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Abstract

Estuarine food webs are fueled by multiple different primary producers. However, identifying the relative importance of each

producer to consumers is difficult, particularly for fishes that utilize multiple food sources due to both their mobility and their

generally high trophic levels. Previous studies have documented broad spatial differences in the importance of primary producers

to fishes within the Upper San Francisco Estuary, California, including separation between pelagic and littoral food webs. In this

study, we evaluated the importance of primary producers to adult fishes in three closely spaced subregions that represented

disparate habitat types (a tidal wetland channel, a turbid backwater channel, and a deep open-water channel), each a potential

outcome of local restoration projects. Using stable isotope analysis coupled with a Bayesian mixing model, we identified

significant differences in primary-producer contribution to fishes and invertebrates across habitats and seasons, especially in

the relative contribution of submersed aquatic vegetation and phytoplankton.Most fishes utilized multiple primary producers and

showed little segregation between pelagic and littoral food webs among habitats. Availability of primary producers differs

seasonally and across multiple spatial scales, helping to buffer environmental variability and thus enhancing food web resilience.

Ecosystem restoration may improve with emphasis on restoring a wide variety of primary producers to support consumers.
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Introduction

Many estuarine food webs appear to be fueled by exported

wetland detritus (Teal 1962; Odum 1980; Peterson et al.

1985); however, estuarine consumers also use many other

organic-matter sources such as phytoplankton (Deegan and

Garritt 1997; Galvan et al. 2008), macroalgae and benthic

microalgae (Currin et al. 1995; Kwak and Zedler 1997), sub-

mersed aquatic vegetation (SAV; Kitting et al. 1984; Vizzini

et al. 2002), and terrestrial vegetation (Chanton and Lewis

2002; Zeug and Winemiller 2008; Tanentzap et al. 2014).

Although each source may be an important contributor, the

relative importance of each differs substantially across space

and time (Peterson et al. 1985; Chanton and Lewis 2002). For

example, phytoplankton, benthic microalgae, and marsh veg-

etation were all important to local consumers in Plum Island

Sound, MA, USA, but the relative importance differed de-

pending on location within the estuary (Deegan and Garritt

1997). These spatiotemporal differences stabilize complex

food webs (Winemiller 1996; Polis et al. 1997) because di-

verse sources of productivity maintain consistent support for

higher trophic levels (McCann et al. 2005).

Estuaries are particularly complex, with a complicated mix

of trophic contributions from marine and freshwater inputs

(Fry and Smith 2002; Hoffman et al. 2008; Atwood et al.

2012), with diverse intertidal and subtidal habitats, and with

severe human impacts, which include eutrophication, species

invasions, and habitat loss (Kennish 2002). Habitat loss can

reduce the quantity or availability of different organic matter
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sources to the ecosystem (Cloern et al. 2016). For organisms

at lower trophic levels (e.g., invertebrates), a decline or change

in productivity can have catastrophic impacts on local popu-

lations because their relatively limited mobility and short

lifespans bind them to local production (Orsi and Mecum

1996; Kimmerer 2002). Organisms at higher trophic levels,

especially mobile omnivores feeding across various habitats

(e.g., fishes; Pyke et al. 1977; Pimm and Lawton 1980;

Thompson et al. 2007), may be more resilient.

In most estuaries, the habitat type most frequently lost is

tidal wetland (Dahl 2011; Brophy et al. 2019), a particularly

biologically productive component of the estuary milieu.

Dramatic declines in tidal wetland affect the relative abun-

dance of other habitat types (e.g., bays or mudflats make up

a higher proportion of remaining habitat), which can influence

organisms across multiple trophic levels and in multiple hab-

itats. This phenomenon has been observed in the San

Francisco Estuary, where a largely contiguous tidal wetland

complex has been converted to a primarily open-water system

(Whipple et al. 2012; Robinson et al. 2014), with concomitant

trophic impacts.

In some regions of the San Francisco Estuary, the two

broad habitat types, tidal wetland and open water, contain

distinct trophic pathways that function separately and in par-

allel (Grimaldo et al. 2009): a food web based primarily on

detritus from emergent and submersed vegetation (Howe and

Simenstad 2007; Howe and Simenstad 2011; Schroeter et al.

2015), and an adjacent open water, phytoplankton-based food

web (Lehman et al. 2010). In these open-water habitats, or-

ganic carbon from sources other than phytoplankton is in low

quantity (Jassby and Cloern 2000), has low bioavailability

(Sobczak et al. 2002), or is otherwise not utilized (Mueller-

Solger 2002). However, in habitats where non-phytoplankton

organic carbon is abundant, it can readily be incorporated by

pelagic zooplankton (Harfmann et al. 2019), suggesting that

estuary-wide trophic pathways would have been different pri-

or to habitat modification (Robinson et al. 2014; Cloern et al.

2016). Landscape changes are the likely cause of observed

segregation between trophic pathways (Grimaldo et al.

2009), and in the habitat complexity of the historical system,

consumers (i.e., invertebrates, fishes) would have likely

coupled trophic pathways.

With several plankton-eating fishes nearing extinction in

the San Francisco Estuary (Hobbs et al. 2017), efforts are

underway to re-create tidal wetland, with the assumption that

the new wetland will improve plankton production and food

availability. Much effort has been focused on the North Delta,

a region in the estuary that has historical habitat features fa-

vorable for creation of tidal wetland (e.g., appropriate eleva-

tion).While much has been learned about food webs in certain

regions of the estuary (Howe and Simenstad 2007; Grimaldo

et al. 2009; Howe and Simenstad 2011; Schroeter et al. 2015),

little is known about the trophic support provided by different

habitat types in the North Delta. Elucidating the food web

structure of this region is thus crucial for informing habitat

re-creation. Using stable isotopes of carbon, nitrogen, and

sulfur, coupled with diet analysis and a stable-isotope mixing

model, we quantified the importance of different primary pro-

ducers to consumer communities across different subregions,

each of which represented a different habitat type (a tidal

wetland channel, a turbid backwater channel, and a deep

open-water channel), and across seasons. We addressed two

primary questions: (1) Does food web support for consumers

differ between subregions and seasons?; and (2) Is there evi-

dence for segregation of phytoplankton-based (i.e., pelagic)

and vascular macrophyte-based (i.e., littoral) trophic pathways

in different subregions? Answering these questions will in-

crease understanding of both trophic impacts of restoration

and the role of habitat in supporting estuarine food web resil-

ience in highly disturbed systems.

Methods

Study Area

The San Francisco Estuary (SFE), California, USA, the largest

estuary on the western coast of North America, historically

consisted of dendritic tidal wetland, seasonal floodplain lakes,

open-water bays, and sinuous subtidal channels with high var-

iability in salinity and flow (Whipple et al. 2012). After two

centuries of intense human use, the contemporary SFE has

been altered by species invasions, water diversions, changes

to the nutrient regime, and habitat modification (Nichols et al.

1986). Nevertheless, the SFE still encompasses a wide range

of physical heterogeneity, such as a patchwork of relict wet-

lands, channelized tidal sloughs, and restored habitats. The

freshwater extent of the SFE, the Sacramento-San Joaquin

Delta (Delta), is a 2985-km2 network of severely modified

habitats. While much of the Delta is devoted to diked farm-

land, it also includes a patchwork of rock-lined channels, veg-

etated and unvegetated backwaters, flooded agricultural tracts,

and small remnant or restored tidal wetland. Native fishes are

most abundant where turbidity is high, where density of sub-

mersed aquatic vegetation (SAV) is low, and where water is

cool (Moyle et al. 1992; Feyrer and Healey 2003; Brown and

Michniuk 2007).

Our study focused on the Cache Slough Complex in the

northwest Delta, a region of high fish and habitat diversity in a

small geographic area (Young et al. 2015; Fig. 1). We identi-

fied three subregions reflecting both historical and contempo-

rary habitats: Upper Lindsey Slough, Upper Cache Slough,

and the downstream extent of the complex. Upper Lindsey

Slough (ULN) has expansive vegetated tidal wetland, low

turbidity, low chlorophyll densities, and large water diversions

(Kimmerer and Nobriga 2008). ULN more closely
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approximates the historical Delta’s physical configuration

than the other subregions. Upper Cache Slough (UCA) is

shallow, with minimal SAV, high turbidity, high chlorophyll

densities, minimal emergent wetland vegetation, and repre-

sents a possible intermediate state for restoration projects.

The lower reaches of Cache and Lindsey Sloughs (collectively

the “lower” subregion (LWR)) are deep, wide, rock-lined

channels with dense SAV along banks and with low chloro-

phyll densities, similar to more open-water channels in other

Delta regions.

Field Collection

Primary Producers We collected primary producers at every

subregion in spring (April 2014) and summer (August 2014).

To account for variation within a producer group, we collected

multiple samples from each group (N ≥ 3). We collected the

upper stems and leaves of vascular macrophytes (e.g., Egeria

densa, Bulboshoenus maritimus) by hand, as well as green

filamentous algae (GFA) when present. We collected benthic

diatoms (BD) using methods adapted from Cloern et al.

(2002) by using Nitex mesh screens laid atop the sediment

surface. Phytoplankton was collected as seston using a

30-μm mesh net towed until clogged. We filtered both seston

and benthic diatom samples through 100-μm sieves to remove

larger detrital fragments and organisms; we then vacuum fil-

tered them onto pre-combusted GF/F filters. We placed all

samples from primary producers on ice in the field and froze

them until laboratory analysis.

InvertebratesWe collected zooplankton in three separate sam-

ples using a 50-μmmesh net with a 0.5-m mouth. The net was

towed by boat at the slowest possible forward speed for

10 min or until clogged. We collected zooplankton samples

mid-channel on the ebb tide with the assumption that tidal

mixing would homogenize zooplankton cross-sectional distri-

bution, allowing us to capture most species. Samples were

concentrated into a small volume and placed on ice to limit

intra-sample predation.We collected vegetation-associated in-

sects and crustaceans by vigorously shaking SAV and other

vegetation types into a 5-gal bucket, which was then rinsed

onto a 500-μm sieve for manual transfer into a clean jar. Other

invertebrates, including clams and epibenthic invertebrates,

were collected via trawl as a byproduct of fish sampling (de-

scribed below). All macroinvertebrates were kept alive for

24 h in the laboratory to allow for digestive-tract evacuation.

Fishes We collected fishes using multiple gear types (boat

electrofishing, otter trawling, and beach seining) to represent

the entire local community. Due to a lag in the incorporation

of consumed material into fish tissues (Vander Zanden et al.

2015), we sampled fishes in both the same month as plant and

invertebrate collections and in the subsequent month (April

and May for spring samples, and August and September for

summer samples). To minimize ontogenetic diet variation, we

identified the size at which a species reached its typical adult

diet (Table 1; Moyle 2002) and only fish larger than that size

were kept. Electrofishing was conducted using a Smith-Root

5.0 GPP boat-mounted electro-fisher at a constant pulse width

Fig. 1 Study area. In-lays show

sampling location within

California, and the Sacramento-

San Joaquin Delta, respectively.

Subregions are outlined in the

main panel
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of 60 pulses−s and a variable power so as to maintain a con-

stant electrical current of 8 ± 1 amps. Trawling was conducted

using a four-seam otter trawl with a 1.5-m x 4.3-m opening,

5.3-m length, a 35-mmmesh stretch in the main body, and a 6-

mm mesh stretch in the cod end. Trawls were towed at 3.5

km/h for 5 min. Beach seines were 10-m bag-less seines with a

6-mm mesh. After capture, we measured all fish and those

longer than identified ontogenetic size cutoffs were anesthe-

tized and placed on ice. Up to ten individuals of each species

from each subregion and season were kept.

Laboratory Methods

Sample Preparation Primary producers and macroinverte-

brates were rinsed with deionized water to remove contami-

nation. Invertebrates were manually sorted and identified to

species (Carlton 2007) except for insects, which were

identified to family (Berg et al. 2008). To obtain enough ma-

terial for stable-isotope analysis, smaller invertebrates were

pooled, with up to 300 individual copepods or cladocerans

and up to 50 individual macroinvertebrates for each sample.

Larger invertebrates (e.g., shrimp, crayfish) and fish were not

pooled. All fish were filleted, with left posterior dorsal muscle

tissue removed. Fish stomachs were then removed and placed

in 10% formalin. Plant and animal tissues for stable-isotope

analysis were oven dried for 48–96 h at 60 °C and then ground

to a homogeneous powder.

Isotope Analysis We weighed the powdered samples on a

microbalance and placed them in tin capsules for isotope anal-

ysis. All samples were analyzed for δ13C, δ15N, and δ34S at

the University of California, Davis, Stable Isotope Facility

using a PDZ Europa ANCA-GSL elemental analyzer

interfaced to a PDZ Europa 20-20 isotope ratio mass

Table 1 Species codes, size cutoff, and sample sizes for all fish species sampled in this study

Species code Common name Scientific name Size cutoff (mm SL) Spring Summer

LWR UCA ULN LWR UCA ULN

BC Black crappie Pomoxis nigromaculatus 150 0 3 8 4 13 11

BF Sacramento blackfish Orthodon microlepidotus 50 0 1a 0 0 0 0

BG Bluegill sunfish Lepomis macrochirus 50 0 1 6 15 6 10

BLB Black bullhead Ameiurus melas 100 1 3 0 1 3 0

BLP Bigscale logperch Percina macrolepida 70 1 3 2 3 4 4

CCF Channel catfish Ictalurus punctatus 200 0 0 0 1a 1 0

CP Common carp Cyprinus carpio 100 0 0 5 2 2 0

DS Delta smelt Hypomesus transpacificus 60 2 1 0 1 0 2a

GF Goldfish Carassius auratus 100 0 2 0 0 0 0

GSF Green sunfish Lepomis cyanellus 75 0 0 0 0 0 1

GSH Golden shiner Notemigonus crysoleucas 50 6 2 10 15 3 20

HCH Hitch Lavinia exilicauda 50 4 2 3 0 2 0

ISS Mississippi silverside Menidia audens 60 7 0 1a 18 21 12

LMB Largemouth bass Micropterus salmoides 200 11 5 4 17 11 18

MQF Western mosquitofish Gambusia affinis 40 0 0 0 0 1 0

RESF Redear sunfish Lepomis microlophus 130 6 0 5 8 0 9

SB Striped bass Morone saxatilis 200 2 1 0 3 5 1

SCP Prickly sculpin Cottus asper 45 13 1 6 11 2 0

SG Shimofuri goby Tridentiger bifasciatus 60 8 0 0 12 2 0

SKR Sacramento sucker Catostomus occidentalis 90 2 5 0 2 3 2

SPM Sacramento pikeminnow Ptychocheilus grandis 200 1 0 0 1 0 1

TFS Threadfin shad Dorosoma petenense 55 10 21 8 14 18 22

TP Tule perch Hysterocarpus traskii 50 10 19 5 9 7 13

WAK Wakasagi Hypomesus nipponensis 60 0 0 0 0 0 1a

WC White crappie Pomoxis annularis 150 1 0 3 1 3 1

WCF White catfish Ameiurus catus 100 1 12 2 8 5 1

WM Warmouth sunfish Lepomis gulosus 75 0 0 0 1 0 1

YFG Yellowfin goby Acanthogobius flavimanus 75 0 0 0 14 0 0

a Subregion/season combinations excluded from mixing model analysis due to missing data
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spectrometer (IRMS; Sercon Ltd., Cheshire, UK). We did not

correct for lipid content (Post et al. 2007) as C:N ratios were

generally low (~ 3–5).

To estimate a true phytoplankton signature from filtered

particulate organic matter (POM), which reflects a broad mix-

ture of detritus, sediments, and phytoplankton cells, we calcu-

lated phytoplankton δ13C signatures using measured DIC

values and an algal fractionation of − 26.8‰ (Karlsson et al.

2003). We calculated δ15N values using subregion-specific

regression equations between POM C:N ratio and POM

δ15N, solving for the Redfield ratio (C:N = 6.625).

Phytoplankton δ34S signatures can be calculated by adding a

fractionation value of − 1.5‰ to the δ
34S signature of dis-

solved inorganic sulfur (DIS) in water (Stribling and

Cornwell 1997). DIS data were unavailable for our study area.

We therefore used the mean δ
34S value of collected POM

samples to reflect phytoplankton (− 2.29‰ ± 1.16). Our

POM phytoplankton proxy value is corroborated by δ34S

values in juvenile Chinook salmon otoliths (− 0.4 ± 1.3),

which reflect upstream DIS signatures in the Sacramento

River (Weber et al. 2002). When we applied a phytoplankton

fractionation value of − 1.5‰ to otolith-inferred DIS signa-

tures (−1.9‰), our POM values closely aligned.

Diet Analysis Gut contents from all fishes were identified to

the lowest possible taxonomic level (typically family) with a ×

10–40 dissecting microscope. We counted and weighed all

diet items.

Data Analysis

Diets To evaluate diets of fish species across subregions, we

calculated the percent Prey-Specific Index of Relative

Importance (%PSIRI; Brown et al. 2012) for each prey taxa

at each subregion:

%PSIRI ¼
%FOi � %PNi þ%PWið Þ

2

where %FO equals frequency of occurrence, %PN is the per-

cent numerical abundance divided by the number of stomach

samples in which it occurs, and %PW is the percent weight

divided by the number of stomach samples in which it occurs.

This metric is considered an improvement over conventional

indices of relative importance (Pinkas et al. 1970) for two

reasons: %PSIRI does not overemphasize abundant prey

items, and %PSIRI is additive over taxonomic levels. That

is, the %PSIRI of a family will be equivalent to the sum of

the %PSIRI of the species within that family, allowing

pooling of calculated values for later analyses.

Isotopes We used the package MixSIAR 3.0.0 (Stock and

Semmens, 2016) in program R (R Core Team 2019) to

determine the relative proportion of primary source contribu-

tions to consumers. This modeling technique incorporates

both prior information and uncertainty in source contributions,

including trophic-enrichment and diet data (Moore and

Semmens 2008; Phillips et al. 2014). We ran each model

independently for each subregion and season with species or

taxa as a random effect and used all three isotope markers. The

model included both process error, by considering source and

consumer variation, and residual error except for when the

sample size was equal to one. Each model was set to run three

chains for 300,000 Markov Chain Monte Carlo simulations,

with a burn-in of 200,000.

To minimize under-determination in the mixing models

and because of overlap in primary-producer signatures, some

primary producers were pooled prior to analysis (Table 2). If

ranges of isotope values overlapped, then samples were also

pooled across seasons. If a primary producer category was not

collected in a region, values from LWR were used in the

mixing model. If a primary producer was not collected in a

season, this reflected low standing biomass and it was left out

of themodel. Trophic discrimination factors (TDFs; a measure

of isotopic enrichment across tropic levels) were assigned by

functional group fromMcCutchan et al. (2003), with reported

standard errors converted to standard deviation per MixSIAR

requirements. Enrichment factors for primary consumers (e.g.,

herbivorous invertebrates) were assigned based on values for

aquatic species from McCutchan et al. 2003 (ESM 1). For

invertebrate predators, we doubled primary consumer values

to account for multiple trophic steps. For invertebrate omni-

vores, we applied the mean of the pooled invertebrate-

herbivores and predators TDFs. We calculated TDFs for fish-

es by adding the value for fish muscle tissue to that for inver-

tebrate omnivores. Standard errors for all combined TDFs

were calculated using the following equation:

SECombined ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE1
2 þ SE2

2

q

We modeled fish and invertebrates from two randomly

selected subregion/season combinations using TDFs from

Vander Zanden and Rasmussen (1999) to assess the sensitiv-

ity of model results to different trophic discrimination factors

(ESM 1), a known concern for food web studies (Vander

Zanden and Rasmussen 2001). In addition to sensitivity anal-

yses, we compared TDFs used in this study with published

values for analogous species to ensure that our chosen values

reflected variability in the literature (ESM 1). Sensitivity anal-

yses indicated invertebrate results were robust to use of dif-

ferent TDFs. Fish results were not robust to use of different

TDFs, with use of a different TDF affecting results. However,

values based on McCutchan et al. (2003) were selected be-

cause they more closely approximated trophic enrichment

values for largely carnivorous fishes (0.82; Bastos et al. 2017).
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Models for invertebrates utilized a generalist prior based on

the Dirichlet distribution (Parnell et al. 2013) and only includ-

ed carbon and nitrogen because sample weights of inverte-

brates were not high enough to get an accurate sulfur value.

Subregion-specific models for each fish species utilized a

unique weakly informative prior based on the %PSIRI of diet

items and the subregion-specific mixing-model results for that

invertebrate. If mixing-model results were unavailable for

more than 50% of the fish species’ diet, we used a model with

a generalist prior. Incorporating the diet data as a prior was

intended to help constrain uncertainty associated with TDF

selection. Species with a sample size of 1 were excluded from

mixing model analysis (Sacramento blackfish Orthodon

microlepidotus, wakasagi Hypomesus nipponensis, and green

sunfish Lepomis cyanellus).

We tested for differences in average contribution from each

primary producer across subregions using a two-way

ANOVA with primary producer and season as factors.

Pairwise comparisons were conducted across subregions

using a Tukey HSD test. To test for differences between pe-

lagic and littoral trophic pathways, we performed a pairwise

permutation test on the distribution of phytoplankton contri-

bution to different species in each subregion.

Results

Primary Producer Isotope Values

Primary producer groups had large within- and among-group

variation for all three sampled isotopes (Table 2; Fig. 2).

Phytoplankton was consistently the most depleted in δ13C

among primary-producer categories, with mean values across

subregion/season combinations ranging from − 36 to − 38‰,

while benthic diatoms were typically enriched in δ13C (− 19 to

− 24‰). Emergent vegetation δ13C values exhibited some

variability across space and time but were generally interme-

diate (− 26 to − 30‰). SAV and epiphytic GFA exhibited the

greatest variability of δ13C values across space and time

(SAV, − 18 to − 30‰; GFA, − 16 to − 33‰).

Mean benthic diatom δ15N values were relatively consis-

tent across all three subregions (5 to 7‰), as were mean phy-

toplankton δ15N values (7 to 8‰). Emergent vegetation (3 to

11‰), SAV (4 to 12‰), and epiphytic GFA (5 to 14‰) δ15N

values were more variable. Mean δ15N values of primary pro-

ducers were generally enriched in UCA relative to other sub-

regions, and SAV was typically more enriched in summer

than in spring, although not in ULN. The δ13C and δ15N

values of primary producers were consistent with results from

other SFE studies (Grimaldo et al. 2009; Schroeter et al.

2015), particularly with respect to the high variability of

SAV and emergent vegetation (Cloern et al. 2002).

Most primary-producer categories were intermediate in

mean δ34S values (between − 2 and 1‰), with several prom-

inent exceptions. Two emergent vegetation groups,

Schoenoplectus californicus from UCA and combined

Bulboshoenus maritimus/Schoenoplectus acutus from ULN,

exhibited enriched δ34S values (> 9‰). Epiphytic GFA from

ULN during summer also had high δ34S (~ 8‰).

Invertebrate and Fish Isotope Values

Generally, the isotopic spread of invertebrate communities was

larger in spring compared to summer, when species’ signatures

became more similar (Fig. 2). Various taxa of zooplankton,

cladocerans (mean, − 33.23‰; standard deviation, 1.71‰)

and the copepods Pseudodiaptomus forbesi (− 34.30 ±

1.49‰) and Sinocalanus doerriii (− 34.76 ± 0.62‰), exhibited

the most depleted δ13C values of all invertebrates. The amphi-

pod Hyalella sp. (− 23.20 ± 4.03‰) and physid snails (− 23.02

± 3.74‰) exhibited relatively enriched δ13C values. The

Siberian prawn Palaemon modestus (14.19 ± 1.39‰) had the

most enriched δ15N, along with the two copepod species

(P. forbesi, 12.82 ± 1.39‰; S. doerriii, 13.77 ± 0.70‰) and

damselflies of Coenogrionidae (12.72 ± 1.08‰). Note inverte-

brate species/group composition and consequent availability for

sampling varied by season and subregion, and only zooplank-

ton samples from spring were analyzed due to laboratory error.

Delta smelt Hypomesus transpacificus (− 30.46 ± 1.56‰)

and wakasagi (− 29.64‰, n = 1) exhibited the most depleted

δ13C values of fish species, while Sacramento blackfish (−

22.63‰, n = 1) and warmouth Lepomis gulosus (− 24.55 ±

0.48‰) exhibited the most enriched δ
13C values (Fig. 2).

Tule perch Hysterocarpus traskii, the most abundant native

species, had intermediate δ13C values (− 28.08 ± 0.95‰).

Largemouth bass Micropterus salmoides (17.20 ± 0.77‰)

and white crappie Pomoxis annularis (17.05 ± 1.57‰) had

the most enriched δ15N values, suggesting they occupied the

highest trophic level, while common carp Cyprinus carpio

(13.39 ± 0.34‰) and goldfish Carassius auratus (12.86 ±

1.16‰) had the least enriched δ15Nvalues (Fig. 2). Striped bass

Morone saxatilis (3.95 ± 0.88‰) had the most enriched δ34S

values, while common carp (− 4.47 ± 0.13‰) had the most

depleted δ34S values (ESM 2). Variation in δ13C and δ15N

across all subregions was consistent, but fish from ULN exhib-

ited the greatest variability in δ34S values (− 4.80 to 14.42‰),

consistent with variability in δ34S from reduction-oxidation re-

actions in tidal wetland (Peterson et al. 1986).

Fish Diets

We examined the stomach contents of 763 individual fish

from 30 species. Plant material and detritus had the highest

mean %PSIRI values of all gut contents in both seasons

(spring 26%, summer 30%), but amphipods (spring 22%,
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summer 15%) and other macro-crustaceans (spring 16%, sum-

mer 17%) had the highest mean %PSIRI values of all animal

prey items in both seasons. No other diet item had a %PSIRI

over 10%, although snails, insects, and zooplankton had high

%PSIRI values for individual fish species (ESM 3), consistent

with recent SFE fish diet studies (Feyrer et al. 2003; Nobriga

and Feyrer 2007; Grimaldo et al. 2009; Young et al. 2018a;

Weinersmith et al. 2019).

Subregional and Seasonal Differences in Primary
Source Contributions to Consumers

We ran mixingmodels for 13 invertebrate species/groups with

eight species/groups present at over half of all site and season

combinations. The other five species/groups were either pres-

ent in only one season or at one location. We ran mixing

models for 28 fish species, with 16 species present at over half

of all subregion and season combinations. The other 12 spe-

cies were either present in only one season or at one location.

Mixing-model results showed that zooplankton (cladoc-

erans, P. forbesi, and S. doerriii) consistently exhibited high

contributions from phytoplankton (mean posterior probability

>80%) except in ULN, where cladocerans and P. forbesi de-

rived significant contributions from emergent vegetation and

SAV (Fig. 3; ESM 4). Larger crustaceans (isopods,

Gammarus daiberi, Hyalella sp., A. spinicorne, and

P. modestus) exhibited similar trends, relying strongly on phy-

toplankton in UCA, but relying more strongly on SAV and

emergent vegetation elsewhere (Fig. 3). A single primary-

producer category dominated mixing-model results (mean

posterior probability > 50%) for most invertebrate taxa.

Across spring and summer, invertebrates from UCA had a

higher mean contribution from phytoplankton (mean 39%,

standard error 8% across all invertebrate taxa) than those from

ULN (14 ± 5%, Tukey HSD adjusted p = 0.04), with LWR

intermediate (mean, 21 ± 8%). ULN had a higher mean con-

tribution from SAV (40 ± 6%) than UCA (16 ± 4%; Tukey

HSD adjusted p = 0.003). Although LWR had lower average

contributions from SAV, they had relatively high contribu-

tions from SAV-associated GFA (mean, 26 ± 7%). In aggre-

gate, SAV and epiphytic GFA dominated food webs in LWR

(> 50%), SAV and emergent vegetation dominated in ULN (>

75%), and emergent vegetation and phytoplankton dominated

in UCA (> 75%). Seasonal differences were primarily driven

by an increase in the contribution of SAV in summer (mean

3% increase in UCA and 25% increase in LWR). ULN had

minimal seasonal differences.

Unlike the invertebrates, most fish species were supported

by more than one primary producer (Fig. 4; ESM 5).

Largemouth bass was the only species to show consistent

dominance by a single primary-producer category at any giv-

en location: either emergent vegetation or SAV comprised

Fig. 2 Biplot of carbon and nitrogen isotopes with taxa means and

primary producer category means and standard deviations. a

Invertebrates: Anisoptera (Anis), Chironomidae (Chir), Cladocera

(Clad), Coenogrionidae (Coen), Corbicula fluminea (Corb), Palaemon

modestus (Exo), Gammarus daiberi (Gamm), Hyalella sp. (Hyal),

Isopoda (Isop), Physidae (Phys), Pseudodiaptomous forbesi (Pseu),

Sinocalanus doerri (Sino), and Americorophium spinicorne (Spin). b

Fish codes as in Table 1. Biplots including sulfur isotopes are in ESM 2
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Fig. 4 The contribution of different primary producers to fishes, arranged

in order of increasing phytoplankton contribution. Primary producer

categories: benthic diatoms (BD), emergent vegetation (EM), green

filamentous algae (GFA), phytoplankton (Phyto), and submersed

aquatic vegetation (SAV). Fish codes are in Table 1. Asterisks denote

when there were fewer than three samples for subregion/season

combination

Fig. 3 The contribution of

different primary sources to

invertebrate taxa across

subregions and seasons. Site

codes: Upper Lindsey Slough

(ULN), Lower (LWR), andUpper

Cache Slough (UCA). Primary

producer categories: benthic

diatoms (BD), emergent

vegetation (EM), green

filamentous algae (GFA),

phytoplankton (Phyto), and

submersed aquatic vegetation

(SAV). Invertebrate taxa codes as

in Fig. 2
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greater than 50% depending on subregion and season, a result

consistent with the littoral associations of largemouth bass

diets in this and other systems (Brosseau and Hodgson

2016; Weinersmith et al. 2019). Other fish species typically

incorporated a wide variety of primary producers, with indi-

vidual categories rarely dominating more than one subregion

or season for each fish species. For example, black crappie

P. nigromaculatus were primarily supported by SAV in ULN

but not other subregions. Similarly, Mississippi silverside

Menidia audens support was dominated by phytoplankton in

spring months but not summer.

A clear gradient existed in the average contribution of phy-

toplankton, SAV, and emergent vegetation to fish species

across the three subregions (Fig. 5a; ESM 5). Fish from

ULN had the highest contribution from SAV across all sea-

sons and species (mean, 45%; standard error, 3%) and the

lowest contribution from phytoplankton (12 ± 1%). Fish in

UCA had the highest contribution from phytoplankton (31 ±

2%) and the lowest contribution from SAV (21 ± 2%). Fish

from LWR, analogous to most existing Delta littoral habitats,

had the highest contribution from emergent vegetation (41 ±

2%) and intermediate contributions from SAV (24 ± 2%) and

phytoplankton (24 ± 3%). Benthic diatoms and GFA never

averaged more than 10% of the primary-producer

contribution.

In addition to strong spatial differences, the contribution of

different primary producers to fish differed significantly

across seasons (Fig. 5b; ESM 6). From spring to summer,

SAV increased by a mean of 8% across all species and

subreagion (F(1, 74) = 7.78; p = 0.0067), while GFA declined

(F(1, 48) = 16.00; p = 0.00022). Benthic diatoms were not

sampled in summer for ULN and LWR, so they were exclud-

ed from subregion and season comparisons for fish. The only

significant difference between the distributions of phytoplank-

ton contributions was in ULN, where phytoplankton contribu-

tion was invariably low (p < 0.001). There was no statistical

evidence for consistent segregation between pelagic and litto-

ral food webs within the same subregion (p > 0.8).

Discussion

In general, northern Delta food webs were supported by di-

verse primary producers, including SAV, emergent vegeta-

tion, and phytoplankton. Strong differences existed in sources

of primary production that supported consumers across sub-

regions that reflect different habitat types despite close spatial

proximity. Similar differences were observed across seasons,

with the relative contributions of different primary producers

changing from spring to summer. Despite these differences,

we observed little consistent segregation between littoral and

pelagic trophic pathways. Rather, fishes were reliant on prey

that consumed a variety of primary producers and accessed

both pelagic and littoral pathways across subregions and sea-

sons. Subregional differences influenced food-web structure,

suggesting that small-scale habitat modifications can result in

food webs that differ substantially from the surrounding

landscape.

Food Web Support in Different Habitat Types

Food webs in the three subregions, despite close spatial prox-

imity, were not supported by the same primary producers. In

the tidal wetland (ULN), non-phytoplankton production dom-

inated the food web. SAV contributed more to both inverte-

brates and fishes in this subregion, likely related to dense SAV

stands along slough margins and in nearby shallow sloughs.

SAVwas less important in the deep channel subregion (LWR)

and the turbid backwater (UCA), likely because the deep

Fig. 5 Boxplots of percent contribution from different primary sources to

fishes. Letters in (a) reflect significant differences resulting from Tukey

HSD pairwise comparisons across subregions. Asterisks in (b) reflect

significant results from ANOVA across seasons. Site codes: Upper

Lindsey Slough (ULN), Lower (LWR), and Upper Cache Slough

(UCA). Primary producer categories: benthic diatoms (BD), emergent

vegetation (EM), green filamentous algae (GFA), phytoplankton

(Phyto), and submersed aquatic vegetation (SAV)
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channels only exhibited dense SAV along slough margins

(Young et al. 2015) and the turbid backwater (UCA) had very

little SAV, presumably due to light-limitation as a result of

suspended sediment.

The low phytoplankton contribution to the tidal wetland

food web can be attributed to water diversions in Upper

Lindsey Slough that minimize local pelagic productivity

(Lucas et al. 2002). Notably, even the copepod P. forbesi

and cladocerans, usually classified as grazers on phytoplank-

ton, exhibited low reliance on phytoplankton in the tidal wet-

land. Although the low phytoplankton contribution was con-

sistent with low chlorophyll levels (< 4 μg/L; Montgomery

2017), its lack of importance here highlights the potential for

other productivity pathways in tidal wetland. In contrast, the

turbid backwater (UCA) had high chlorophyll α concentra-

tions (> 12 μg/L) that more consistently supported local con-

sumers. In the deep channels of the lower subregion (LWR),

many species utilized phytoplankton; however, chlorophyll α

concentration was low (< 6 μg /L; Montgomery 2017). LWR

likely received phytoplankton tidally transported from Liberty

Island, a nearby tidal lake thought to be important for local

phytoplankton production (Lehman et al. 2010).

An important caveat to our study is that we did not sample

conditioned detritus. Rather, we sampled tissues from living

macrophytes, algae, and other primary producers, assuming

that the isotopic composition of living tissue approximates the

isotopic composition of detritus. Although this assumption is

supported in other systems (Currin et al. 1995; Fellerhoff et al.

2003), it may be system- and primary producer dependent.

Other studies from the SFE have used methodologies similar

to ours to infer detrital contributions to food webs (Howe and

Simenstad 2011; Schroeter et al. 2015), as have studies from

other estuaries, including Puget Sound (Howe and Simenstad

2015), Botany Bay (Mazumder et al. 2011), and others

(Melville and Connolly 2003). Nevertheless, assuming mini-

mal fractionation between living tissue and newly conditioned

detritus could have skewed interpretation of our results if the

fractionation had been substantially different between

live tissue and detritus. Thus findings from this study

highlight the value of primary producers other than phy-

toplankton, either as living tissue or detritus, to con-

sumers. Given the importance of detritus to consumers

in other systems (Odum 1980; Peterson et al. 1985;

Hyndes et al. 2014), the detrital component probably

contributed more than the living tissue, highlighting a

next research step: delineating contributions of living

tissue and detritus among primary producers to

consumers.

Also, the selection of TDFs is crucial for interpretingmodel

results. Given the variability associated with TDF selection

observed during sensitivity analyses, future studies should

take care in selecting appropriate TDFs. Despite the variability

associated with TDF selection in this study, the sensitivity

analyses showed that the qualitative differences in contribu-

tion from different primary producers (i.e., macrophytes ver-

sus phytoplankton) to local communities were not a result of

TDF selection.

Seasonal Shifts in Food Web Support

Submersed aquatic vegetation density is highest in late sum-

mer and early fall (Hestir 2010) and is thus more likely to be

an important contributor to local food webs during that period.

Modest declines in the contribution of emergent vegetation to

food webs were seen in all subregions as SAV increased,

suggesting that SAV-associated prey is consumed with higher

frequency as SAV density increases. SAV typically supports

high epiphytic microalgae biomass (Allen 1971) and generally

has higher decomposition rates than many types of emergent

vegetation (Twilley et al. 1986; Chimney and Pietro 2006),

enhancing availability of SAV-associated carbon and other

nutrients to food webs. Because this study did not encompass

the entire SAV growing season (April–October), SAV contri-

bution to consumers in both late-season SAV growth and

senescence periods remains uncertain.

This study was conducted during one of the driest years on

record, 2014, and thus does not represent all water-year types.

Nevertheless, with probability of drought in California in-

creasing with the changing climate, our results will likely be

increasingly applicable in dry seasons (i.e., summer/autumn)

and in future years. Although the overall strength of each

productivity pathway may differ depending on climatic con-

ditions (e.g., phytoplankton productivity may increase in

flooded areas during wet seasons and/or years), fishes will

probably continue integrating multiple primary producers

across seasons.

Segregation of Trophic Pathways Within Subregions

We found little segregation between littoral and pelagic tro-

phic pathways. Instead, we observed a gradual gradient in the

relative importance of pelagic and littoral pathways to fishes

across subregions and seasons. Although spatial differences in

the importance of phytoplankton or vascular plant-based con-

tributions to consumers were pronounced, most adult fishes

did not consistently use a distinct trophic pathway and instead

incorporated both primary producer pathways. The only sub-

region where the fish assemblage exhibited some evidence for

separation of littoral and pelagic food webs was the lower

deep channel subregion (LWR), and that was not statistically

significant (p > 0.8). This location resembles other Delta hab-

itats where trophic segregation has been documented

(Grimaldo et al. 2009), with a wide, deep channel; narrow

SAV and emergent vegetation bands along the banks; and

high tidal flow. In this more open-water habitat, phytoplank-

ton strongly supported (> 40%) five fish species and weakly
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supported others (< 25%; 13 species), with only one species in

between. Such a food web is consistent with the contemporary

Delta resembling many freshwater lentic systems in commu-

nity composition and ecosystem function (Moyle et al. 2012).

This is generally similar to some freshwater lakes, where some

benthic invertivores (such as pumpkinseed; Lepomis

gibbosus) and sedentary inter-guild predators (largemouth

bass) often show segregation between littoral and pelagic food

webs (Vander Zanden and Vadeboncoeur 2002; Eloranta et al.

2011) with only more mobile predators integrating the two.

Aside from lentic habitats, a large body of literature sup-

ports the complex interdependencies of pelagic and littoral/

benthic food webs (Forbes 1925; Sand-Jensen and Borum

1991; Polis et al. 1997; Vadeboncoeur et al. 2002). Fish typ-

ically couple these two habitats because they are both more

mobile than most invertebrates and feed at higher trophic

levels, resulting in more generalist feeding behavior (Pyke

et al. 1977; Petchey et al. 2008). Generalist feeding links dis-

parate food web elements and contributes to overall food web

stability (McCann et al. 2005); such food webs are intrinsical-

ly more resilient to changing environmental conditions

(McMeans et al. 2016). Regions with increased coupling, such

as the northern Delta, may have more stable and resilient food

webs than other Delta regions where habitat diversity is low

and where wetland and turbid backwaters are absent. We ac-

knowledge, however, that possible food web subsidies across

subregions/habitats were not addressed in this study.

Subsidies across habitats are not uncommon (Odum 1980;

Polis et al. 1997) and they could provide additional benefits

of restoration projects if scaled appropriately—this is an ave-

nue for future research.

Reconciliation with Previous Findings

For many pelagic fishes (e.g., delta smelt, threadfin shad)

phytoplankton was the most valuable primary producer; how-

ever, they still utilized other sources, even in subregions such

as the turbid backwater (UCA) where zooplankton densities

were high (Montgomery 2017). This was unexpected given

previous studies that emphasized the importance of phyto-

plankton for pelagic consumers in the Delta (Jassby and

Cloern 2000; Sobczak et al. 2005). The difference may be

due to methodology. Our study incorporated δ
34S, which

can differentiate primary producers better than using only

δ13C and δ15N (Peterson et al. 1986; Deegan and Garritt

1997; Connolly et al. 2004). Phytoplankton and terrestrial,

emergent, and floating vegetation can have similar depleted

δ13C signatures and are thus difficult to distinguish with just

δ13C and δ15N (Cloern et al. 2002). Based on natural history,

previous isotope studies that used only nitrogen and carbon

assumed that pelagic fishes aligned with depleted δ13C signa-

tures because their main carbon source was phytoplankton

rather than other carbon sources such as emergent vegetation

(Grimaldo et al. 2009). Our addition of δ34S, coupled with

advances in modelling software, allowed us to parse out the

contribution of phytoplankton versus other primary producers

better than previous local isotope studies. Additionally, all

fishes included in this study were adults, which feed on a

variety of prey, while zooplankton and other small pelagic

invertebrates are more important to juvenile and larval fish.

Thus, pelagic productivity is likely more important for juve-

nile fishes than for adults in this region.

Food Webs and Implications for Tidal Wetland
Restoration

The landscape matrix affects composition of local food webs

(Polis et al. 1997). Uniquely, we found high heterogeneity in

primary producers and in diet items within a comparatively

small geographic area: the northern Delta. However, tidal wet-

land food webs in the northern SFE are supported mainly by

emergent vegetation (Howe and Simenstad 2007; Howe and

Simenstad 2011; Schroeter et al. 2015), while food webs in

other habitats are dominated by one other primary producer

(Grimaldo et al. 2009). Given historical dominance of dense

emergent vegetation and turbid wetland in the Delta (Whipple

et al. 2012; Robinson et al. 2014), the basis of the historical

food web was likely very different from that of today (Cloern

et al. 2016). Trophic pathways currently only available in

marginal habitats were likely far more important historically

(e.g., terminal tidal backwaters, vegetated off-channel habi-

tat), a notion supported by the prevalence of detrital resources

in other large tidal systems (Teal 1962; Odum 1980).

Much of the Delta resembles the deep channels sampled in

this study, with off-channel wetland and turbid backwaters

being uncommon. The value of wetland and backwaters in

today’s Delta seems to be low given their small area (Brown

et al. 2016). Delta-wide, these habitats probably contribute

little to food webs; however, they are locally very important

because they occur in areas such as ULN, UCA, and others

(e.g., Suisun Marsh, Sherman Lake) that support relatively

high densities of native fish (Meng et al. 1994; Moyle et al.

2012; Young et al. 2018b). These areas likely provide other

functions for fishes, particularly as rearing and nursery habi-

tats (Colombano et al. 2020). It should also be noted that the

sites representing restoration outcomes (i.e., wetland and

backwater) better integrated the disparate trophic pathways,

which in conjunction with other habitat uses, suggests that

habitat restoration could lead to enhanced ecological function.

Extensive habitat restoration is slated for the Delta and

considerable uncertainty exists about possible goals and out-

comes (Herbold et al. 2014). This study has demonstrated that

small-scale habitat differences can greatly alter basal foodweb

structure, so local food webs in restored sites will differ sub-

stantially from the surrounding waterways.Many planned res-

toration projects seek to enhance phytoplankton production to
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support pelagic fishes in the Delta, but this study shows that

adult fishes are supported by multiple primary producers, par-

ticularly in shallow-water habitats. Instead of focusing on a

single primary producer, ecosystem restoration efforts should

enhance a variety of primary producers to support consumers.

Consistent moderate contributions (e.g., from emergent vege-

tation in tidal wetland) can buffer seasonal declines in SAV

and phytoplankton productivity. Availability of diverse

sources will differ seasonally and across multiple spatial

scales, moderating environmental variability and enhancing

resilience of local food webs (Takimoto et al. 2002;

Schindler et al. 2015; McMeans et al. 2016).
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