative distances between pixels,
our representation is also translation invariant.

For joint features, we normalize the joint histogram by
centering it at the mode value of the marginal distributions
of each of its continuous dimensions.

3.6. Classification with local feature distributions

Using PFD or Global Ingredient Representation, each
image is represented as a multi-dimension histogram. We
employ a Support Vector Machine (SVM) for classification
using a χ2 kernel [15].

The symmetrized approximation of χ2 is defined as:

dχ2(x, y) =
∑
i

(xi − yi)2

xi + yi
, (2)

where x and y represent the PFD histograms of two images,
and xi and yi are two bins of the histograms.

The χ2 kernel is defined as:

kχ2(x, y) = e−dχ2 (x,y). (3)

With this pre-computed kernel matrix, we apply the
SVM to classify images into multiple food categories. In
our implementation, we use the libSVM package [4].

4. Experimental Methodology
In this section, we briefly review our dataset, baseline

approaches, and detail the implementation of the pixel-level

segmentation using which we generate our ingredient soft
labels. Experimental results are given in Section 5.

4.1. Dataset

We evaluate our work on the recently-released Pittsburgh
Food Image Dataset (PFID) [5] and compare our proposed
approach against their two baseline methods. The PFID
dataset is a collection of fast food images and videos from
13 chain restaurants acquired under lab and realistic set-
tings. Our experiments focus on the set of 61 categories
of specific food items (e.g., McDonald’s Big Mac) with
masked background. Each food category contains three dif-
ferent instances of the food (bought on different days from
different branches of the restaurant chain), and six images
from six viewpoints (60 degrees apart) of each food in-
stance.

We follow the experimental protocol proposed by
Chen et al. [5] and perform 3-fold cross-validation for our
experiments, using the 12 images from two instances for
training and the 6 images from the third for testing. We
repeat this procedure three times, with a different instance
serving as the test set and average the results. The protocol
ensures that no image of any given food item ever appears
in both the training and test sets, and guarantees that food
items were acquired from different restaurants on different
days.

4.2. Baseline approaches

We use the two standard baseline algorithms specified
by PFID: color histogram + SVM and bag of SIFT [11] fea-
tures + SVM, as briefly described below.

Due in part to its simplicity, the color histogram method
has been popular in object recognition for more than a
decade. We employ a standard RGB 3-dimensional his-
togram with four quantization levels per color band. Each
pixel in the image is mapped to its closest cell in the his-
togram to generate a 43 = 64 dimensional representation
for each image. Then we use a multi-class support vector
machine (SVM) implementation [4] for classification.

Several studies (e.g., [9]) have demonstrated the merits
of using a bag of SIFT features. The basic idea of this ap-
proach is to represent each image as a histogram of occur-
rence frequencies defined over a discrete vocabulary of fea-
tures (pre-generated using k-means clustering) and then to
use the histogram as a multi-dimensional vector in an SVM.

To compare against these baseline approaches, we con-
duct experiments using the six pairwise local features and
the GIR feature proposed in Section 3. We describe the ex-
perimental details below.



(a)

(b)

Figure 7. (a) shows nine colors that are used to label training
images for STF. Each color represents one of the food ingredi-
ent types or the background. (b) shows two samples of manually
labeled images for STF: use the nine labels in (a) to color all pixels
of the 16 training images for STF. (Best viewed in color.)

4.3. Pre-processing with STF

The initial step in generating the six pairwise local fea-
tures is to obtain pixel-wise soft labels for the images. We
use Semantic Texton Forests (STF) [16] to generate these as
follows. First, we train STF using 16 manually-segmented
food images, two examples of which are shown in Fig. 7(b).
We found 16 training images to be sufficient to cover the ap-
pearance of the food ingredients in the PFID dataset. While
more data could potentially generate better STF ingredient
labels, using a small training set shows that our algorithm
can operate with a small amount of relatively noisy training
data.

After training, we employ STF to soft label all 61×6×3
food images in the dataset, creating a 9-element probability
vector for each pixel, representing the likelihood of it be-
longing to each of the eight food ingredient types or the
background.

The output of STF is far from a precise parsing of an
image. Fortunately, our method does not require a perfect
segmentation of food ingredients nor precise soft labeling
results.

5. Results
This section summarizes our results, both at the individ-

ual food item level (61 categories) and at the major food
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Figure 8. Classification accuracy for 61 categories

type level (7 broad categories).

5.1. Classification accuracy on the 61 categories

Fig. 8 summarizes the classification accuracy results on
the 61 categories for the two baselines (color histogram, bag
of SIFT), the global ingredient representation (GIR), and
the six pairwise local features.

The chance recognition rate for each of the 61 categories
is below 2% (1/61). The two baselines (color histogram
and bag of SIFT features) reach only about 10%. The GIR
global ingredient histogram method achieves 19%, and the
local pairwise features methods range from 19% to 28%.
The latter, achieved with the OM feature, is more than
twice the accuracy of the PFID algorithms [5] and nearly
20× chance.

Fig. 9 shows the confusion matrices for four approaches:
color histogram, bag of SIFT features, GIR, and pairwise
feature OM . The darker the diagonal line, the more ef-
fective an approach, because it has a higher probability of
classifying food of a given category as itself. Clearly, there
is a more salient diagonal line in the matrix of the OM fea-
ture than the matrices for the other three approaches, which
indicates that a greater number of food items are correctly
classified as themselves using joint feature OM . In both of
the baseline approaches, we can see straight vertical lines
in their confusion matrices, showing that certain food cate-
gories are frequently (and incorrectly) chosen as the classi-
fication result; GIR and OM do not exhibit this problem.

There is a straightforward explanation for why the com-
bination of orientation and midpoint is the higher-order fea-
ture that gives the best accuracy. This pair of features is
able to leverage the vertically-layered structure of many fast
foods. This vertical layering is particularly characteristic of
burgers and sandwiches where meat and vegetables are sit-
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Color histogram  Bag of SIFT

Figure 9. Confusion matrix comparison for 61 categories. Rows
represent the 61 categories of food, and columns represent the
ground truth categories.

uated between two (or more) horizontally oriented slices of
bread. The orientation feature relates only two endpoints
and therefore by itself cannot capture the three-way rela-
tionships like bread-meat-bread or bread-vegetable-bread
that are characteristic of burgers and sandwiches. The mid-
point feature captures three-way relationships, but without
the orientation constraint, the statistics of the midpoint fea-
ture will be dominated by uniform triples like bread-bread-
bread and meat-meat-meat created from horizontal sam-
ples, which form the majority. By combining the orien-
tation and midpoint features, the algorithm is able to dis-
cover and leverage the vertical triplets that are key to ac-
curately discriminating burgers and sandwiches from other
food classes (e.g., pizza), as well as distinguishing between
individual burgers and sandwiches (e.g., a Big Mac vs. a
Quarter Pounder).

5.2. Classification accuracy into 7 major food types

The relatively low accuracy of even the best method de-
scribed above is due in part to the fact that many foods with
similar appearances and similar ingredients are assigned to
different categories in the PFID food database, as shown in
Fig. 10. Such cases are challenging, even for humans, to
distinguish.

In order to match more closely to the way people cate-
gorize foods, we organize the 61 PFID food categories into
seven major groups — sandwiches, salads/sides, chicken,
breads/pastries, donuts, bagels, and tacos. Then, we use the
baseline methods and our approach to classify images in the
dataset into these categories. Fig. 11 shows the classifica-
tion results.

Figure 10. Similar food items in PFID: these two foods are seman-
tically and visually similar, but are distinct food items and thus
appear in different PFID categories. Such subtle distinctions make
fast food recognition inherently challenging for vision algorithms.
(left) Arby’s Roast Turkey and Swiss; (right) Arby’s Roast Turkey
Ranch Sandwich.
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Figure 11. Classification accuracy for 7 major types

The rankings between algorithms observed in the previ-
ous experiment continue to hold true in this broader cate-
gorization task, with OM achieving nearly 80% accuracy.
More interestingly, the category-level confusion matrices
(Fig. 12) provide some insights into the classification er-
rors. We see that sandwiches are often confused with foods
whose major ingredients include bread, such as donuts and
bagels.

6. Conclusion
Food recognition is a new but growing area of explo-

ration. Although many of the standard techniques devel-
oped for object recognition are ill-suited to this problem,
we argue that exploiting the spatial characteristics of food,
in combination with statistical methods for pixel-level im-
age labeling will enable us to develop practical systems for
food recognition.

Our experiments on a recent publicly-released dataset of
fast food images demonstrate that our proposed method sig-
nificantly outperforms the baseline bag-of-features models
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0.86    0.93        0.40             0.17                 0.82                     0.65                         0.67

0.69    0.16        0.13               0                 0.49                     0.39                         0.08

0.75    0.45        0.15            0.18                 0.36                     0.24                         0.03

Figure 12. Confusion matrix comparison for 7 major categories.
Rows represent the major 7 food categories, and columns represent
the ground truth major categories.

based on SIFT or color histograms, particularly when we
augment pixel-level features with shape statistics computed
on pairwise features.

In future work, we plan to extend our method to: (1) per-
form food detection and spatial localization in addition to
whole-image recognition, (2) handle cluttered images con-
taining several foods and non-food items, (3) develop prac-
tical food recognition applications, and (4) explore how the
proposed method generalizes to other recognition domains.
Preliminary experiments indicate that pairwise statistics of
STF features in conjunction with Gist [13] perform signifi-
cantly better than Gist+STF+SVM alone on scene recogni-
tion tasks.
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