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Abstract The eastern Alaska Beaufort Sea coast is charac-
terized by numerous shallow (2–5 m) estuarine lagoons, fed
by streams and small rivers that drain northward from the
Brooks Range through the arctic coastal plain, and bounded
seaward by barrier islands and shoals. Millions of birds from
six continents nest and forage during the summer period in
this region using the river deltas, lagoons, and shoreline
along with several species of anadromous and marine fish.
We examined biogeochemical processes linking the benthic
community to the overall food web structure of these poorly
studied but pristine estuaries, which are largely covered by
1.8 m of ice for 10 months annually. In summer, these
lagoons are relatively warm with brackish salinities (5–
10°C, S010–25) compared to more open coastal waters
(0–5°C, S>27). The stable isotopic composition of or-
ganic materials in sediments (i.e., benthic particulate or-
ganic matter) and water column suspended particulate
organic matter from both streams and lagoons are largely
indistinguishable and reflect strong terrestrial contribu-
tions, based upon δ13C and δ15N values (−25.6‰ to
−27.4‰ and 1.4‰ to 3.3‰, respectively). By compari-
son, shifts toward more heavy isotope-enriched organic
materials reflecting marine influence are observed on the
adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to
5.3‰, respectively). The isotopic composition of lagoon

fauna is consistent with a food web dominated by om-
nivorous detritovores strongly dependent on microbial
processing of terrestrial sources of carbon. Biomagnifica-
tion of 15N in benthic organisms indicate that the benthic
food web in lagoons support up to four trophic levels,
with carnivorous gastropod predators and benthic fishes
(δ15N values up to 14.4‰) at the apex.
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Introduction

Globally, estuaries are well-recognized geomorphic features
with well-established biological productivity and critical
economic importance. Although less visible in the High
Arctic due to 10 or more months of annual ice cover, arctic
estuaries provide vital habitat for an array of organisms of
enormous ecological value, which is amplified during the
brief summer open-water period. In the Alaska Beaufort Sea
alone, estuarine lagoons, river deltas, and bays provide
feeding grounds for over 157 species of migratory birds, at
least 56 of which will complete their breeding and repro-
ductive cycle and raise their young in a matter of 6–8 weeks
(Brown 2006). In addition, the band of brackish water that
extends along 750 km of Beaufort Sea coastline provides
habitat for numerous anadromous and marine fishes (e.g.,
arctic cisco, Coreogonus autumnalis) that are prey for
foraging seals as well as local Iñupiat subsistence users of
food resources (Craig 1984; von Biela et al. 2011). These
fishes feed nearly exclusively on epibenthic fauna (e.g.,
polychaetes, mysids, and amphipods) that proliferate in the
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relatively warm summer waters of coastal bays and lagoons
(Feder and Schamel 1976; Griffiths et al. 1977; Craig 1984).

The arctic estuarine environment provides distinct oppor-
tunities to explore the origin and fate of organic matter of
both terrestrial and marine origin because many high lati-
tude estuaries are free of pressures from industrial and urban
development common at lower latitudes. However, these
high latitude estuaries remain relatively unstudied with re-
spect to trophic structure, the character of the benthos, the
nature and magnitude of carbon inputs, the assimilation of
these carbon sources, and their resilience to disturbance.
Rivers export extraordinarily large amounts of organic
matter to the Arctic Ocean (Dittmar and Kattner 2003;
Raymond et al. 2007). For example in the Beaufort Sea,
50–75% of the carbon deposited in nearshore sediments is
of terrigenous origin (Macdonald et al. 2004). Nevertheless,
the importance of terrestrial carbon to nearshore arctic food
webs has been debated since Schell’s seminal and influential
(1983) study, in which he documented (using carbon
isotopes) the transfer of ancient organic (14C depleted)
carbon in peat to fish and ducks in freshwater tundra ponds.
The paradox however was the lack of transmission of
radiocarbon-free organic molecules into the marine food
web. In contrast, there are multiple examples of trophic
assimilation of terrestrial carbon into temperate and subtrop-
ical estuarine food webs based on stable isotopic evidence
(e.g., Sandberg et al. 2004; Barnard et al. 2006; Connolly et
al. 2009). More recent studies in the eastern Alaska Beaufort
Sea have also led to a more nuanced understanding of how
organic carbon is transferred from land to sea. For example,
arctic cod, a key, emblematic species associated with sea ice
throughout the Arctic, when collected in estuarine lagoons,
has tissue isotopic ratios consistent with major contributions
of terrestrial organic matter (Dunton et al. 2006).

Other existing stable isotope data from the Beaufort Sea
already provide some evidence of the importance of terres-
trially derived particulate organic matter (POM) to marine/
estuarine food webs in the region. For example, a west to
east trend in 13C depletion consistent with proportionally
higher terrestrial organic carbon contributions has been
observed in zooplankton (Saupe et al. 1989), benthic fauna
(Dunton et al. 1989), and seasonally sensitive tissues of
bowhead whales that migrate through the region (Schell et
al. 1989). Major inputs of 13C depleted carbon from the
Mackenzie River (Parsons et al. 1989) are reflected in a
dramatic spatial pattern of carbon isotopic signatures in shelf
sediments (Fig. 1). As noted by Macdonald et al. (2004), the
depleted δ13C values at river mouths and along the nearshore
coast suggest a strong terrestrial particulate organic carbon
(POC) component that dilutes the isotopically heavier marine
suspended particulate organic matter (SPOM).

Field studies along the eastern Alaska Beaufort Sea coast
from 2004 to 2009 presented here provided an opportunity

to examine in new detail the ecological characteristics of
high arctic estuarine lagoons. Our approach emphasized the
benthos and sought to address questions on faunal diversity,
food web structure, carbon sources, and the fate of terrestrial
organic matter. We hypothesized that carbon derived from
terrestrial organic matter is assimilated by key pelagic and
benthic consumers in arctic estuarine lagoons and represents
an important, if not critical, organic carbon subsidy to near-
shore ecosystems. The unknowns that we addressed in this
study include the extent of this assimilation and the efficiency
in which terrestrial POM is transferred between trophic levels.
We also consider how regional climate change may affect the
future functioning of estuarine lagoons. Climate-related
changes in the magnitude of terrestrial inputs and inflow have
an enormous potential to alter these pristine and ecologically
significant geomorphic features.

Beaufort Sea Coastal Waters

The coast and shelf of the Beaufort Sea extends from Point
Barrow, Alaska to Banks Island in Canada. In marked
contrast to the Chukchi–Bering ecosystem to the west and
the Queen Elizabeth Islands to the east, the Beaufort Sea is
decidedly estuarine in character. The Mackenzie River pro-
vides the vast majority of freshwater input to the region
(∼300 km3/year), but numerous smaller rivers are also impor-
tant freshwater sources (Macdonald et al. 2004; McClelland et
al. 2006). Along nearly one half of the Alaskan Beaufort Sea
coast, often called the North Slope, from Barrow to Demar-
cation Bay, an irregular and discontinuous chain of barrier
islands enclose numerous shallow (<6 m) lagoons. Many
smaller rivers discharge directly into these lagoons (Fig. 2)
and are the primary source of low salinity water within the
lagoons. Rivers draining the North Slope discharge peak flows
of water and water-borne constituents during a several-week
spring freshet (Norton and Weller 1984). Flow declines over
the short summer, followed by freezing of coastal waters by
early October, with ice first forming on the more sheltered
and brackish lagoons and thickening throughout the winter
to about 1.8 m, becoming land fast in many shallow
lagoons until breakup in late May or early June (Johnson
and Richardson 1981). It is an important feature that peak
freshwater discharge occurs when coastal waters are still
ice covered, temporarily trapping significant amounts of
terrestrial debris in the nearshore environment.

We have observed that the summer exchanges between
lagoon and ocean waters of the Beaufort Sea and the mag-
nitudes of stream inflow are extremely variable. For exam-
ple, in Kaktovik Lagoon, exchange with the Beaufort Sea is
limited to two very shallow (<2.5 m) and narrow (25 m)
entrances. Freshwater enters the lagoon only from small
tundra streams fed by small ponds and runoff from the
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surrounding tundra. In this case, no large streams flow directly
into the lagoon and it is isolated from neighboring lagoons by
Barter Island to the west and a peninsula to the east. In
contrast, Jago Lagoon (east of Kaktovik) receives significant
flow from the Jago River but exchange with the Beaufort is
limited to a narrow 3-m deep channel. Several more lagoons
(depth 3–4 m) of various sizes and orientation lie eastward of
Kaktovik Lagoon to Demarcation Bay (Fig. 2). Another im-
portant feature of all these lagoon margins are that the land-
based boundary consists of slumped 1–4 m high eroding
bluffs. The shorelines, which are dominated by mixtures of
sand, peat, and mud are clearly receding in most locations.

Previous biological and hydrographic investigations
(Griffiths et al. 1977; Dunton and Schonberg 2006) of these
lagoons show variable salinities (15–25‰) and temperatures
(0–10°C) during the open-water period. Due to the recessional
shoreline, the seabed includes terrestrial debris. Sediments

across the shelf are generally composed of silty sands and
mud with >40% silt plus clay and support an infaunal assem-
blage dominated by polychaete worms, small mollusks, and
crustaceans (Feder and Schamel 1976; Carey et al. 1984;
Trefry et al. 2003). Along with the presence of terrestrial
debris in the lagoons, the benthic biota can be remarkably
diverse and abundant (Griffiths et al. 1977; Dunton and
Schonberg 2000), constituting a variety of infaunal and epi-
faunal organisms representing nearly every major invertebrate
taxon, including small sponges, polychaetes, mollusks, and
ascidians. Zooplankton sampling shows that assemblages of
copepods, chaetognaths, and pteropods are present in the
water column. The presence of these important organisms,
along with an abundance of key epibenthic prey species
(polychaetes, mysids, and amphipods) for upper trophic level
biota no doubt contributes to the local subsistence fishery for
the village of Kaktovik. An estimated 3,000 kg of finfish

Fig. 1 The variation in the distribution of δ13C values for surface
sediments across the western arctic coast and shelf region. The most
13C depleted sediments are found at river mouths and eastward along
the Beaufort Sea coast. Data from Naidu et al. (2000); Cooper et al.

(2002, 2009), Grebmeier et al. (2006), and this paper. GIS analysis
courtesy of E. Hersh, The University of Texas at Austin (Center for
Research in Water Resources)
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(Dolly Varden, arctic cisco) were harvested by Kaktovik res-
idents in 1975 (Griffiths et al. 1977). Extensive subsistence
fishing activities by the residents of Kaktovik continues to the
present day (Dunton, personal observation).

Materials and Methods

Study Area

Our study area included (1) the open water areas on the
nearshore shelf of the eastern Alaska Beaufort Sea conti-
nental shelf between Prudhoe Bay and the Canadian Border,
with particular focus on Camden Bay (Fig. 2, upper panel)

and (2) within estuarine lagoons and bays enclosed by
barrier islands from Kaktovik Lagoon to Demarcation Bay
(Fig. 2, lower panel). We sampled within each major la-
goonal system east of Barter Island, with an emphasis
placed on collection of biota in the estuarine lagoons. Sam-
pling took place in summers 2008 and 2009 using the
vessels Arctic Seal and Alpha Helix for offshore sampling,
and in summers 2004, 2007, and 2008 using the Proteus for
lagoon and estuarine studies.

Biota

Benthic infaunal organisms were sampled using replicate
0.1 m2 double van Veen grab (offshore waters) and a

I 
157

69  – 

71  – 

70  – 

Barro
w

Admira
lty

Bay Smith 
Bay 

Harrison 
Bay Teshekpuk 

Lake 

Jo
ne

s
Is

M
ea

de
R

iv
er

Ik
pi

kp
uk

R
iv

er

C
ol

vi
lle

R

S
ag

av
an

irk
to

k

K
on

ga
ku

t R

K
up

ar
uk

R

S
ha

vi
ov

ik
R

C
an

ni
ng

R

H
ul

ah
ul

a
R

Ja
go

R

Gwydyr 
Bay 

M
id

w
ay

Is
M

cC
lu

re
Is

S
to

ck
to

n
Is

M
ag

ui
re

Is

Camden 
Bay 

Barter 
Island 

Herschel 
Island 

F
irt

h
R

Demarcation 
Bay 

Alaska 

Arctic Ocean 

I 
139

I 
152

I 
147

I 
142

Alaska 

Kaktovik
Lagoon Tapkaurak

Oruktalik

Angun

Nuvagapak

Demarcation

144  W 

River
Jago

Barter  
Island 

Lagoon

Lagoon

Lagoon

Lagoon

Bay

Jago 
LagoonKaktovik 

70 

143  W  142  W  141  W

0 15 Nautical miles 

Fig. 2 The Alaska Beaufort Sea coast (top) and the linked lagoon–
estuarine system east of Barter Island (bottom). The majority of field
collections program were conducted between Kaktovik Lagoon and

Demarcation Bay in the Arctic National Wildlife Refuge. The village
of Kaktovik is located on Barter Island. Quantitative sampling stations
in Demarcation Bay are denoted with filled circles
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0.023 m2 Ekman grab (shallow lagoons). A 1-m beam trawl
fitted with a 1-mm mesh size net was used to collect
epifauna. We used valid species names and feeding
classification schemes according to the World Register
of Marine Species (http://www.marinespecies.org) and
Macdonald et al. (2010). For water column biota, plank-
ton nets (mesh size, 20 μ and 335 μ) were deployed from
the vessel and pulled obliquely through the water column.
Invertebrates were carefully washed over a 1.0 mm sieve,
sorted, identified to the species level and processed for
isotopic or quantitative analyses in the field. Net 335 μ
plankton samples were sorted under a dissecting scope to
remove any large debris and then concentrated onto pre-
combusted (450°C for 8 h) Whatman GF/F filters for
isotopic analysis. Similarly, net 20 μ plankton samples
were concentrated onto precombusted Whatman GF/F
filters following collection. Benthic biota for quantitative
analysis were weighed on a microbalance and preserved
in 80% ethanol; otherwise samples were dried at 60°C
and weighed (to the nearest 1.0×10−6 g) and stored in
screw cap vials for stable isotope analysis. Isotopic anal-
ysis of SPOM was accomplished through filtration of
water collected using a van Dorn bottle at 2 m depth in
the lagoons, and in Camden Bay, from shallow (5 m),
intermediate (10 m), and near-bottom depths (25 m) onto
precombusted Whatman GF/F filters. SPOM filters were
stored in the dark prior to arrival for analysis at The University
of Texas Marine Science Institute (UTMSI) for elemental
analysis.

All organic samples for isotopic analysis were dried in
aluminum dishes or glass vials at 60°C following re-
moval of extraneous organic matter. When possible, soft
tissues were removed from shelled organisms, but all
invertebrate samples were subsequently soaked in 1 N
HCl for several hours (or until bubbling stopped) to
remove carbonates, rinsed in distilled water, and then
dried. Only muscle or body wall tissue was analyzed
from bivalves, gastropods, large crustaceans (euphausiids
and amphipods), and fish; all other organisms were ana-
lyzed whole. Entire organisms or tissues were manually
ground for isotopic analyses. Replicate analyses reflect
the analysis of individual organisms, not composite sam-
ples. All δ13C and δ15N measurements were made using
a Finnigan MAT Delta Plus stable isotope mass spec-
trometer coupled to an elemental analyzer at UTMSI
(elemental analyzer was a CE Instruments, NC 2500) or
on a DeltaV in the stable isotope laboratory at the
University of Alaska Fairbanks (elemental analyzer was
a Costech ESC 4010). In general, samples were com-
busted at 1,020°C and the resulting purified nitrogen and
carbon dioxide was then passed into the mass spectrometer
with a continuous carrier stream of ultrahigh purity helium.
Results are expressed in standard δ notation relative to

carbonate Vienna–PeeDee Belemnite and atmospheric nitrogen
where:

13C or 15N (‰)  =  [Rsample/Rstandard) –1] x 1000 

and R0(13C/12C or 15N/14N), respectively. Instrumental analyt-
ical error was ±0.15‰ and analytical sample error was ±0.2‰,
based upon internal standards. Accuracy was assured by
referencing tank reference gasses to internal standards from
the US National Institute of Science and Technology and the
International Atomic Energy Agency.

Water Column Parameters

Temperature, salinity, and pH were measured using YSI 600
XLMData Sonde (YSI Inc., Yellow Springs, OH, USA). Two
replicate water samples were collected for macronutrient
analysis in the lagoons at 2-m depths using a van Dorn bottle.
All samples were placed in prelabeled plastic bottles and
sampling point geographic coordinates (latitude/longitude)
were recorded using a handheld Garmin Global Positioning
System, GPSMap 76S (Garmin International Inc., Olathe, KS,
USA). Samples were frozen and stored in a freezer prior to
overnight shipping to UTMSI for nutrient analysis. Nutrient
concentrations for NH4

+, PO4
3−, SiO4, and NO2

−+NO3
−,

were determined using colorimetric techniques on a Lachat
QuikChem 8000 (Zellweger Analytics Inc., Milwaukee, WI,
USA) with a minimum detection level of 0.03 μM.

Water column chlorophyll concentrations (in Camden Bay)
were determined from two replicate 100-ml water samples
filtered through a 0.45 μm cellulose nitrate membrane filter
(Whatman, Maidstone, England) in darkness. After filtration,
the filters and residue were placed in prelabeled opaque vials,
frozen and transported to UTMSI for chlorophyll analysis.
Filters were then placed in prelabeled test tubes containing
5 ml of 90% acetone for overnight extraction (Parsons et al.
1984). Chlorophyll a concentration, in microgram per liter,
was determined using a Shimadzu UV-2401 PC spectropho-
tometer by measuring absorbance at wavelengths 750, 664,
647, 630, and 600 nm.

Water transparency, as reflected by the diffuse attenuation
coefficient (k) was calculated from measurements of photo-
synethically active radiation (PAR) collected using LI-192SA
underwater cosine sensors connected to a LI-1000 datalogger
(LI-COR Inc., Lincoln, NE, USA). The sensors were mounted
on a lowering frame and light measurements recorded at the
surface, 2-, and 4-m depths. Care was taken to avoid interfer-
ence from shading of the sensor by the vessel.

Trophic Level Determinations

Isotopic differences among particulate organic carbon and
sediment sources collected in rivers, lagoons and on the

420 Estuaries and Coasts (2012) 35:416–435

http://www.marinespecies.org


mid-shelf (Camden Bay) were analyzed separately using a
one-way analysis of variance (ANOVA). Post hoc compar-
isons of means were performed using a two-way ANOVA
with a pairwise comparison with significant differences
determined at α<0.05. Trophic levels were determined from
isotopic values using the trophic enrichment equation of
Iken et al. (2010):

TLðPOMÞ ¼ ðd15Nconsumer � d15NPOMÞ=3:4þ 1

where, 3.4 is the average per mille enrichment in δ15N
between successive trophic levels (TL) using POM as the
ultimate trophic carbon source. We recognize in using 3.4‰
that there is some variation in the appropriate enrichment
per trophic level in different ecosystems, including the eco-
system studied here. For example, in the Antarctic Peninsula,
Dunton (2001) used a value of 3.2‰ per trophic level, which
is comparable to values of 3.3‰ applied by Wada et al.
(1987) to the Southern Ocean and Rau et al. (1992) in the
northeast Atlantic. In the Alaskan Arctic, Iken et al. (2010)
used a 3.4‰ enrichment based on the extensive reviews of
the topic by Vander Zanden and Rasmussen (2001) and Post
(2002), which identified 3.4‰ as an average isotopic frac-
tionation for aquatic consumers.

In recognition that trophic increases are variable between
consumers and their source material, we introduced mixing
lines that delimited the isotopic value ranges expected for
the transfer of 13C or 15N through the food web. For exam-
ple, in this study, selective and nonselective filter feeders
such as bryozoans and ascidians had δ13C and δ15N enrich-
ments up to 1.9‰ and 3.8‰, respectively, compared to
lagoon SPOM. In other cases, δ13C and δ15N enrichments
of primary consumers (such as the filter feeding bivalve
Macoma calcarea on the coastal shelf) were limited to
0.8‰ and 2.4‰ relative to shelf SPOM. Schell et al.
(1998) noted average δ13C and δ15N enrichments of about
1.3‰ and 2.5‰ between chaetognaths, which feed exclu-
sively on calanoid copepods from in the western arctic. In
recognition of this variability, we used two conservative
mixing lines to best assess the relative importance and role
of the lagoon SPOM and river sediment (or benthic POM,
BPOM) sources available to consumers on δ13C vs δ15N
bi-plots. In this approach, also used by Darnaude et al.
(2004), two mixing lines are constructed that potentially
correspond to minimum and maximum trophic increases of
+1.0‰ and +2.0‰ in δ13C and maximum and minimum
trophic increases of +4.0‰ and +2.5‰ in δ15N per trophic
level. These two potential combinations of the range of
trophic level enrichment for both carbon and nitrogen iso-
tope values result in positive slopes of 1.25 and 4 from the
source material (lagoon SPOM for pelagic grazers and ben-
thic filter feeders; river BPOM for deposit/subsurface
feeders, and both lagoon SPOM and river BPOM for

omnivorous detritovores). These mixing lines provide a
boundary and a mechanistic tool to assess the dependence
of consumers on the suspected ultimate carbon sources. Our
selection of river BPOM and lagoon SPOM as carbon and
nitrogen end-members for epibenthic lagoon biota was
largely based on the opportunistic and omnivorous feeding
strategies employed by most arctic fauna (Dunton and
Schell 1987; Iken et al. 2010).

Results

The Physical and Chemical Environment

The hydrography of the inshore lagoons of the eastern
Beaufort Sea coast is notably estuarine (Table 1) in compar-
ison to the open water coastal sites (e.g., Bernard Point and
Demarcation Point) and the mid-shelf (Camden Bay).
Salinities across the lagoons ranged from about 15 to 27
compared to nearly 30 on the nearshore shelf. By mid-
August, water temperatures in the lagoons had also warmed
to as much as 6–11°C in comparison to immediate open
coastal areas, which remained less than 2°C. Lagoon waters
also had high transparency by August, reflecting low fresh-
water inputs of POM and color-dissolved organic materials
into the lagoons following the spring freshet (McClelland et
al. 2011).

Inorganic-N concentrations were very low for all site
locations. Concentrations of ammonium and nitrate+nitrite
in surface (2 m) samples from Camden Bay seldom
exceeded 0.5 μM for NH4

+ or NO2
−+NO3

− (Table 2), with
water column chlorophyll levels ranging from undetectable to
0.5 μg L−1 (data not shown). Similar low, inorganic-N con-
centrations were observed in the lagoons; in many lagoons,
ammonium was the dominant inorganic nitrogen species,
suggesting significant sedimentary recycling (Table 2). Con-
centrations of inorganic phosphate and silica were variable,
both offshore and in the lagoons. Higher silica concentrations
in some lagoons may reflect local riverine sources.

Lagoon Benthic Community Structure

Benthic infaunal populations within Demarcation Bay were
analyzed at eight stations, all ranging in depth from 4 to 5 m
and distributed evenly across the bay (Fig. 2). We collected
a total of 48 species distributed among eight invertebrate
phyla. Polychaetes, mollusks, and crustaceans constituted a
major fraction of the total faunal abundance and biomass
(Table 3). Species richness was greatest for polychaetes
(22), followed by molluscs (10) and amphipods (6). Hydro-
ids and bryozoans that attach to pebbles or rocks were
collected in small numbers along with one species from
each of the ascidian, foraminifera, and priapulid taxa. Total
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mean biomass was 35 g wet weight per square meter and
abundance of 951 individuals per square meter.

Sources of Organic Carbon

Our isotopic measurements of SPOM and BPOM from a
variety of geographic locations indicate the presence of two
major categories of organic matter on the Beaufort Sea
coastal shelf. A distinct terrestrial source has lower δ13C
and δ15N values (Table 4) while marine organic materials
are more isotopically enriched in both 13C and 15N (Table 5).
There were no significant differences (p>0.05) in 13C or 15N
isotopic values between river BPOM and SPOM, or be-
tween lagoon BPOM and SPOM. However, shelf BPOM
and SPOM were significantly different from each other for
both 13C (p00.02) and 15N (p<0.0001), possibly due to
seasonally integrated inventories for BPOM vs. snap shot
sampling for SPOM (Lovvorn et al. 2005; Morata et al.
2008). Our analyses also indicated that for SPOM, isotopic
sources of carbon and nitrogen from rivers and lagoons
differed significantly from shelves (p<0.02).

The terrestrial inputs of organic matter from rivers were
well constrained by δ15N and δ13C values of 1.7‰ and
−25.6‰ for BPOM and 1.4‰ and −27.3‰ for SPOM,
respectively. In contrast, the δ15N and δ13C values for more
marine influenced BPOM from Camden Bay were 3.4‰
and −25.4‰, with SPOM averaging 5.3‰ and −24.8‰,
respectively. Interestingly, lagoon BPOM and SPOM for
δ15N tended to approach shelf values (3.0–3.3‰), while
lagoon δ13C remained closer to river SPOM values (−27.4‰
to −26.1‰).

These source SPOM values are also consistent with the
isotopic composition of primary consumers. For example, in
the lagoons, both the ascidian Molgula griffithsii, a nonse-
lective suspension feeder, and the bryozoan Eucratea lor-
icata, which feeds exclusively on phytoplankton (Winston
1977), had δ15N and δ13C values that closely matched a first
level trophic enrichment from SPOM at 6.8 and -25.9‰,
respectively (Fig. 3, top panel). The enrichment relative to
lagoon SPOM was +3.8‰ for nitrogen and +1.5‰ for
carbon. The δ15N values of lower trophic benthic-dwelling
crustaceans that live directly within and on the sediments,

Table 1 Hydrographic and chemical features of the eastern Beaufort Sea coast in August derived from surface measurements

Location pH Light Attenuation (k, m−1) Temperature (°C) Salinity (‰) Depth (m)

Camden Bay, Beaufort Sea (145° W) 8.1 nd 5.4 27.1 32.1

Kaktovik Lagoon 8.1 1.1 7.1 23.3 4.5

Bernard Point, Beaufort Sea (144° W) 8.2 0.5 0.4 29.5 10.0

Tapkaurak Lagoon 8.2 1.0 5.9 25.0 2.5

Oruktalik Lagoon 8.2 1.0 3.6 27.4 2.5

Angun Lagoon 8.2 0.8 2.7 14.6 2.5

Nuvagapak Lagoon 8.2 0.6 11.1 16.0 2.5

Demarcation Bay 8.2 0.8 3.3 27.5 4.0

Demarcation Point (141° W) nd 0.7 1.8 29.6 6.0

Values recorded in Camden Bay on the nearshore shelf are from August 2008; all other measurements are from August 2004

nd not determined

Table 2 Inorganic concentrations of nitrogen, phosphorus, and silicate based on two replicate water samples collected at 2 m depths at specific
sites along the eastern Beaufort Sea coast in August 2004

Location Ammonium NH4
+ (μM) Nitrate+Nitrite

NO2−+NO3− (μM)
Phosphate PO4

3−(μM) Silicate SiO4 (μM)

Camden Bay, Beaufort Sea (145° W) 0.40 0.05 0.25 4.50

Kaktovik Lagoon 0.22 0.59 0.21 2.99

Bernard Point, Beaufort Sea (144° W) 0.22 0.07 0.45 1.06

Tapkaurak Lagoon 0.68 0.13 0.39 2.07

Oruktalik Lagoon 0.42 0.17 0.38 1.66

Angun Lagoon 0.60 0.17 0.41 1.99

Nuvagapak Lagoon 0.25 0.10 0.16 6.88

Demarcation Bay 0.14 2.29 0.43 0.43

Nutrient levels from Camden Bay were determined from eight samples collected in August 2008 at 2 m
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such as the amphipods Pontoporeia femorata (5.2‰) and
Monoculodes (3.7‰), approximated a first level tropic en-
richment from river SPOM/BPOM of about 3.0‰. For the
inner shelf of the coastal Beaufort Sea, the δ15N values of
grazers and filter feeders, including calanoid copepods
(9.8‰) and the bivalve Liocyma fluctuosa (7.6‰), matched
the expected one trophic level enrichment from SPOM
(5.3‰) of roughly 3.4‰ (Fig. 4).

Isotopic Signatures of Pelagic and Benthic Biota

The nearly 60 species of pelagic and benthic organisms in
lagoons and coastal shelf habitats analyzed in this study
included 11 invertebrate phyla, six species of fish, and two
mammals (Tables 4 and 5). As expected, the carbon and
nitrogen isotopic ratios of this biota varied substantially,
reflecting known feeding strategies and geographic location.
Based upon these known feeding strategies, consumers were
separated into one of three trophic guilds (Fig. 3). These
guilds were: (1) pelagic grazers (copepods, chaetognaths,
arctic cod) and filter/suspension feeders (hydroids, bryozo-
ans, and ascidians); (2) epibenthic organisms that are largely
omnivorous and feed at the sediment–water column inter-
face, including various polychaetes (Nicolea, Terebellides),
amphipods (Anonyx), mysids, gastropods (Buccinum),
bivalves (Macoma), blennies and sculpins; and (3) deposit
and subsurface feeders. The deposit feeders included infau-
nal organisms that either ingest and assimilate large volumes
of sediment and detritus or their predators, such as various
gastropods (Cryptonatica, Euspira), bivalves (Portlandia,

Yoldia), predatory amphipods (Monoculodes), ribbon worms,
and polychaetes (scaleworms).

One complexity to using faunal δ13C values to assess
consumer dependence on ultimate carbon sources is that 13C
is relatively more depleted in lipids, so for organisms with
high lipid content, misleading conclusions about carbon
sources are possible (Post et al. 2007). We used the Post et
al. (2007) approach to evaluate this question by examining
the relationship between consumer δ13C values and C/N
ratios within our data (Tables 4 and 5). Post et al. (2007)
found that the C/N ratio can be a strong proxy for lipid
content in both aquatic and terrestrial animals, but our data
show no apparent relationship (n055, r00.005, p00.98)
between C/N ratios and δ13C values of consumers (Fig. 5).
The lack of correlation between δ13C values and C/N ratios
suggests that few if any of the organisms studied have carbon
isotope composition affected by high lipid content; we there-
fore did not attempt to correct measured carbon isotope
composition based upon C/N ratios (Post et al. 2007). These
conclusions are consistent with other high-latitude studies
(e.g., Dunton 2001; Iken et al. 2010) that also did not require
lipid normalization to identify organic carbon sources.

Our selection of end-member carbon and nitrogen sources
for the eastern Beaufort estuarine lagoon ecosystem (Table 4)
largely incorporated the organisms we collected in both the
water column and sediments. Moreover, our choice of river
BPOM as a terrestrial end-member was consistent with δ15N
and δ13C values of 2.0‰ and −25.1‰ for a first-order grazing
mammal (Rangifer tarandus, caribou) that feeds on fresh
terrestrial plant matter (Table 4). The caribou’s isotopic

Table 3 The benthic phyla of Demarcation Bay, including measurements of density (number per square meter) and wet weight biomass (grams per
square meter) based on quantitative grab samples collected at eight stations (number of grabs014) in August 2008

Taxonomic group Number of species n n m−2±SE % total n m−2 g wet wt m−2±SE % total g wet wt m−2

Foraminifera 1 2 86.1±64.6 9 0.4±0.3 1

Hydrozoa 2 3 nd nd 0.3±0.0 <1

Annelida

Polychaeta 22 63 194.8±38.6 20 2.5±0.7 7

Mollusca

Gastropoda 5 12 175.8±67.0 18 1.6±0.6 5

Nudibranchia 1 2 32.3±10.8 3 0.4±0.3 1

Bivalvia 4 14 101.5±20.0 11 10.4±2.6 30

Crustacea

Mysid 1 1 21.5 2 0.2 <1

Amphipoda 6 9 62.2±21.1 7 1.8±0.8 5

Cumacea 1 2 129.2±64.6 14 0.9±0.4 3

Isopoda 1 2 43.1±21.5 5 5.0±0.2 14

Priapulid 1 7 83.0±15.2 9 3.6±1.8 10

Bryozoa 3 8 nd nd 6.5±3.3 19

Ascidian 1 2 21.5±0.0 2 1.3±0.0 4

nd not determined
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Table 4 δ13C and δ15N values (mean±SE) and molar C/N ratios (mean±SE (n)) of BPOM from sediments (six rivers and three lagoons), SPOM (four
rivers and three lagoons), and biota collected in several lagoons along the eastern Beaufort Sea coast in August 2004, 2007, and 2008

Species or group n δ15N (‰) δ13C (‰) C/N (moles/mole) Fig. 3 Label

Sources of organic matter

River BPOM 6 1.7±0.2 −25.6±0.2 nd

River SPOM 4 1.4±0.2 −27.3±0.3 nd

Lagoon BPOM 3 3.3±0.8 −26.1±0.4 nd

Lagoon SPOM 15 3.0±0.7 −27.4±0.3 nd

Invertebrate consumers

Cnidaria

Hydrozoa (hydroids)

Obelia longissima 2 7.0±0.7 −24.5±0.2 2.9±0.3 (2) 1

Ctenophora

Ctenophore 1 12.4 −24.9 nd 2

Cephaloryncha

Priapulus caudatus 6 12.5±0.3 −21.4±0.4 3.7±0.1 (6) 3

Chaetognatha

Sagitta sp. 3 14.8±0.3 −23.3±0.2 nd 4

Sipuncula

Sipunculid (peanut worms) 1 11.9 −17.9 3.6 (1) 5

Nemertea

Nemertean (ribbon worms) 1 11.8 −21.3 4.0 (1) 6

Annelida

Polychaeta

Nephtys sp. 1 11.3 −19.8 3.5 (1) 7

Nereimyra aphroditoides 4 10.8±0.3 −20.7±0.3 4.5±0.1 (4) 8

Nicolea zostericola 12 8.6±0.2 −23.6±0.3 4.1±0.1 (9) 9

Potamilla neglecta 6 8.4±0.2 −24.3±0.3 3.8±0.1 (6) 10

Prionospio cirrifera 7 9.9±0.2 −22.1±0.1 3.8±0.2 (3) 11

Sabellidae (feather duster worms) 1 8.4 −24.7 4.1 (1) 12

Polynoidae (scaleworms) 7 10.5±0.4 −22.2±0.4 3.3±0.4 (5) 13

Spio filicornis 3 8.1±0.6 −22.3±0.4 nd 14

Terebellides stroemi 17 9.1±0.2 −23.8±0.2 3.4±0.2 (13) 15

Travisia forbesii 1 11.2 −22.9 4.1 (1) 16

Mollusca

Gastropoda

Boreocingula martyni 3 7.5±0.2 −20.7±0.4 3.3±0.6 (3) 17

Buccinum sp. 1 14.4 −19.5 3.7 (1) 18

Cryptonatica affinis 1 11.0 −18.3 3.9 (1) 19

Cylichna occulta 11 10.2±0.5 −19.6±0.5 3.7±0.3 (11) 20

Euspira pallida 2 12.1±0.7 −21.7±1.4 nd 21

Bivalvia

Astarte borealis 1 7.9 −24.8 3.6 (1) 22

Cyrtodaria kurriana 4 7.9±0.1 −25.2±0.1 3.4±0.3 (4) 23

Liocyma fluctuosa 14 8.3±0.3 −25.4±0.2 4.1±0.1 (11) 24

Macoma sp. 1 7.6 −23.5± 3.9 (1) 25

Portlandia arctica 1 8.5 −23.3 3.7 (1) 26

Yoldia myalis 16 7.5±0.4 −21.2±0.3 3.1±0.2 (16) 27

Arthropoda

Crustacea

Anonyx nugax <10 mm 6 9.5±0.1 −21.5±0.2 4.1±0.2 (6) 28
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signature in turn reflects approximate δ15N and δ13C values of
0‰ and −26.5‰ for tundra vegetation (Schell et al. 1984).

The lagoon grazer food web includes both pelagic and
benthic organisms that ultimately rely on water column
SPOM, from copepods to tube dwelling polychaetes
(Fig. 3, upper panel.) First-level herbivores and key prey
items such as calanoid copepods and zooplankton had δ13C
and δ15N values intermediate between benthic suspension
feeders (hydrozoans, ascidians, and bryozoans) and carniv-
orous planktivores (ctenophores, arctic cod, and chaetog-
naths). At the other extreme, a number of benthic animals
are clearly dependent on more 15N-depleted sources of
terrestrially derived organic matter (Fig. 3, bottom panel).
These include deposit (or subsurface sediment) feeders such
as various amphipods, nemerteans, sipunculids (peanut
worms), the bivalve Yoldia, scaleworms (Polynoidae), and
the gastropods Cylichna and Boreocingula.

Overall, our isotopic data reflect a community dominated
by a variety of omnivorous benthic feeders that have inter-
mediate values between the two lagoon end members

(Fig. 3, center panel). These omnivorous organisms include
amphipods, polychaetes, gastropods, and bivalves; one
predatory gastropod (Buccinum) and a carnivorous benthic
fish (Lycodes) had the highest δ15N values (over 14‰) and
the highest apparent trophic position of nearly all the benthic
fauna studied.

Size differentiation also affected trophic position in some
cases. Smaller (<10 mm) individuals of the amphipod Anonyx
nugax had significantly lower δ15N values (9.5‰) than larger
(>10 mm) A. nugax (13.3‰; Wilcoxon: W00, p<0.005) but
no significant differences in δ13C values was observed be-
tween size groups (t test: t01.53, df010.89, p00.15). Follow-
ing Turner et al. (2010), no overlap between groups was
observed (Fig. 6), as reflected in the significant difference
between niche widths of each group (mean distance to cen-
troid00.81, P00.014).

In comparison to lagoon food webs, the isotopic composi-
tion of organisms collected on the coastal shelf of the Beaufort
Sea (e.g., Camden Bay) are generally more 13C enriched than
their lagoon counterparts (Fig. 4), reflecting the higher δ13C

Table 4 (continued)

Species or group n δ15N (‰) δ13C (‰) C/N (moles/mole) Fig.3 Label

Anonyx nugax >10 mm 8 13.3±0.3 −22.2±0.4 4.5±0.1 (2) 29

Atylus carinatus 15 7.3±0.4 −22.6±0.3 3.4±1 (2) 30

Calanus hyperboreus 5 9.9±0.4 −24.3±0.4 4.4±0.3 (5) 31

Calanoid copepods 19 9.5±0.5 −25.3±0.3 nd 31

Diastylis sp. 4 6.6±0.2 −23.1±0.2 3.8±0.2 (4) 32

Gammaracanthus loricatus 8 10.1±0.3 −21.7±0.3 3.9±0.2 (2) 33

Gammarus setosus 17 6.6±0.6 −23.4±0.3 4.0±0.2 (11) 34

Monoculodes sp. 1 3.7 −23.1 nd 35

Mysis sp. 35 7.9±0.3 −21.9±0.2 3.8±0.1 (27) 36

Plankton (from 335 μ net) 4 9.6±0.1 −25.9±0.3 nd 37

Plankton (from 20 μ net) 2 8.5±0.5 −26.0±0.2 nd 38

Pontoporeia femorata 2 5.2±0.2 −22.5±0.1 4.5±0.1 (2) 39

Saduria entomon 12 8.6±1.0 −21.0±0.3 3.2±0.2 (12) 40

Bryozoa

Alcyonidium disciforme 9 6.8±0.5 −24.7±0.3 1.5±0.1 (7) 41

Eucratea loricata 9 6.8±0.5 −26.1±0.3 2.2±0.2 (9) 42

Urochordata

Molgula griffithsii 6 6.8±0.3 −25.7±0.2 2.2±0.2 (6) 43

Vertebrate consumers

Vertebrata

Osteichthyes

Boreogadus saida 7 12.2±0.4 −24.7±0.5 4.5±0.2 (9) 44

Lumpenus fabricii 16 12.3±0.2 −23.0±0.2 3.8±0.1 (16) 45

Lycodes sp. 2 14.3±0.1 −20.1±0.3 4.5±0.1 (2) 46

Myoxocephalus quadricornis 6 12.8±0.4 −22.2±0.6 3.8±0.1 (5) 47

Mammalia (caribou)

Rangifer tarandus 1 2.0 −25.1 nd 48

n number of samples analyzed, nd not determined
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value of shelf SPOM compared to lagoon SPOM (−24.8‰
and −27.4‰, respectively). A similar scale of difference is
seen with respect to δ15N values. We found δ15N values of
arctic cod averaged 14.7‰ and 12.2‰ for shelf and lagoon
collected specimens, respectively. The 2.5‰ difference nearly
matches the difference in lagoon and shelf SPOM of 2.3‰
(Tables 4 and 5). Consequently, despite the relatively large
difference in δ15N values between shelf and lagoon habitats,
it is reasonable to conclude that arctic cod occupy similar
trophic levels in both ecosystems.

Trophic level determinations, using a nitrogen isotopic
fractionation factor of 3.4‰, were assigned for nearly all the
biota for which we had isotopic data (Table 6). These analyses
indicate four trophic levels in lagoons, mainly driven by the
presence of a diverse and opportunistic benthic fauna whose

top benthic predators included the large priapulid worm Pria-
pulus caudatus, the shell boring gastropod Euspira pallida,
large (>10 mm) Anonyx nugax amphipods, three benthic
fishes, and the predatory gastropod Buccinum. Beaufort shelf
food webs also are comprised of four trophic levels from
SPOM to arctic cod (TL03.8). The trophic level of the beard-
ed seal, Erignathus barbatus (4.0), reflects its predominant
diet of epibenthic animals, including bivalves, gastropods,
crustaceans, and fish (Lowry et al. 1980; Hjelset et al. 1999).

Discussion

The results of this work, along with other observations in a
variety of other studies over the past three decades, provides

Table 5 δ13C and δ15N values
(mean±SE) and molar C:N
ratios (mean±SE (n)) of BPOM
from sediments, SPOM, and
biota collected on the nearshore
shelf of the eastern Beaufort Sea
in August 2008 and 2009

n number of samples analyzed,
nd not determined

Species n δ15N (‰) δ13C (‰) C/N (moles/mole) Fig. 4 Label

Source of organic matter

Shelf BPOM 63 3.4±0.1 −25.4±0.1 nd

Shelf SPOM 25 5.3±0.3 −24.8±0.3 nd

Invertebrate consumers

Cephaloryncha

Priapulus caudatus 1 12.5 −20.9 4.6 (1) A

Nemertea

Nemertean 13 13.0±0.7 −21.8±0.5 5.0±0.2 (11) B

Annelida

Polychaeta

Maldane sarsi 40 11.2±0.2 −22.5±0.1 6.3±0.1 (40) C

Sabellidae 3 10.0±1.4 −24.2±0.4 5.6±0.1 (3) D

Mollusca

Bivalvia

Liocyma fluctuosa 7 7.6±0.3 −23.7±0.5 6.8±0.4 (7) E

Macoma calcarea 21 7.7±0.2 −24.0±0.3 7.6±0.4 (18) F

Gastropoda

Neptunea heros 2 12.1±0.5 −20.4±0.2 4.6 (1) G

Arthropoda

Crustacea

Calanoid copepods 17 9.8±0.2 −24.7±0.3 6.2±0.4 (15) H

Mysis sp. 3 10.4±0.5 −21.9±0.4 4.4±0.6 (2) I

Pandalus sp. 2 13.8±0.4 −20.6±0.7 3.7 (1) J

Saduria entomon 12 8.6±1.0 −23.1±0.5 7.4±0.8 (3) K

Vertebrate consumers

Vertebrata

Osteichthyes

Boreogadus saida 8 14.7±0.5 −21.4±0.2 3.9±0.2 (8) L

Coregonus autumnalis 3 11.5±1.1 −23.0±0.5 4.3±0.1 (3) M

(arctic cisco, 15 cm)

Liparis sp. 1 15.0 −20.8 3.7 (1) N

Mammalia (bearded seal)

Erignathus barbatus 1 15.6 −17.5 4.0 (1) O
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compelling evidence for a significant role that terrestrial
carbon plays in subsidizing the productivity of estuarine
lagoons of the eastern Alaska Beaufort Sea. Particulate
organic matter in the lagoons, both on the seabed and on
the bottom, is of terrestrial origin, based upon carbon and

nitrogen isotope signatures. These sources of terrestrial car-
bon are assimilated, to a measureable extent, in consumer
tissues. In addition, our measurements of benthic communi-
ty structure reflect systems that are at least as productive, if
not more than the adjacent nearshore shelf. The biomass and
abundance of infaunal organisms in Demarcation Bay
exceeds the levels expected for this shelf area based on a
compilation of benthic biomass surveys performed by a
variety of researchers on the inner shelf (summarized in
Dunton et al. 2005). While this higher-than-expected
productivity has been recognized with respect to its im-
portance to waterfowl and anadromous fishes (Craig
1984; Craig et al. 1984), except for a handful of studies
that are three decades old, there has been little progress

Fig. 3 Biplot of δ13C vs. δ15N values for primary and secondary
consumers collected in eastern Beaufort Sea estuarine lagoons. Con-
sumers were grouped according to known feeding guilds. Numbers
refer to specific species or groups as denoted in Table 4. Lines corre-
spond to trophic increases of +1.0‰ in δ13C and +4.0‰ in δ15N and of
+2.0‰ and +2.5‰ in δ13C and δ15N per trophic level based on known
isotopic enrichments for consumers reported from the western arctic
(see “Materials and Methods” section for details)

Fig. 4 Biplot of δ13C vs. δ15N values for primary and secondary
consumers collected on the nearshore shelf of the Beaufort Sea
(denoted by letters, see Table 5) with lagoon grazers included for
comparison (denoted by numbers, see Table 4). Lines correspond to
trophic increases of +1.0‰ in δ13C and +4.0‰ in δ15N and of +2.0‰
and +2.5‰ in δ13C and δ15N per trophic level (see Fig. 3)

Fig. 5 Relationship between C/N ratio and δ13C for marine fauna
collected in the eastern Alaska Beaufort Sea (data from Tables 4 and 5;
n055, r00.005, P00.98)
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in our understanding of ecological structure and food
webs in these coastal lagoons.

The Biology and Hydrography of Coastal Lagoons

Benthic infauna living within these lagoons are limited in
mobility and therefore subjected to changes in physical
processes common to all estuaries such as sedimentation,
resuspension events, and advection which affect seasonal
nutrient and recruitment fluxes, and ultimately, biological
processes (Montagna and Kalke 1992). Benthic fauna
inhabiting the shallow (<2 m) lagoons of the Beaufort Sea
are further subject to the additional stresses of ice scour
during winter months when fast ice often freezes to the
bottom followed by erosion when large pulses of river water
enter the lagoon during breakup in early summer (Jorgensen
et al. 1999). For these reasons, benthic populations in these
estuaries are composed of particularly well-adapted, short-
lived species characterized by rapid growth and high repro-
duction levels (Emmett et al. 2000) that can survive the large
salinity fluctuations that are associated with spring run-off.

Deeper lagoons and bays contain more established ben-
thic populations that are not as commonly affected by ice
gouging, but are affected by the input of organic matter. Our
measurements showed that benthic infaunal abundance in
Demarcation Bay (mean water depth, 4 m) exceeds the
levels measured in an adjacent coastal shelf area in Camden
Bay (mean water depth, 34 m), yet biomass measurements
are similar between the two (Table 7). This pattern of low
nearshore benthic biomass has been observed elsewhere.
For example, at Prudhoe Bay, further west in the Beaufort
Sea than our focused study area, Feder and Schamel (1976)
found an increase in species diversity, abundance and
biomass as distances offshore increased, which they attributed
to ice and wave related forces affecting the stability of a

Fig. 6 The isotopic differences between large (>10 mm) and small
(<10 mm) individuals of the amphipod A. nugax. The isotopic space
occupied by large individuals with a mixed diet (n=8, filled circles,
dashed outline) is distinct from that of small immature individuals
(n=6, open circles, solid outline) that feed at a lower trophic level

Table 6 Approximate trophic levels of biota collected for isotopic
analysis within the estuarine lagoons of the eastern Beaufort Sea.
Trophic calculations were based on a fractionation factor of 3.4‰
using lagoon SPOM (for grazers and filter feeders) and lagoon BPOM
(for benthic omnivores and deposit feeders)

Organisms Trophic
level

Sources of organic matter SPOM, BPOM,
phytoplankton

Primary consumers

Grazers and filter feeders Alcyonidium disciforme 2.1

Eucratea loricata 2.1

Molgula griffthsii 2.1

Obelia longissima 2.2

Astarte borealis 2.4

Cyrtodaria kurriana 2.4

Benthic omnivores Pontoporeia femorata 1.6

Diastylis sp. 2.0

Gammarus setosus 2.0

Atylus carinatus 2.2

Macoma sp. 2.3

Mysis sp. 2.4

Spio filicornis 2.4

Deposit/subsurface feeders Monoculodes sp. 1.1

Boreocingula martini 2.2

Yoldia myalis 2.2

Secondary consumers

Benthic omnivores Anonyx nugax (<10 mm) 2.8

Cylichna occulta 3.0

Polynoidae (scaleworms) 3.1

Deposit/subsurface feeders Travisia forbesii 3.3

Cryptonatica affinis 3.3

Nephtys sp. 3.4

Nemertea 3.5

Benthic predators Coregonus autumnalisa 2.8

Tertiary consumers

Pelagic carnivores Boreogadus saida 3.7

Boreogadus saidaa 3.8

Ctenophore 3.8

Erignathus barbatusa 4.0

Sagitta sp. (chaetognaths) 4.5

Benthic predators Euspira pallida 3.6

Lumpenus fabricii 3.6

Liparis sp.a 3.9

Priapulus caudatus 3.7

Myoxocephalus quadricornis 3.8

Anonyx nugax (>10 mm) 3.9

Lycodes sp 4.2

Buccinum sp. 4.3

a For comparison, trophic levels of vertebrate animals collected outside
of lagoons on the nearshore shelf (calculated using Camden Bay
SPOM)
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shallow benthos. They also reported a relatively low species
count (38 species) in Prudhoe Bay itself, which they attributed
to low salinities. In the Kara Sea, Jorgensen et al. (1999) found
that benthic biomass along the nearshore shelf was also lower
than under full marine conditions, again reflecting the propor-
tionately high volume of fresh water entering the coastal
system (McClelland et al. 2011).

With respect to the water column, a study in the adjacent
Mackenzie River estuary revealed that during summer there
were two spatially separated plankton communities: (1) an
offshore marine community associated with high phyto-
plankton production and populated with copepods, hydro-
medusae, and ctenophores and (2) an estuarine community
associated with high levels of dissolved organic carbon,
bacterial activity, and numerous amphipods (Parsons et al.
1988). Further west from the direct influence of the
Mackenzie River, mixing of these two assemblages is
apparent in Demarcation Bay, which receives inputs of
marine SPOM along with river SPOM that contributes a
substantial fraction of benthic detritus.

Based on results of earlier studies, other lagoons along
the eastern Beaufort Sea coast may be as equally produc-
tive. Griffiths et al. (1977) used Ekman grabs in Kaktovik
Lagoon in August 1975 at depths ranging from 2 to 4 m
and found infauna abundances to range from 654 to 5,352
individuals per square meter, mainly dominated by crusta-
ceans and annelids. No quantitative benthic data were
collected by Griffiths et al. (1977) in Demarcation Bay,
but in that estuary they reported a salinity of 11 at 10°C
(compared to 13–20 and 4–7°C during the same period in
Kaktovik Lagoon) while collecting a variety of fish in
gillnets (arctic char, arctic cisco, least cisco, grayling, and
fourhorn sculpin).

Terrestrial Linkages to Estuarine FoodWebs in Arctic Lagoons

Terrestrial organic matter inputs to the Arctic Ocean have
long been considered a minor resource supporting microbial
and metazoan communities. Interestingly, it was the pio-
neering isotopic work by Schell (1983) that initially focused
on the role of terrestrial carbon as a potential food source in
the northern Alaska coastal system that led to the develop-
ment of the current paradigm. Schell (1983) noted that POC
delivered to the coastal waters was prebomb and free of
radiocarbon, but he found no evidence of old carbon in
marine consumers, leading him to conclude that terrestrial
sources of carbon are not incorporated into marine food
webs. In other estuarine systems, there is ample evidence
for the incorporation of terrestrially-derived organic matter
into coastal marine food webs (Table 8).

We conclude that our study and other recent work indi-
cate that terrestrial inputs may actually be a significant
resource after all in arctic coastal waters. This means that
arctic estuaries share this characteristic with lower latitude
estuarine and coastal food webs (e.g., Table 8). Much of this
other recent evidence is centered on dissolved organic car-
bon (DOC) contributions from rivers to the Arctic Ocean,
which are quantitatively far greater than POC inputs
(Gordeev et al. 1996; Lobbes et al. 2000; Dittmar and
Kattner 2003). However DOC is disproportionately young
and radiocarbon rich (Benner et al. 2004; Raymond et al.
2007), particularly that delivered during the spring freshet,
which is more labile than that delivered at other times of
the year (Holmes et al. 2008). The observation that sig-
nificant fractions of DOC are apparently lost through
photo-oxidation or bacterial consumption during the transit
from major river mouths to offshore Arctic waters (e.g.,
Cooper et al. 2005) is additional evidence for a war-
ranted re-evaluation of Schell’s (1983) conclusion.

The results presented here are not unequivocal, but
our isotopic measurements provide strong evidence that
terrestrially-derived organic matter is assimilated and incor-
porated into consumer tissue, especially epibenthic crusta-
ceans (mysids and amphipods) and molluscs, and deposit
feeding molluscs and polychaetes. These species represent a
major fraction of the lagoon community, both in terms of
abundance and in biomass as demonstrated in this study, as
well as previous work (Griffiths et al. 1977; Craig et al.
1984). According to the trophic food web studies conducted
by Craig et al. (1984), mysids and amphipods are a clear
favored prey item by fish (particularly arctic cod and various
anadromous species) and birds. Furthermore, the average
number of mysids and amphipods in the lagoon sediments
far exceeds their numbers in the water column by 25 to 200
times (Griffiths and Dillinger 1981). The benthos is clearly a
“hot spot” of concentrated preferred prey items for higher
trophic levels in arctic lagoons.

Table 7 A comparison of infaunal biomass and abundance (means±SE)
on the Beaufort Sea nearshore shelf (Camden Bay) and in an estuarine
lagoon (Demarcation Bay)

Parameter Coastal shelf
Camden Bay

Estuarine lagoon
Demarcation Bay

Depth (m) 34±0.43 4±0.13

Number of stations 74 8

Infauna

Number of taxa 177 48

Biomass (g m−2) 47±11.3 35±3.1

Abundance (n m−2) 385±43 951±88

Community structure

Margalef: species richness 1.47–5.60 1.58–3.93

Shannon–Wiener: diversity 1.68–3.35 2.02–2.96

Pielou: species evenness 0.89–1.00 0.92–0.98

Indices of community structure are station ranges within each system.
Camden Bay data from Dunton et al. (2009)
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Our isotopic data also confirmed the presence of niche
shifts between size classes in arctic amphipods that reflect
ontogenetic changes between juvenile and adult life history
stages (Legezynska 2008; Hammerschlag-Peyer et al. 2011).
Amphipods, but particularly the genus Anonyx are largely
known as voracious epibenthic scavengers that are highly
omnivorous (Macdonald et al. 2010). In this study, A. nugax
larger than 10 mm were classified as being one trophic level
higher than smaller A. nugax, based upon significantly (p<
0.0001) higher δ15N values. In addition to significant differ-
ences in niche width, each group’s convex hull remained
distinct with no overlap of individuals (Fig. 6). Based on the
similar carbon isotopic ratios for both the small and large
size classes (−21.5‰ and −22.2‰, respectively), but the
shift in δ15N values (9.5–13.3‰), it is apparent that smaller
individuals of A. nugax are feeding opportunistically at
lower trophic levels on prey that are largely dependent on
BPOM, while larger (>10 mm) individuals have graduated
to a considerably more mixed diet that may include carrion
as well as detritus, fish larvae, and small crustaceans (Lege-
zynska 2008). Another amphipod, Gammarus setosus, is

known for its unusual ability to digest peat, based on labo-
ratory studies (Schneider and Koch 1979). This ability likely
explains the δ15N value for G. setosus, which was lowest
(6.6‰) of all epibenthic omnivores (Table 4 and Fig. 3).

A majority of the consumers in this study exhibited an
opportunistic feeding strategy as reflected in their omnivo-
rous behavior as detritovores, and this is similar to other
arctic systems (e.g., Iken et al. 2010). Trophic 13C enrich-
ment becomes progressively greater as dependence on de-
posit feeding increases (Fig. 3, bottom panel), with many
organisms lying on the line of minimum slope (1.25), mean-
ing the carbon isotopic fractionation associated with trophic
levels is at a maximum. This likely reflects the increasing
importance of microbial degradation and colonization of
buried organic matter that is ingested by deposit feeders,
which rapidly results in an enrichment of δ13C values in the
combined microbial–detrital pool. This suggests that there is
a strong link between the microbial and metazoan food webs
rather than a direct pathway for terrestrial organic matter
incorporation into first level consumers since very few
organisms can assimilate terrestrial matter directly (Cividanes

Table 8 POM source isotopic signatures in studies documenting the utilization of terrestrial sources of organic matter by key consumers in
estuarine and coastal food webs throughout the world

Location POM source signatures Benthic consumer link from terrestrial
POM to higher trophic levels

Reference

Terrestrial (‰) Marine (‰)

Eastern Australia

δ13C −26.0 −21.0 Crabs Connolly et al. (2009)

δ15N 8.0 3.0

Miya Estuary, Japan

δ13C −25.5 −18.9 Bivalves Kasai et al. (2004)

δ15N 0.6 9.0

NW Mediterranean

δ13C −26.1 −22.4 Deposit feeding polychaetes Darnaude et al. (2004)

δ15N 3.5 2.3

York River Estuary, Virginia

δ13C −25.9 −23.5 Adult chironomids Hoffman et al. (2008)

δ15N 4.2 9.9

Fjordland, NZ

δ13C −29.0 −21.3 Deposit feeding polychaetes and
Echinocardium

McLeod and Wing (2009)

δ15N −1.4 6.6

Yura River, Japan

δ13C −28.2 −22.2 Deposit feeding polychaetes
(Neanthes) and bivalves

Antonio et al. (2010)

δ15N 6.0 5.8

Plymouth, South Devon, UK

δ13C −26.3 −17.3 Oligochaetes Attrill et al. (2009)

δ15N 4.2 9.3

Assimilation of terrestrial organic detritus by lower trophic level consumers were based on consumer and source isotopic values for terrestrial and
marine end members made on varying temporal scales
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et al. 2002), with the possible exception of G. setosus (noted
above). Another possible carbon resource are benthic
microalgae, which are known to contribute to the produc-
tivity of arctic shelves (Grebmeier et al. 2006), but previous
studies indicate that their δ13C values lie between −17.6‰
and −12.1‰, much heavier than nearly all the fauna we
analyzed (Incze et al. 1982; Couch 1989; Riera and Richard
1999).

The isotopic separation between lagoon and Beaufort
nearshore shelf planktivores (Fig. 4) suggests that lagoon
SPOM, with its corresponding terrestrial signal is becoming
incorporated into marine food webs. Sabellid suspension
feeding polychaetes, mysids, and arctic cod, all exhibit
distinctively 15N and 13C depleted isotopic signatures in
lagoons compared to the shelf (the 13C signal is the same
for mysids). One notable exception are calanoid copepods,
which show no difference between lagoons and the shelf,
but unlike mysids and amphipods, these copepods are not

residents of lagoons, and we think they were likely advected
into the lagoons from the arctic shelf. Mysids are the main
diet for arctic cod (Craig et al. 1984), but cod are apparently
consuming both mysids and copepods in lagoons, but only
mysids offshore (based on δ15N and δ13C values for con-
sumer and prey). The distinct difference in cod isotopic
signatures led Dunton et al. (2006) to conclude that cod
assimilated at least half of its carbon from terrestrial sources,
which seems reasonable based on the depleted δ15N and
δ13C values of other planktivores. Phytoplankton may con-
tribute to the depleted δ13C values of lagoon SPOM through
(1) their smaller cell sizes in estuarine settings, which has
predictable consequences for greater 13C fractionation (pro-
ducing isotopically lighter cells) because of smaller surface
areas (Korb et al. 1996) and (2) because dissolved inorganic
carbon (DIC) will reflect riverine sources, DIC incorporated
by photosynthesis is also isotopically lighter (Coffin and
Cifuentes 1999).

Fig. 7 A depiction of a high arctic estuarine lagoon food web. The
high abundance and abundance of benthic biota are unique features of
these relatively warmer summer systems that receive both autochtho-
nous (phytoplankton) and allochthonous (terrestrial) inputs of carbon.
Arrows show direction of energy transfer. For arctic cod, which feed on
prey in both the water column and benthos, the linkage to pelagic

sources of energy is slightly stronger based on available isotope data.
The diversity of the benthic fauna reflects a resilient ecosystem that
provides critical habitat for migrating waterfowl and nursery grounds
for arctic cod, a critical prey item for seals and anadromous fishes on
the inner shelf
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Animal migrations are a factor to consider in any stable
isotope food web study, but our results are focused mainly
on epibenthic and subsurface invertebrates and three species
of benthic fish that do not migrate significantly. For arctic
cod, we provide clear isotopic evidence that even these
highly motile species may not migrate sufficiently to con-
fuse the organic material signal present in lagoons. In addi-
tion, Hobson (2008) reports carbon isotope turnover times
for muscle tissue are on the order of 150 days which well
exceeds the summer open-water period in arctic lagoons.
Based on the sampling time in late summer, following the
productive period following ice melt in the spring, we feel
that the isotopic values of the organisms collected in the
lagoons likely reflect their diets since the spring freshet.
Future winter sampling through the ice will help to verify
the dependence of these fauna on terrestrial organic matter.

Our data demonstrate a terrestrial carbon subsidy (Fig. 7) to
an otherwise oligotrophic lagoon ecosystem characterized by
relatively clear estuarine waters (Table 1). In situ pelagic
primary production is low, owing to extremely low
inorganic-N concentrations (Table 2), so summer open-water
chlorophyll levels along the coast and shelf provide no signif-
icant autochthonous source of production (Dunton et al.
2009). Consequently, terrestrial sources of organic matter
provide a food resource for omnivorous consumers that con-
tribute to benthic infaunal diversity and abundance to support
both pelagic and detrital based food webs. Most importantly,
the high diversity in these systems provide a degree of trophic
redundancy and community resilience, critical habitat features
to support upper trophic level organisms, such as waterfowl.
Physical export of key prey species from these lagoons
(mysids, amphipods, and arctic cod) also provide valuable
resources for the large migrating bird and fish populations
along the Alaska Beaufort Sea coastline (Connors 1984; Gall-
away and Fechhelm 2000).

Implications of a Changing Climate

Although annual river discharge to the Arctic Ocean has
increased by an average of ∼7 km3 each year over the 1964–
2000 time period, the increase is not consistent for all areas
(McClelland et al. 2006). On the arctic coast of Alaska,
glacially-fed runoff from the Brooks Range to the eastern
Beaufort Sea coast is in decline, and the small alpine glaciers
in the Brooks Range are projected to disappear within the next
50 years (Nolan et al. 2011). The consequences for coastal
lagoons will be significant in the loss of summer freshwater
discharge and sediment input (although nutrients and dis-
solved organic carbon may increase with permafrost thaw).
Significant effects on the ecology of these systems and their
role as nursery habitats for migrating waterfowl are likely.
When considered in the context of the summertime sea–ice
cover loss, which decreased by ∼8% per decade over the

1979–2005 time period and the extreme minima observed in
the past several years (Stroeve et al. 2008), it is an open
question if the erosion and subsequent loss of coastal barrier
islands will produce significant changes to the character of
estuarine arctic lagoons. Related topics of uncertainty are
whether ice algae make significant contributions of particulate
and or dissolved organic matter to eastern Beaufort Sea estu-
arine lagoons, especially since warming is likely to affect ice
cover in the lagoons differently than on the shelf. The answers
to these questions will have important consequences on upper
trophic levels, especially on bird and anadromous fish pop-
ulations throughout the western arctic.
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