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The insular cortex is a multimodal brain region with regional cytoarchitectonic differences

indicating various functional specializations. As a multisensory neural node, the insular

cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation.

Regarding the latter, predominantly the anterior part of the insular cortex is regarded as

the primary taste cortex. In this review, we will specifically focus on the involvement

of the insula in food processing and on multimodal integration of food-related items.

Influencing factors of insular activation elicited by various foods range from calorie-content

to the internal physiologic state, body mass index or eating behavior. Sensory perception

of food-related stimuli including seeing, smelling, and tasting elicits increased activation

in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory

gustatory processing, there is also a strong association with the rewarding/hedonic

aspects of food items, which is reflected in higher insular activity and stronger

connections to other reward-related areas. Interestingly, the processing of food items has

been found to elicit different insular activation in lean compared to obese subjects and in

patients suffering from an eating disorder (anorexia nervosa (AN), bulimia nervosa (BN)).

The knowledge of functional differences in the insular cortex opens up the opportunity

for possible noninvasive treatment approaches for obesity and eating disorders. To target

brain functions directly, real-time functional magnetic resonance imaging neurofeedback

offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily.

First evidence indicates that obese adults have an enhanced ability to regulate the anterior

insular cortex.
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THE INSULAR CORTEX—FROM NEUROANATOMY TO

FUNCTION

The insular cortex is embedded in the lateral sulcus of the mam-

malian brain. On the basis of cytoarchitectonic studies using

myelin staining techniques, the insula can be subdivided in three

major compartments according to the laminar structure, referred

to as the anterior ventral agranular, dorsal anterior dysgranular,

and posterior granular part of the insular cortex (Mesulam and

Mufson, 1985; Gallay et al., 2012). The agranular anterior insula

in junction to the caudal orbitofrontal cortex (OFC) and the

adjacent frontal operculum has been identified as the primary

taste cortex (Rolls, 2006). Besides multiple perceptive inputs

of gustational cues (smell, taste, temperature, viscosity, texture)

in the anterior insula and hence different pathways, additional

granular and dysgranular regions especially the dorsal mid-insula

are involved in gustation (De Araujo and Simon, 2009; Kurth

et al., 2010). Their close interconnections with the OFC indicate

that this part plays a predominant role in the evaluation of

motivational states and primary reinforcers (Wager and Barrett,

2004). Also functional connectivity based analyses highlight the

anterior part of the insular cortex as a major hub in cerebral pro-

cessing of cognitive, emotional, motivational, and sensory stimuli,

and, defines together with the anterior cingulate cortex (ACC)

the salience network (Menon and Uddin, 2010). The anterior

dysgranular part is superior to the agranular part bounded on the

border to the frontal operculum. This part is particularly engaged

during tasks requiring executive control, shifting attention, and

working memory (Wager and Barrett, 2004). The intermediate

part of the insula and its dysgranular laminar structure extending

into the parietal operculum is strongly connected with all parts

of the insula and is involved in motor, somatosensory, and pain

processing (Kurth et al., 2010). Hence, neuroanatomical findings

indicate that the insular cortex is an important structure on

the transition between allocortex and isocortex, hinting to the

involvement in a wide range of sensory, emotional, and cognitive

processing of gustatory stimuli.

FOOD PROCESSING IN THE INSULAR CORTEX

The insular cortex is integrated in a distinct network respon-

sible for the neural control of appetite and the regulation of

energy balance. Whereas the hypothalamus represents the major

homeostatic player, the insular cortex is integrated in the neural
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system which is involved in the processing of external sensory

information tightly linked to reward processing (Berthoud, 2011).

Therefore, the insular cortex activity also contributes to the hedo-

nic system.

Several neuroimaging studies emphasized the functional con-

tribution of the anterior insula in gustatory perception (Small

et al., 2003; Veldhuizen et al., 2011; Figure 1A), which is repre-

sented in the processing of visually presented (Porubska et al.,

2006; Frank et al., 2010), tasted or smelled food stimuli (De

Araujo et al., 2003), and also in food craving (Pelchat, 1997;

Pelchat et al., 2004). Eating per se is a multimodal experience,

including taste, olfaction, smell, and somatosensory inputs (De

Araujo and Simon, 2009). As part of the primary taste and

primary olfactory cortex (Rolls, 2006; Small, 2010), the anterior

insula is also highly responsive to different flavors (Rolls, 2005;

Small, 2012; Small and Green, 2012). Sensory food-related inputs

are combined in the anterior insula (Small, 2012), resulting in

increased activation of this region after stimulation with a specific

flavor (Small et al., 1999). Small and Prescott (2005) describe

overlapping activation in the anterior insula after independent

stimulation with taste and odor cues. Besides the taste compo-

nent, transferred from the taste buds on the tongue to the primary

taste cortex, the aroma of food is also experienced olfactorily via

the retronasal route (Ruijschop et al., 2009; Small and Green,

2012).

Also, the texture and viscosity of ingested food is represented in

the anterior and mid-insular cortex. Here, the activation changes

according to the viscosity of a stimulus (De Araujo and Rolls,

2004; Alonso et al., 2007).

Besides components like taste, aroma and texture, also the

amount of fat influences the activity in this gustatory and hedonic

region. A recent fMRI study (Frank et al., 2012b), investigating

the effect of a high- and low-fat meal on the cerebral blood flow,

revealed a differential influence of fat on the mid-anterior insular

cortex and the hypothalamus. The activity in the hypothalamus,

representing the homeostatic system in the brain, decreased after

intake of a high-fat meal, whereas the insular cortex activity

increased after intake of the low-fat meal. This suggests an inter-

action of the homeostatic and the gustatory system, which might

be mediated by the fat content of the meal.

The processing of food also includes the internal evaluation of

the ingested, seen or smelled nutrients. The evaluative component

includes interoceptive awareness, which is as well associated with

insular processing (Craig, 2009). On a behavioral level, it was

shown that good cardiac awareness, as a marker of interoception,

is inversely related to the experienced fullness and myoelectric

gastric activity after water load (Herbert et al., 2012). On the

neuronal level, gastric distention without actual food intake leads

to increased activation in the posterior insular cortex (Wang et al.,

2008). Such findings corroborate the integrative function of the

insular cortex.

A recent meta-analysis by Brooks et al. (2013) report decreased

activation in obese compared to lean subjects in the mid-insular

cortex, a region shown to be involved in interoceptive awareness

(Simmons et al., 2012). The reduced awareness of the bodily state

and, therefore, also for appetite signals of the gut and brain might

be a reason for obese to consume more food in order to feel the

interoceptive cues from the body in the same way normal-weight

people do (Brooks et al., 2013).

Craig (2005) already proposed laterality differences in intro-

ceptive perception related to emotional processing. In a previous

study a stronger impairment in taste functions in patients suffer-

ing from a lesion in the left anterior insular cortex compared to

patients with a lesion in the right anterior insula (Stevenson et al.,

2013), was shown. Furthermore, there is evidence that pleasant

odors are rather processed in the left hemisphere and unpleasant

odors in the right hemisphere (Henkin and Levy, 2001). However,

further evidence is needed to understand possible hemispheric

relationships of insular functions in more detail.

EATING DISORDERS

It has been shown that bulimia nervosa (BN) patients exhibit

increased insula activation to high-caloric food pictures in

comparison to overweight and normal weight control subjects

(Schienle et al., 2009). This difference is possibly due to the

enhanced autonomic arousal that appetizing food pictures

elicit in BN. Increased insula activation was also shown in

anorexia nervosa (AN) patients compared to healthy subjects

when contrasting pictures of high- versus low-calorie drinks

(Nunn et al., 2011; Figure 1E). In contrast, after the ingestion

of chocolate milk in a hungry state, AN patients exhibited

less activation in the insula than control subjects (Vocks et al.,

2011). Of special importance is the change in insula function

when women recovered from AN or BN. While AN recovered

patients showed a decreased anterior insula activity after drinking

sweet tastes (Wagner et al., 2008; Oberndorfer et al., 2013),

BN recovered patients revealed an enhanced insula response in

relation to weight matched controls (Oberndorfer et al., 2013).

The different activation patterns may result from an altered

processing of hunger or reward signals and a misinterpretation

of internal feeling and feeding states that lead to exaggerated or

restricted eating behavior even after treatment.

DIFFERENTIAL ACTIVATION IN LEAN AND OBESE

Neuroimaging studies investigating food processing, by means

of visual stimulation, have shown enhanced insula activity in

obese compared to lean subjects (Figure 1B). Specifically, obese

subjects were found to show higher left anterior and right mid-

insular activity compared to lean control subjects in respone to

food cues (Scharmuller et al., 2012). Also, Rothemund et al.

(2007) and Stoeckel et al. (2008) reported enhanced activation

in response to high-caloric food pictures in obese women in the

anterior insula. In adolescent girls, the activation in the anterior

insula correlated positively with the BMI during the orientation

to food cues (Yokum et al., 2011). Studies investigating linear

relationships of BMI with brain functions showed heightened

activity in the anterior insula and the adjacent frontal operculum

with increasing BMI (Ziauddeen et al., 2012).

Beside visual stimulation with food items, studies using oral

food cues have also shown the insular cortex to be vital for food

intake. While hunger resulted in a regional cerebral blood flow

(rCBF) increase after administration of 2 mL of drinking water,

satiation has been associated with a decrease in insular rCBF,

suggesting that the reaction of the insular cortex to sensory expe-
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riences is affected by hunger (Del Parigi et al., 2002; Figure 1C).

However, this decrease after satiation was more pronounced in

obese compared to lean subjects (Gautier et al., 2000, 2001).

Additionally, obese subjects revealed an enhanced sensory expe-

rience in the mid-dorsal insula to a liquid meal after a prolonged

fast (Delparigi et al., 2005). Concomitantly, these results point to

abnormal gustatory processing in obesity in response to a meal

as well as to the sensory processing of food. The combination

of a sweetened drink with the stimulation with food pictures

also revealed enhanced anterior insula activation in obese subjects

(Connolly et al., 2013), supporting the integration of multimodal

stimuli in this area. Generally, the anterior insular cortex is highly

responsive to food intake and anticipated food intake, a response

that is more pronounced in obese (Stice et al., 2008, 2009).

Besides changes in activity, the insular cortex also revealed sig-

nificant changes in functional connectivity in obese compared to

lean subjects during resting-state and in response to food cues

(Figure 1D). As such, the anterior insula has significant func-

tional connections to several frontal, temporal, and parietal areas,

in particular to the OFC, inferior frontal cortex and to the ACC

in normal weight subjects (Taylor et al., 2009; Deen et al., 2011).

In contrast, obese subjects revealed decreased functional con-

nectivity in the insular cortex during resting-state (Kullmann

et al., 2012), and increased functional and effective connectivity in

response to food cues especially to striatal regions (Garcia-Garcia

et al., 2012; Nummenmaa et al., 2012; Kullmann et al., 2013).

THE PROBLEM OF WEIGHT LOSS MAINTENANCE

When facing the problem of obesity, one pressing question is how

to effectively lose and maintain body weight. Successful weight

loss maintainers show a greater bilateral insula response after

orosensory stimulation with food cues (Sweet et al., 2012). Inter-

estingly, the response to visually presented food items in the insu-

lar cortex seems to be predictive for the weight loss outcome. Less

successful patients in a weight loss program showed higher insular

activation pre- and post-treatment (Murdaugh et al., 2012). After

successful weight-loss maintenance achieved by bariatric surgery,

neuroimaging studies have shown that brain activations after food

intake or visual stimulation with food cues are comparable with

lean subjects (Van De Sande-Lee et al., 2011; Frank et al., 2013).

Also in motivational and reward-related regions (including the

insular cortex) stimulation with food pictures showed decreased

activation after gastric banding (Bruce et al., 2012).

NEUROFEEDBACK AS A POSSIBLE THERAPEUTIC APPROACH

Regarding the increasing prevalence for obesity and the fre-

quent failure of weight maintenance after weight loss, new ther-

apeutic approaches are urgently needed. Therefore, it is intrigu-

ing to speculate about possible biofeedback strategies. Food-

specific electrodermal biofeedback leads to increased food-related

self-efficacy and reduced perceived stress (Teufel et al., 2013).

Morewedge et al. (2010) reported that food consumption can

be reduced by thoughts for food in lean subjects. The focus on

food during eating enhances memory for a meal to later time

points and reduce later food intake (Higgs and Donohoe, 2011).

One innovative approach that might support the effort of obesity

treatment is an fMRI-based neurofeedback training, which allows

the voluntary regulation of specific brain regions (Birbaumer

et al., 2013). Considering the multimodal functions of the insular

cortex and its importance for food reward, the anterior insula

FIGURE 1 | Scheme of the contribution of the insular cortex in

food-related processes. Especially the anterior and mid-dorsal part of

the insular cortex respond to (A) high-caloric food cues and show

(B) increased activation in obese subjects and (C) in a hungry condition

after stimulation with food items. (D) Lean subjects showed higher

resting state connectivity pattern in the salience network, including the

insular cortex. (E) Also patients suffering from an eating disorder show

enhanced activation in this region. (F) Obese subjects’ regulation ability

during an fMRI based neurofeedback paradigm is higher compared to lean

subjects.
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seems to be an appropriate target for real-time fMRI (rtfMRI)

neurofeedback. In a previous rtfMRI study, addressing the ante-

rior insular cortex as the region of interest (ROI), lean participants

learned to regulate this region voluntarily within one day over

four training sessions (Caria et al., 2007). In a follow-up study,

this group demonstrated that successful regulation compared to

no regulation of the anterior insular cortex resulted in increased

negative valence ratings of emotional pictures (Caria et al., 2010).

Furthermore, it was shown that effective connectivity between the

anterior insular cortex and areas involved in emotional processing

were strongest in the best regulation session (Veit et al., 2012).

In a recent study, we addressed insular neurofeedback training in

obese subjects (Frank et al., 2012a). During the training sessions,

all obese participants were able to regulate the activity, whereas

four out of eleven participants of the lean group were not able

to successfully regulate the anterior insula (Figure 1F). Investi-

gating underlying neural connectivity processes, lean regulators

in comparison to obese regulators showed stronger functional

connectivity in cingular and temporal cortices during regulation.

Therefore, lean and obese subjects seem to recruit differential

neural networks to perform a voluntary regulation of primary

gustatory systems.

CONCLUSION

In conclusion, the insular cortex, especially the anterior part, is

a multimodal and integrative area for the processing of food-

related items. Central gustatory processes are tightly linked to

interoception represented in reduced awareness of bodily signals

including satiety signals. Therefore, interoception is associated

with eating behavior and consequently also with obesity and eat-

ing disorders. In fact, multiple functions integrated in the insular

cortex correlate and interact with gustatory processes. It has been

shown, that obese subjects show higher responses in the anterior

insular cortex to food cues independent of the modality (taste,

visual). Moreover, rtfMRI guided neurofeedback training of the

insular cortex raises the possibility to modify eating behavior.
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