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Abstract

We release FOOLMETWICE (FM2 for short),

a large dataset of challenging entailment pairs

collected through a fun multi-player game.

Gamification encourages adversarial exam-

ples, drastically lowering the number of exam-

ples that can be solved using “shortcuts” com-

pared to other entailment datasets. Players are

presented with two tasks. The first task asks

the player to write a plausible claim based on

the evidence from a Wikipedia page. The sec-

ond one shows two plausible claims written by

other players, one of which is false, and the

goal is to identify it before the time runs out.

Players “pay” to see clues retrieved from the

evidence pool: the more evidence the player

needs, the harder the claim. Game-play be-

tween motivated players leads to diverse strate-

gies for crafting claims, such as temporal infer-

ence and diverting to unrelated evidence, and

results in higher quality data for the entailment

and evidence retrieval tasks. We open source

the dataset and game code.1

1 Introducing a Game of Challenging

Claims

Given a statement—and a large collection of tex-

tual knowledge—how do you find evidence that

shows a reader that the statement is true or false?

This problem takes on multiple forms in the natu-

ral language processing (NLP) community. Given

only a single statement and a single sentence, this

decision process is called recognizing textual entail-

ment (Dagan et al., 2010, RTE) or natural language

inference (Bowman et al., 2015; Williams et al.,

2018, NLI). Given a single statement and a vast

pool of possible evidence (e.g., all of Wikipedia),

this problem is called verification (Thorne et al.,

2018; Jiang et al., 2020).

∗Work completed while a Visiting Research Scientist at
Google.

1https://github.com/google-research/

fool-me-twice

Stage 1: Players write claims to fool others

"Venus's craters are difficult to 
measure due to erosion."

Stage 2: Players mark evidence that 
entails/refutes the claim

On Earth it is caused by wind and rain erosion.
On Venus, about 85% of the craters 
are in pristine condition.
Venusian craters range from 3 to 280 km.

Stage 3: Players spot the refuted claim

"Snoop Dogg portrayed Moses 
in a rap battle"

"Venus's craters are difficult to 
measure due to erosion."

Stage 4: Players get points

Players that correctly spotted the 
refuted claim and authors of 
challenging claims are rewarded

100

Stage 5: Automatically build dataset

Keep highest quality claims with 
their selected evidence FM2

R
ep
ea
t

Figure 1: Overview of the data generation pipeline. In

stages 1 to 4, players write challenging claims either

entailed or refuted by evidence from Wikipedia (Sec-

tion 3.1). They are then tasked to spot the refuted claim

among a group (Section 3.2). The claims and evidence

are available for download.

We review existing resources for the latter task in

Section 2 and how they have spawned a vibrant sub-

community around related tasks. However, these

datasets fail to challenge modern NLP models such

as BERT (Devlin et al., 2019) or T5 (Raffel et al.,

2020) that achieve “super-human performance” de-

spite also exhibiting “annotation artifacts” that hurt

their generalization potential (Gururangan et al.,

2018; Tsuchiya, 2018). Our goal is twofold: (1)

to build a new, challenging dataset (statistics for

FOOLMETWICE in Table 1) that tests models’ abil-

mailto://eisenjulian@google.com
mailto://bdhingra@google.com
mailto://jbulian@google.com
mailto://bboerschinger@google.com
mailto://jbg@umiacs.umd.edu
https://github.com/google-research/fool-me-twice
https://github.com/google-research/fool-me-twice
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Claims Entailed Pages Avg. # Tokens

Proportion Claim Evidence

Train 10,419 49.2% 1,811 15 30

Dev 1,169 51.0% 209 15 31

Test 1,380 49.4% 234 15 31

Total 12,968 49.4% 2,254 15 30

Table 1: Statistics of the FOOLMETWICE dataset. The

train/dev/test split is based on disjoint Wikipedia pages.

The number of tokens is an average value computed

with a white-space tokenizer. Our dataset is balanced

between entailed (true) and not entailed (false) claims.

ity to retrieve evidence and verify claims and (2)

to show that engineering the incentive structure

of data collection experiments can produce more

accurate and realistic outcomes.

This dataset lends itself to automatic training

and it characterizes what factual errors humans can

most easily detect and which are most likely to

fool them (Section 3.2). This is analogous to

the creation of unsupported or refuted claims in

the wild, which are not random, but evolve as part

of an information arms race (Rid, 2020). Unlike

previous datasets that rely on crowd-sourcing, we

develop an online game to create a platform where

motivated authors can create plausible sounding

“facts” that other users must debunk.

Not only does this create more realistic claims—

the best must withstand human scrutiny—it also

creates a way to better evaluate the evidence that

support or refute claims. As we surface the evi-

dence, humans use that evidence to decide which

claims are true or false; these signals can further

improve our systems (Figure 1). We apply baseline

models for retrieval and classification to our dataset

(Section 4) and examine how their ability to detect

wrong statements differs from humans’ (Section 5).

2 Related Work

Entailment is a key task in natural language un-

derstanding. Dagan et al. (2010) describe it as an

AI-complete task: solve it, and you can solve all

of artificial intelligence. Typically, entailment is

presented as: given a premise (“Brooklyn is the

most populous of New York City’s boroughs”), de-

cide whether a hypothesis (“Manhattan has more

residents than Brooklyn”) is entailed—supported—

by the premise. Even simple examples show the

promise (and complexity) of this task. To recog-

nize that this hypothesis is contradicted, a model

must: know that Manhattan is a borough of New

York, recognize that “X is the most populous bor-

ough” entails “X has more residents than any other

borough”, and correctly combine this knowledge

to recognize the contradiction.

2.1 Entailment and Retrieval Datasets

Despite the promise of entailment, it has not been

a silver bullet for the NLP community to solve ar-

tificial intelligence. One possible explanation is

highlighted by a line of work that shows existing en-

tailment datasets have artifacts. Poliak et al. (2018)

show entailment can often be solved by looking

only at the hypothesis, while Feng et al. (2019)

show that artifacts can infect the premise as well.

This is especially common in the biggest datasets

for NLI such as SNLI and MNLI (Gururangan et al.,

2018). While there are algorithmic solutions to

addressing these issues (Utama et al., 2020), many

have turned to building better datasets.

Both Bowman et al. (2020) and Vania et al.

(2020) propose alternative methods for collecting

entailment pairs from crowdworkers and measure

success via improvements in other general tasks

via transfer learning. While the proposed meth-

ods prove to be ineffective for that goal, we view

NLI is as an important end task in itself (e.g., for

misinformation, QA, dialogue, generation evalu-

ation). Hence, we argue that constructing chal-

lenging entailment datasets is useful beyond just

transfer learning.

Like this paper, Nie et al. (2020) focus on ad-

versarial entailment, but their authors only see a

single piece of evidence. We expand this human-in-

the-loop adversarial setting to include the essential

retrieval component of fact verification. Thus, au-

thors have more strategies on hand; in addition to

creating challenging examples through paraphras-

ing, they can make it difficult to find relevant infor-

mation in the first place or distract with related—

but distinct—information.

This is exactly the setting of a recent shared task,

FEVER (Thorne et al., 2018, Fact Extraction and

VERification), which creates a more general entail-

ment setting: given a claim, find relevant evidence

from Wikipedia, and determine whether the evi-

dence has enough information to either support or

refute the claim. This generalizes the entailment

problem to a large, broadly accepted set of premises

(all sentences in Wikipedia) and adds an additional

retrieval step to find relevant evidence.
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Supported

Woody Allen is a person.

The Shining was directed.

François de Belleforest wrote.

Not Enough Info

Lisa Kudrow was in a car.

Tipper Gore was curated to Al Gore.

International Relations includes animals.

Refuted

Tipper Gore was created in 1048.

Alpha House is inspired by nobody.

Toy Story is incapable of being a film.

Table 2: Examples from FEVER, which separates entail-

ment examples into three categories. The crowdwork-

ers who authored the examples often edit the first line

of the Wikipedia article but not in ways that sound like

a plausible hypothesis. We develop a game to build

more complex, challenging examples.

FEVER has obvious connections to problems in

education, journalism, and information science.

Thus, it has caught the attention of a subcom-

munity focused on building systems for FEVER

shared tasks. Despite this excitement, Schuster

et al. (2019) show that FEVER has many of the

same issues as entailment datasets. FEVER has

broad or nonsensical claims (Table 2) and many

of the claims are generated from the very first line

of source Wikipedia documents. This is not just

an artifact of crowd-sourcing; a more fundamental

problem is that there is no clear definition of what

makes a good FEVER example. To date, adversarial

FEVER example generation uses automatic rules to

increase their difficulty (Thorne et al., 2019). To

address these identified weaknesses, Sections 3.1

and 3.2 define a game where the claim writers have

a clear objective of “fooling” other human players.

2.2 Gamification for Data Collection

Creating datasets through a fun interactive design is

often called gamification. Ipeirotis and Gabrilovich

(2014) focus on multiple choice question answer-

ing in technical domains such as medicine and rely

on redundancy and calibration questions to gener-

ate new knowledge. The ESP game (von Ahn and

Dabbish, 2004) asks users to write labels for an

image that agree as much as possible with other

players’ labels.

Another well-known example is protein fold-

ing (Cooper et al., 2010), an online game2 that

2https://fold.it

Dataset split Top Bigrams by LMI (highest predictive power first)

FEVER Train is only, did not, not a, was not, incapable of, only a

FEVER Dev is only, only a, incapable of, is incapable, was only, did not

FM2 Train the second, is a, was a, was the, is the, of his

FM2 Dev by a, on the, innocent iii, statue of, for his, pope innocen

Table 3: Top 6 bigrams with the highest LMI (Schus-

ter et al., 2019) for REFUTES in each dataset and each

split. Overlapping bigrams are bolded. Compared to

FEVER, FOOLMETWICE contains fewer bigrams that

“give away” the label on both the train and dev set.

tasks players to twist and bend protein structures,

often besting computer algorithms and driving bio-

logical innovations (Khatib et al., 2011).

Crucially, these games are either individual or

cooperative; in contrast, FOOLMETWICE exploits

the adversarial nature of players fooling each other.

FOOLMETWICE most closely resembles Balder-

dash, a board game where players guess which

definition of a word is legitimate that is used in in-

formation literacy courses (Hays and Hayse, 2017).

In all cases, the intrinsic motivation driven by

these games can lead to better outcomes and fewer

attempts to “game” the system (Kuznetsov, 2006;

Yang and Lai, 2010). Thus our approach consti-

tutes a viable alternative to traditional isolated la-

belling tasks in crowd-sourcing platforms, where

tying payment to completing tasks sometimes hurts

final results (Gneezy and Rustichini, 2000).

3 FOOLMETWICE Game Mechanics

This section outlines the two phases of the game:

authoring claims (Section 3.1) and voting on those

claims (Section 3.2). While these sections present

the game in its final form, this is the reflection of

an iterative process.

We first began with a paper version (Nielsen,

1989) of the game, which showed that a time con-

straint made the game feel more fun and encour-

aged people to not read individual pieces of evi-

dence too intently. Without the timer, people tried

to look for tiny clues in text that probably were not

there (Wilkinson et al., 2012). We then moved onto

a version of the game presented via slides where

we experimented with design choices such as the

number of claims players distinguish between, and

the number of evidence sentences they see while

doing that. Examples of the final web interface are

shown in Appendix B.

https://fold.it
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3.1 Crafting Challenging Claims

Our goal is to create a computer game that produces

human-authored, interesting, challenging claims

paired with evidence that either supports or refutes

each claim. One prerequisite for this is that claims

avoid high lexical overlap with the knowledge cor-

pus. We thus need to encourage authors to craft

claims that cannot be trivially matched to evidence.

While this approach has been used for question an-

swering (Wallace et al., 2019; Bartolo et al., 2020),

which has a similar retrieval step, to our knowledge

it has not been applied to entailment or FEVER.

We recruit users employed at Google, all pro-

ficient in English, to play-test the game. At the

beginning of each round, we ask each user to gener-

ate a true or false statement. We randomly choose

a Wikipedia page as a knowledge source and ask

them to highlight one or two evidence spans that

support (or refute) their claim. They are instructed

to write statements that would likely fool other play-

ers trying to determine the claim’s veracity quickly

and/or without looking at the evidence that support

the claim. The reward system defined in the next

section is built to be aligned with this objective.

To help authors write hard claims, not entirely

similar to the evidence, we show the user what

evidence a TF-IDF retrieval system would select

from the source and highlight the words that help

IR systems select evidence. This implicitly encour-

ages them to craft the claims in a manner such that

overlap with the evidence is low (Section 3.2). We

include screenshots of the user interface and more

details about our design choices in the appendix.

Because the players see evidence selected by our

retrieval systems, difficult claims for players are

also challenging for computers. See Table 3 for a

comparison on highly predictive bigrams between

FEVER and FOOLMETWICE (details about how

these are computed are in the appendix).

3.2 Spotting the Incorrect Statement

In the game’s second phase, players select the incor-

rect statement from claims written by other players

(Table 4). To separate these two phases of the game,

we refer to players in this phase of the game as vot-

ers. If a voter can correctly answer quickly (e.g.,

through their own world knowledge or artifacts),

they get up to 120 points, the maximum possible.3

The author and voter split the points: any points the

3Each voting task should take at maximum two minutes,
and each point corresponds to a second.

voter leaves “on the table” go to the author. Chal-

lenging claims reward the author with more points

but easy ones let the voter increase their total.

We do not want to keep claims that are easy to

identify as true or false. If the average player can

tell through artifacts or common sense that a claim

will not be supported, it is uninteresting as an en-

tailment example. For example, if someone sees

the claim “Tipper Gore was born in 1048” and re-

members that Al Gore was the vice president of

the United States in the twentieth century, they can

identify that this claim is false. We also want claims

that require the voters to carefully read evidence

from Wikipedia (Table 4). Voters can ask for hints

provided by our evidence selection system (Sec-

tion 4.1). For each piece of evidence shown, the

number of points available to the voters decreases,

and points decrease as time progresses as well.

All possible outcomes provide useful informa-

tion: correct and incorrect choices, with and with-

out evidence. As mentioned before, if voters spot

the wrong statement unaided, the claim has underly-

ing issues. When a voter can spot the wrong claim

with the help of a particular piece of evidence, then

this is a clue that the evidence (and the mechanism

that selected it) is useful.

This allows us to specifically optimize for evi-

dence that helps players better answer questions.

When voters go from confused to confident about

the correct answer, that is a signal that the evidence

was effective. When voters select an incorrect an-

swer, that is a signal that the evidence was not

effective (or, indeed, misleading).

When voters need more time and evidence and

are almost fooled (i.e., nearly think a true state-

ment is incorrect), this is a sign that the statement

is challenging for the human–computer team seek-

ing to verify entailment. The statement must be

convincingly written, consistent with voter’s world

knowledge, and also consistent with the evidence

players see. Our game setting helps create condi-

tions where these “tricky” examples can be crafted.

We use two heuristics to ensure quality claims.

First, we search for “easy” examples that were con-

sistently solved without inspecting the evidence –

however, we were not able to find any. Next, we

search for examples which are “too difficult” by

computing a maximum a posteriori estimate of the

Bernoulli distribution of correct and incorrect votes

for each claim. The prior distribution matches the

overall accuracy of the dataset (80% of votes are
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correct) and is equivalent to adding five pseudo-

counts (one wrong, four correct) for each question.

We use this smoothed estimate rather than the max-

imum likelihood estimate to account for claims

lacking votes. The expected value of that posterior

given a Beta(4, 1) prior is (Liu et al., 2012):

α ∼ Beta (4, 1)

α | Ci ∼ Beta

(

4 +
∑

i

Ci, 1 +
∑

i

(1− Ci)

)

,

where i sums over the votes, and Ci is one if the

vote was correct and zero otherwise. We analyze

all twenty-five claims below a 0.5 threshold and

identified three incorrect examples which we sub-

sequently removed.

3.3 Incentive Structure

Players earn points in two ways: either spotting

incorrect claims by voting as early as possible or

authoring challenging claims. They alternate be-

tween the two roles in every game session. These

two rewards are in opposition to each other.

Because the goal of the voters is to find the claim

that is incorrect, claim authors (of either entailed

or refuted claims) only get points when voters are

not fooled and when the voters need evidence. The

total points are split between the voter and authors

when the voter correctly guesses, making this a

zero-sum game. As a voter requests evidence or

takes more time, a larger fraction of the total points

will go to authors. Thus, authors are encouraged

to write difficult claims; voters are encouraged to

select claims correctly.

When a voter guesses incorrectly, they get no

points, to ensure the examples are valid. While in-

correct guesses can happen for impossible claims,

writing claims that are merely difficult is a bet-

ter strategy since easy claims that may be spotted

quickly are awarded no points.4

In addition to humans voting on claims, we also

ask users which of the two claims they “like” more,

independent of voters’ accuracy. People like true

claims (0.39) more than false claims (0.35, t =
2.53, p = 0.01), except for claims about science

and technology, where people prefer false claims

(0.46) more than true claims (0.32, t = −2.50, p =
0.02). Authors get points when voters like their

claims; this additional incentive encourages authors

to create interesting and surprising examples.

4We also allow players to flag obscene, incorrect, or other-
wise problematic claims.

4 Methods: Subtasks and Models

Each of the instances in FOOLMETWICE is a

tuple (c, e, l): a natural language claim c, evi-

dence e from a knowledge corpus K (in our case

Wikipedia), and a binary label l (entailment / con-

tradiction).5 From this we define two sub-tasks,

following Thorne et al. (2018). The first sub-task,

retrieval, requires systems to select candidate ev-

idence from K (including, perhaps, the gold evi-

dence e). The second sub-task is entailment, where

systems given claim c and the gold evidence e need

to make a final prediction for the label l. We also

consider an end-to-end setting. Instead of the gold

evidence, systems only have access to the retrieved

evidence ê at test time. In the rest of this section we

define baseline models for each of the sub-tasks.

4.1 Retrieval

Our setting resembles the retrieval setting in the

KILT benchmark (Petroni et al., 2021), but the re-

sults are evaluated at the evidence level as opposed

to the page level, to represent a more realistic use

case. The evidence corpus can be found online6

and consists of twenty-two million text passages,

each having a length of a hundred words, from five

million pages of the English Wikipedia image from

August 2019. We align gold FOOLMETWICE ev-

idence to this knowledge source by selecting the

passage with highest overlap with each evidence

sentence, according to the modified n-gram preci-

sion component of the BLEU (Papineni et al., 2002).

We remove 1598 examples7 where the precision

was less than 0.5.

We evaluate two baselines. The first one fol-

lows Chen et al. (2017) and uses a TF-IDF retrieval

model with unigrams and bigrams and 220 hash

buckets. The title of page is added to the passage

content for additional context. The second baseline

uses Dense Passage Retrieval (Karpukhin et al.,

2020, DPR), using the same fixed pre-trained pas-

sage embeddings and query encoder as the ones

used in Petroni et al. (2021).

4.2 Entailment

For the second component of the task, we fol-

low state-of-the-art entailment models (Zhou et al.,

2019; Liu et al., 2020; Eisenschlos et al., 2020):

5Unlike FEVER, we do not allow authors to write claims
that lack “enough information”.

6http://github.com/facebookresearch/KILT/
7This happens because FOOLMETWICE was constructed

from a more recent version of Wikipedia than KILT.

https://github.com/facebookresearch/KILT/tree/master/kilt/retrievers
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Topic Iceland Elizabeth II Time Left

Claim After ending its personal union with Denmark, Iceland was

last invaded by the United Kingdom in Operation Fork.

After Elizabeth II’s accession, she changed her house’s name

from "House of Saxe-Coburg and Gotha" to the "House of

Windsor", rejecting the "House of Edinburgh".

3:00

Retrieved

Evidence

The Danish-Icelandic Act of Union, an agreement with Den-

mark signed on 1 December 1918 and valid for 25 years,

recognised Iceland as a fully sovereign and independent state

in a personal union with Denmark.

Philip suggested House of Edinburgh, after his ducal title. -0:30

(Revealed

Incrementally)

Possession of Iceland passed from the Kingdom of Norway

(872–1397) to the Kalmar Union in 1415, when the kingdoms

of Norway, Denmark and Sweden were united.

The Duke’s uncle, Lord Mountbatten, advocated the name

House of Mountbatten.

-0:30

A month later, British armed forces conducted Operation

Fork, the invasion and occupation of the country, violating

Icelandic neutrality.

The Duke complained, "I am the only man in the country not

allowed to give his name to his own children."

-0:30

Beginning on 20 May 1944, Icelanders voted in a four-day

plebiscite on whether to terminate the personal union with

Denmark, abolish the monarchy, and establish a republic.

With Elizabeth’s accession, it seemed probable the royal

house would bear the Duke of Edinburgh’s name, in line with

the custom of a wife taking her husband’s surname on mar-

riage.

-0:30

.

.

.

.

.

.

Gold

Evidence

After the German occupation of Denmark on 9 April 1940,

the Althing replaced the King with a regent and declared that

the Icelandic government would take control of its own de-

fence and foreign affairs.

With Elizabeth’s accession, it seemed probable the royal

house would bear the Duke of Edinburgh’s name, in line with

the custom of a wife taking her husband’s surname on mar-

riage.

-0:30

A month later, British armed forces conducted Operation

Fork, the invasion and occupation of the country, violating

Icelandic neutrality.

The British Prime Minister, Winston Churchill, and Eliza-

beth’s grandmother, Queen Mary, favoured the retention of

the House of Windsor, and so on 9 April 1952 Elizabeth

issued a declaration that Windsor would continue to be the

name of the royal house.

-0:30

Table 4: Claims and evidence shown to players in the voting phase: the voter must detect which claim is incor-

rect. Initially, the player only sees the claim—if the player can answer with only that, they get the most points.

Automatically found evidence is shown one by one upon the voter’s request. Waiting and asking for evidence both

decrease the time—and the points—available. Eventually, if time does not run out, the gold evidence selected by

the author of the claim is shown.

Answer:TheclaimaboutElizabethIIisrefutedbytheevidence.
given the concatenated gold evidence and claim, a

BERT-base model (Devlin et al., 2019) outputs a

binary entailment / contradiction label.

For end-to-end label accuracy, we use the same

models but test only retrieved (rather than gold)

passages. During training we include both the gold

and the top two retrieved passages.

5 Experiment Results: Machines

Spotting False Claims

This section studies the performance of existing

automatic methods on FM2 for both the retrieval of

evidence (Section 5.1) and for entailment once the

results are retrieved (Section 5.2).

5.1 Retrieval Results

Retrieving evidence for FOOLMETWICE is consid-

erably harder (Table 5); we also include compa-

rable results on FEVER. The documents retrieved

by DPR are consistently better than the ones by a

TF-IDF system for both of the datasets we tested,

which is consistent with other work on dense text

retrieval (Guu et al., 2020).

Dataset R-Precision Recall@5 Recall@10

TF-IDF
FEVER 25.3 44.1 53.2

FOOLMETWICE 10.4 21.2 28.3

DPR
FEVER 32.0 50.4 58.7

FOOLMETWICE 25.3 42.6 51.0

Table 5: Results of evidence retrieval baselines on

FOOLMETWICE and FEVER. R-Precision is defined

as the precision@k, where k is the number of gold evi-

dence snippets for the claim. FOOLMETWICE is harder

for both the retriever systems.

5.2 Entailment Results

This section presents the results of training a

BERT (Devlin et al., 2019) model for the entail-

ment task of FOOLMETWICE. Given a claim and

the gold evidence, does the evidence support or

refute the claim? To compare with FEVER, we dis-

card all not enough evidence examples, because the

lack of evidence for this class makes it trivial to

classify correctly.

Following Gururangan et al. (2018), we first

train a claim-only classifier, which ignores the evi-

dence text. FOOLMETWICE examples are harder

to classify without looking at the evidence (Ta-

ble 6), indicating that the claims contain fewer
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Dataset Claim-Only EASY HARD ALL

FOOLMETWICE 61.9 86.1 66.4 78.1

FEVER 79.1 97.1 79.3 93.3

Table 6: Comparison of dev accuracy between FEVER

and FOOLMETWICE for different partitions of the

data and when using only claims. The partition into

EASY and HARD splits is based on the claim-only clas-

sifier: the claim-only classifier can solve EASY exam-

ples. FOOLMETWICE examples thus are comparable

to HARD FEVER’s difficulty.

Retriever Top-1 Top-3 Top-5

Oracle 69.3 – –

TF-IDF 62.3 62.0 61.2

DPR 64.2 63.6 63.9

Table 7: End-to-end label accuracy results of retrieval

followed by entailment on FOOLMETWICE. We vary

the number of retrieved examples at prediction time.

We compare against using the gold evidence as an or-

acle, which differs from Table 5 in using a single 100
word passage as evidence.

“give away” artifacts compared to FEVER as already

suggested by Table 3. We provide additional dis-

cussion in Appendix C.

Like the techniques proposed by Clark et al.

(2019), the claim-only classifier can also be used

on both FOOLMETWICE and FEVER to split the

dev sets into “easy” and “hard” partitions: The

EASY partition contains all examples correctly clas-

sified by a claim-only classifier, and the HARD par-

tition has everything else. The similar accuracy

of the FOOLMETWICE dev and HARD FEVER dev

partitions further suggests that FOOLMETWICE is

comparable to the harder and higher-quality subset

of FEVER (Table 6).

We also train an end-to-end verification model

that, rather than taking evidence as given, must

use noisy passages from a retrieval system (Sec-

tion 4.1). At train time, we generate multiple train-

ing instances for each claim using either the gold

evidence or the top two retrieved examples. At pre-

diction time, we average the logit scores of each of

the top-k retrieved passages (Table 7). We include

a so-called oracle setting for a fair comparison of

the improvement margin. This number differs from

Table 6 in that it uses a single gold 100 word pas-

sage as evidence instead of short sentences, which

might introduce noise.

6 Dataset Analysis: Humans Spotting

and Writing False Claims

While the previous section focuses on how well

automatic methods can detect false claims, this

section focuses on human ability. Voters are usually

right and were fooled 20.40% of the time. This

section addresses how players are fooled and how

this compares to computers.

To provide a better picture of the strategies play-

ers use to craft challenging claims, we manually

sample fifty instances from the development set

that both models and humans answer incorrectly.

We focus on these examples because they are the

most difficult and are the emphasis of our adversar-

ial technique. Two claims were mislabeled and two

more lacked a necessary evidence span. Table 8

shows examples of each of the strategies, which we

discuss in more detail in this section.

Temporal Many of the most challenging claims

require an inference about time: whether one event

happened before another, how long an event hap-

pened, or whether an event happened during a pe-

riod. While many of these are based on years,

centuries, or other explicit markers of time, some

authors use narrative time. For example, the page

for the novel As I Lay Dying describes the plot in

order, so it’s difficult for either a system or a hu-

man given sentences (without knowing where they

appear in the original page) to know when Addie

Bundren dies. This shows some of the limitations

of the setup: not only must voters reason across

multiple pieces of evidence, this reasoning is only

possible if they know the order in the underlying

evidence. Other markers of time include “the pilot”

for the first episode of The Office; readers must

realize that if Kelly Kapoor was introduced in the

episode Diversity Day, that implies Mindy Kaling’s

character did not appear in the pilot.

Reasoning A related, but more general, strat-

egy requires the reader to reason: mathematically,

applying definitions, or understanding hyponomy.

For example, knowing that the child of your cousin

is your second cousin or recognizing that “This

mirrors the Disney Parks East regional division

consisting of Shanghai Disney Resort, Hong Kong

Disneyland and Walt Disney Attractions Japan. . . ”

implies that there are more than two Walt Disney

resorts outside of the United States.
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Name Ratio Label Claim & Gold Evidence

Temporal 26% R

Claim: The Flavian Amphitheatre, which was mainly used for gladiatorial contests,
could hold over 50,000 people, and animal hunts continued until the 10th century.
Evidence: Animal hunts continued until at least 523, when Anicius Maximus celebrated
his consulship with some venationes, criticised by King Theodoric for their high cost.

Reasoning 26% S

Claim: Darius Milhaud was a French composer that had a child that was his second Cousin.
Evidence: In 1925, Milhaud married his cousin, Madeleine (1902–2008), an actress and
reciter. In 1930 she gave birth to a son, the painter and sculptor Daniel Milhaud, who was
the couple’s only child.

Paraphrase 22% R
Claim: Sister Carrie sold poorly, and was criticized for taking the Lord’s title in vain.
Evidence: The book was also criticized for never mentioning the name of God.

Diversion 16% S

Claim: Following his retirement from the MLB, Prince Hal became a top executive of
a real estate company.
Evidence: After his retirement from baseball, Newhouser was away from the sport for
20 years, serving as a bank vice president.

Controversy 8% S

Claim: Francis Marion fought in the Revolutionary War and was an influence for the
protagonist in the movie, The Patriot, where his character highly altered to show him as
good natured.
Evidence: Sean Busick . . . says that based on the facts, “Marion deserves to be remembered
as one of the heroes of the War for Independence.” . . . the film’s depiction of Martin “as a
family man and hero who single-handedly defeats countless hostile Brits” . . . was one of
the “egregious oversights” that TIME magazine cited when listing The Patriot as
number one . . . historically misleading [film]”

Table 8: An ontology of human strategies for creating challenging claims in our dataset, sampled from claims that

challenged both humans and computers.

Paraphrase A well-known strategy to confuse

entailment systems is to change words so that there

are fewer exact matches. Some of these are straight-

forward: “Titration is used when doctors test how

much sugar is in a patient’s liquid waste” is almost

a direct paraphrase of “glucose in urine may in-

dicate diabetes in a patient”. Other paraphrases

are more poetic: “Charles Evans Hughes shuffled

off this mortal coil in Massachusetts, and then was

taken to New York to be submerged in soil” para-

phrasing “Hughes died in what is now the Tiffany

Cottage of the Wianno Club in Osterville, Mas-

sachusetts. He is interred at Woodlawn Cemetery

in the Bronx, New York City”. These paraphrases

are realistic, similar to how humans might restate

facts to make them more accessible or more inter-

esting to a reader.

Diversion An interesting strategy to fool the re-

trieval phase of FEVER systems is to create claims

that point to specific text but not the text that refutes

or supports the claim. For example, “Following

his retirement from the MLB, Prince Hal became a

top executive of a company” retrieves information

about how Hal Newhouser earned the nickname

“Prince Hal” and his later business investments but

not his post-baseball career in banking.

Controversy A more fundamental issue with en-

tailment systems is that even trusted sources such

as Wikipedia contain contradictory evidence. This

is most prominent with interpretations of works of

fiction, where there are multiple theories about the

same work. A skillfully written claim can retrieve

one viewpoint while using an opposing viewpoint

as the gold evidence.

For example, one claim strongly took the posi-

tion that the end of the film Inception was a dream.

Voters saw evidence to the contrary and thought

the claim was refuted. Because systems focus on

the highest scoring retrieved passages (as do the hu-

man voters), this lead both humans and computers

to overlook the disputed interpretations.

6.1 What was difficult for humans?

The amount of evidence a human needs is a unique

metric of how difficult a claim is for humans (al-

though incremental evidence is recommended for

question answering systems in Boyd-Graber and

Börschinger (2020), to the best of our knowledge

it has not been applied to entailment or validation).

The claims that most challenge humans typically

use diversion (e.g., “The Quiet Man was a song

by Bing Crosby about a soldier who lost his voice

from a bomb in World War 2”), which is particu-

larly challenging for retrieval systems. Other com-
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mon strategies for the claims most challenging for

humans were paraphrase, which can “hide” the rel-

evant evidence and prevent retrieval, and reasoning,

which often requires multiple pieces of evidence to

reach a conclusion.

7 Limitations and Conclusion

While this paper seeks to advance the ability of hu-

mans and computers to support or refute statements

entailed from a static, reliable source, the goal

of examining arbitrary statements remains elusive.

By construction, we have focused on statements

that are incorrect because of factual errors. Other

datasets that use human-sourced obfuscations or

deception are more nuanced and use framing or

shading (Pan and Kosicki, 1993), which models

trained on this dataset cannot detect. Our goal is

to focus on clear facts that can be recognized by

computers, which is already challenging enough.

Further improving verification likely requires

creating targeted datasets that focus on specific

strategies for creating statements that are refuted

by evidence, perhaps selecting different explana-

tions for particular users (Feng and Boyd-Graber,

2019). Likewise, a more complicated task likely re-

quires more nuanced incentives and instructions for

authors. However, this dataset provides a founda-

tion to build these richer, more challenging datasets

for entailment.

Ethical Considerations

As our work involves human participants, all play-

ers provided informed consent and no personally

identifiable information (PII) was collected or will

be released. The collected data have been vetted

for presence of PII as well as offensive language

through heuristics and random sampling.

Some participants received fair compensation in

the United States in exchange for playing the game,

but that compensation was not tied to speed or accu-

racy to prevent distorting the motivation of players.

Intrinsic motivation, such as curiosity, competitive-

ness, creative drive and fun, rather than extrinsic

motivation has been shown to produce higher qual-

ity results (Gneezy and Rustichini, 2000).

The released data and the experiments we con-

ducted are in English, therefore we do not claim

generalization of our findings across languages.

However, we believe that the proposed methods

could be applied in other languages using other

available corpora as a source of evidence.
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Appendix

A Experimental Setup

In this section we provide details on the hyper-

parameters used and the experimental setup. All

BERT models described are of base size (12 layers,

16 attention heads, 768 hidden dimension), and

contain 110 million parameters.

The training is done for 10 epochs, a learning

rate of 10−5. We use a batch size of 32 and a

learning rate of 512. On a single Cloud TPU v2

the model can process one batch 180ms, and a full

epoch in around one minute. For all the reported

results we take the median over 3 random seeds.

B Game Interface

In this section we include screenshots of the three

main screens of the game. Figure 2 shows menu in-

terface that allows players to choose topics accord-

ing to their interests, we include many Wikipedia

categories to ensure a diverse set of options. Figure

3 has example of the voting game, the simplest and

fastest way to engage with the game and understand

how to be a good author as well. Finally, figure 4

shows the authoring user interface, that displays

the retrieved and selected gold evidence as the user

types. Matching tokens in the text and the retrieved

evidence are highlighted.

C Local Mutual Information

Tables 9, 10 list the top-10 predictive bigrams for

the REFUTES label using Schuster et al. (2019)’s

method of computing Local Mutual Information

(LMI), defined for a bigram b and label l as:

LMI (b, l) = p (b, l) · log

(

p (l | b)

p (l)

)

where the probabilities use the empirical counts.

Consistent with the much lower claim-only clas-

sifier (see Table 6), FOOLMETWICE contains no

“give away” bigrams that are highly predictive of

the label on both the training and development data

whereas, as previously reported by Schuster et al.

(2019), FEVER has many. Moreover, the “quality”

of predictive bigrams for FEVER suggests that an-

notators (subconsciously) used specific strategies

when writing REFUTES examples (“is only”, “did

not”, “is incapable”), but no such patterns can be

seen for FOOLMETWICE.

Bigram Train

LMI ×10−5
Dev

LMI ×10−5

is only 622 938
did not 859 528
not a 775 481
was not 729 −
incapable of 721 710
only a 455 717
is incapable 474 551
was only − 536
has only 447 −
yet to 420 384
of being − 385

Table 9: Top-10 highest LMI bigrams for REFUTES

label in FEVER for both Train and Dev. Note the large

overlap of label-predictive bigram artefacts.

Bigram Train

LMI ×10−5
Dev

LMI ×10−5

by a − 562
mad , − 502
, mad − 502
on the − 473
innocent iii − 467
statue of − 426
for his − 407
pope innocent − 407
mary , − 365
queen of − 365
the second 338 −
is a 312 −
was a 307 −
was the 306 −
is the 233 −
of his 200 −
has never 189 −
was born 177 −
written by 165 −
about a 162 −

Table 10: Top-10 LMI bigrams for REFUTES label in

FOOLMETWICE for both Train and Dev. Note both the

absence of “give-away” bigram overlap beween Train

and Dev; and the more “random” quality of predictive

bigrams compared to those for FEVER in Table 9
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Figure 2: Menu where players select between authoring or voting on claims. A diverse set of categories is presented

to engage people according to their interests.

Figure 3: The voting interface shows one entailed and refuted claim. The player has two decide which one is the

refuted one before time runs out. Getting clues consumes 30 seconds in the timer.
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Figure 4: In the writing screen, players are asked to write either an entailed or refuted evidence given the evidence

on the right hand side. As they write, a retrieval system picks the most relevant evidence. They can mark the gold

evidence that supports or contradicts the claim, and are instructed to write in such a way that the gold evidence is

not at the top of the retrieved list.


