
Foot-mounted INS for Everybody – An
Open-source Embedded Implementation

John-Olof Nilsson1, Isaac Skog1, Peter Händel1, and K.V.S. Hari2
1Signal Processing Lab, ACCESS Linnaeus Centre, KTH Royal Institute of Technology, Stockholm, Sweden
2Statistical Signal Processing Lab, Department of ECE, Indian Institute of Science (IISc), Bangalore, India

Abstract—We present an open-source, realtime, embedded
implementation of a foot-mounted, zero-velocity-update-aided
inertial navigation system. The implementation includes both
hardware design and software, uses off-the-shelf components and
assembly methods, and features a standard USB interface. The
software is written in C and can easily be modified to run user
implemented algorithms. The hardware design and the software
are released under permissive open-source licenses and produc-
tion files, source code, documentation, and further resources are
available at www.openshoe.org. The reproduction cost for a single
unit is below $800, with the inertial measurement unit making
up the bulk ($700). The form factor of the implementation is
small enough for it to be integrated in the sole of a shoe. A
performance evaluation of the system shows a position errors
for short trajectories (<100 [m]) of ± 0.2-1 % of the traveled
distance, depending on the shape of trajectory.

I. INTRODUCTION

Foot-mounted inertial navigation is not rocket science and

the path from a theoretical algorithm to a realtime embed-

ded implementation might seem deceptively short. However,

our experience is that the difficulties of developing a well-

performing embedded foot-mounted inertial navigation system

(INS), yet surmountable, are easily underestimated. The num-

ber of software and hardware components that need to work

together is large enough such that getting them to work in

harmony is not trivial. Further, obtaining sufficient computa-

tional power and versatility on an embedded processor and

sufficiently low computational cost of the filter algorithms re-

quire care in platform selection and algorithm implementation.

Moreover, attaining a form factor and mechanical durability,

such that the system can be integrated into the sole of a shoe

and still be able to use off-the-shelf components and easily

available construction methods, is challenging. Few solutions

exist on the market or in the literature with even fewer

solutions that provide the documentation and modifiability

desired by researchers.

Therefore, to give researchers, teachers, and system design-

ers a shortcut to a working foot-mounted INS implementation

suitable for further research, education, and rapid prototyping,

and usable as a component in larger pedestrian navigation

systems, we present an open-source, embedded, foot-mounted

INS implementation containing both hardware design and

software/algorithm implementations. Our hope is that such an

implementation will save time, sweat, and tears for navigation

researchers as well as facilitate the use of the technology by

researchers not specialized in aided INS, e.g. in fields such

Fig. 1: Shoes with units of the presented foot-mounted INS implementation
integrated in the heels and cabling with USB connectors at the shoe shafts.
The cabling inside the shoes is normally protected by a leather patch but is
here displayed for clarity.

as biomedical engineering, behavioral science, and ubiquitous

computing. The value of the embedded implementation also

lies in its modularity and in its small weight, bulk, and price

in comparison with the typical sensor-plus-laptop research

systems. These properties alleviate the work of integrating the

foot-mounted INS in larger realtime navigation systems, and

make it feasible to equip a larger number of users with foot-

mounted INS units for field performance tests and cooperative

navigation studies.

The presented system is a zero-velocity-update (ZUPT)-

aided INS built from off-the-shelf components and with a

standard USB interface. The filtering is implemented on a

microcontroller (µC) fitted with an OEM inertial measurement

unit (IMU) in a casing, which, in turn, is integrated in the sole

of a shoe. Figure 1 shows a pair of shoes with the system units

integrated in the heel. The system can be configured to run

any user implemented algorithm executable in ∼ 105 clock

cycles per time update. The software and hardware design

are released under permissive open-source licenses. Available

resources include ready-to-compile, as well as pre-compiled

source code, hardware production files, a Matlab system

interface, and documentation, with everything from electronic

schematics and CAD-drawings of casing components to code

documentation and installation instructions. All resources can

be downloaded from www.openshoe.org.

jnil02
Typewritten Text
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text
Appears in: 2012 IEEE/ION Position Location and Navigation Symposium (PLANS), April 23-26, 2012, Myrtle Beach, SC, pp140-145

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

jnil02
Typewritten Text

IMU

Accelero-

meters

Gyro-

scopes

∫

dt

y

∫

dt
∫

dt+

−g

position

velocity

orientation

Mechanization eq.

Fig. 2: Block diagram of the INS and the internal filtering. The gray arrow
indicates the insertion point of correction from the feedback of Fig. 3.

IMU
Mechani-

zation eq.

position
velocity
orientation

INS

ZUPT

det.
K

Fig. 3: Block diagram of the ZUPT-aided INS. The zero-velocity detector (2)
switches the feedback on and off. The feedback will affect all INS states since
they are coupled with the velocity error. The gain K of the feedback is given
by the Kalman gain.

II. FOOT-MOUNTED INS

A foot-mounted INS is simply an INS mounted on the foot

combined with additional filtering that improves the accuracy

of the INS by using properties of the motion related to the IMU

mounting point (the foot), i.e. regularly reoccurring stationary

periods. For a tutorial introduction to foot-mounted INS see

[1]. The principles of inertial navigation are simple. The

derivative of the position is the velocity and the derivative

of the velocity is the acceleration. Consequently, starting at

stationary, integrating the acceleration once and twice renders

the velocity and the change in position, respectively. To obtain

the acceleration in the navigation coordinate frame, the mea-

surement vector from the 3-axis accelerometer must first be

transformed to the navigation coordinate frame, and thereafter

have the gravity acceleration component subtracted from it.

This is made possible by a 3-axis gyroscope, which measures

the rotational rate of the system. Integrating the rotational

rate gives the relative orientation of the IMU, which can be

used to transform the accelerometer measurements. Together,

this gives the position, the velocity, and the orientation of the

IMU. A block diagram in Fig. 2 illustrates the basic filtering.

A discretization (first order) of the continuous block diagram

gives

xk

vk

qk

 =

xk−1 + vk−1dtk
vk−1 + (qk−1fkq

−1

k−1
− g)dtk

Ω(ωkdtk)qk−1

 (1)

where k is a time index, dtk is the time difference between

measurement instants, xk is the position, vk is the velocity,

and qk is the quaternion describing the orientation of the

system relative to the navigation coordinate frame, fk is

the accelerometer measurements, g is the gravity, ωk is the

gyroscope measurements (all in 3 dimensions), and Ω(·) is the

quaternion update matrix. The IMU together with the filtering

x y

z

Fig. 4: Close-up of the position tracking of a single step given by the foot-
mounted INS of Fig. 3. The system is mounted in the heel. The small
discontinuity below the heel is the correction (ZUPT) provided by the
feedback.

(1) constitute the INS. For a detailed treatment of inertial

navigation see [2].

Correctly initialized, the INS can give state estimates for all

future times. Unfortunately, for low-cost sensors, the quality of

the estimates deteriorates swiftly. Due to the integrations in the

inertial navigation, small measurement errors accumulate. For

the microelectromechanical system (MEMS) type of inertial

sensors which are commonly used for foot-mounted inertial

navigation, this renders the position estimates useless after

∼ 10 [s]. However, the fact that the foot-mounted IMU will

return to stationary at regular intervals can be exploited to

circumvent this. The stationarity can be detected from the

inertial measurements by hypothesis testing [3]. The system

is considered stationary at time instant k if

1

N

∑

ℓ∈Wk

(

1

σf

∥

∥

∥

∥

fℓ − g
f̄k

‖f̄ℓ‖

∥

∥

∥

∥

+
1

σω

‖ωℓ‖
2

)

< γ, (2)

where ‖ · ‖ is the 2-norm, f̄k is the mean accelerometer

measurements over the time window Wk of length N samples

centered around k, σf and σω are measurement error standard

deviations, and γ is a zero-velocity detection threshold. If

the detector (2) has declared the system stationary, the INS

should give a zero-velocity estimate. Due to the accumulated

errors it most likely will not. This discrepancy can be used

to correct the INS, giving the so-called ZUPTs, which greatly

increases the quality of the estimates. A Kalman filter feedback

(correction) appears as

xk

vk

dθk

 ⇐

xk

vk

0

+Kkvk and qk ⇐ Ω(dθk)qk, (3)

where Kk is the Kalman gain, and dθk is the correction in

orientation. The block diagram of Fig. 3 illustrates the ZUPT-

aiding of the INS. For a detailed treatment of aided INS see

[4].

Equations (1)-(3) constitute a minimal filtering for a foot-

mounted INS and are the formulation we used for the pre-

sented implementation. As seen in Fig. 4, this gives an accurate

position tracking of the foot with [cm] to [mm] accuracy over

a step. The behavior of the system over longer trajectories is

presented in Section V. Note that the aiding works for all types

of motions (not just walking), but for the system to perform

well, it should return to stationary with intervals of ∼ 2 [s] or

less.

III. EMBEDDED IMPLEMENTATION

For an embedded, foot-mounted INS implementation, the

hardware required is: an IMU that provides the inertial mea-

surements, an embedded processing platform that provides the

computation capability and external hardware interfaces, and

a shoe or equivalent that provides a mounting point for the

system. In addition, software implementations of (1)-(3) and

other auxiliary functions for initialization and system control

are needed. The hardware, software, and footware of the

current implementation are described in the following three

subsections.

A. Hardware

The main hardware components of the system is the IMU,

a printed circuit assembly (PCA) with the µC and auxiliary

components, and a casing. In addition, there is cabling and

an external USB connector on another small PCA. Figure 5

shows the hardware components and assemblies.

An IMU contains three orthogonally mounted accelerom-

eters and gyroscopes. The IMU of the implementation is the

ADIS16367 iSensor from Analog Devices seen in Fig. 5a. The

dynamic range of the accelerometers is ±18 [g] and for the

gyroscopes, it is ±1200 [◦/s]. The bandwidth and sample rate

of the IMU is 330 [Hz] and 820 [Hz], respectively. The IMU

has a standard serial peripheral interface (SPI). The casing of

the IMU, with its 23.5 [mm] sides, limits the minimum height

of the system assembly.

The IMU is connected to the main PCA shown in Fig.

5b. The PCA is based on a 23 × 23 [mm] 4-layer printed

circuit board (PCB). The main component of the PCA is a

32-bit AT32UC3C2512 (QFN64 package) µC from Atmel.

The µC provides hardware floating point arithmetic, facili-

tating the implementation of many filtering algorithms, and is

clocked at 42 [MHz] (clocking frequencies up to 66 [MHz]

are supported). The µC has a built-in USB slave device

controller, which means that it can work as a USB slave

device without any additional components; USB OTG is also

possible to implement. In addition to the µC, the PCA contains

connectors, an oscillator, and decoupling capacitors. A JTAG

interface to the µC is available on the PCA. An external

oscillator is needed since the internal oscillators have too low

quality for the INS. A systematic errors in the time differentials

dtk of a fraction of a percent gives significant scale errors

in the position estimates. Note that the IMU has interface

compatibility with all IMUs in the iSensor serie. Hence, a side-

effect of the implementation is that the main PCA constitute

an open-source USB interface to the iSensor IMU serie.

The IMU and the main PCA are enclosed in a plastic casing

shown in Fig. 5c. Grooves in the casing and the lid hold the

IMU and the PCA in place. Figure 5d shows the assembly of

the casing body, the IMU, and the main PCA.

A 5-wire ribbon cable, carrying the USB pins and an

additional pin for USB reprogramming, is soldered directly to

(a) The ADIS16367 IMU
from Analog Devices.

(b) Front side of the main PCA
with µC and oscillator, and back
side with the IMU connector.

(c) The system casing body with
grooves to hold the IMU and the
main PCA in place.

(d) The system assembly without
the casing lid.

(e) PCA including the USB con-
nector and the USB reprogram-
ming push button.

(f) Full system assembly ready
to be integrated in a shoe or
equivalent.

Fig. 5: Main hardware components and assemblies of the presented foot-
mounted INS implementation. The dimensions of the full assembly are 28.5×

32× 40.5 [mm].

the main PCB. The other end of the ribbon cable is soldered

directly in a small additional PCB, shown in Fig. 5e. This

PCB features a mini-USB connector and a push-button for the

reprogramming pin. Potentially, the USB connector could be

mounted in the system casing but the permanently mounted

cable allow integrations of the system in which the main

system assembly is not directly accessible.

A full system assembly is shown in Fig. 5f. The dimensions

of the full system assembly are 28.5 × 32 × 40.5 [mm]. The

system assembly is powered directly via the USB vbus pin.

Optionally a battery can be added. The power consumption is

< 0.75 [W] (< 150 [mA] at 5 [V]).

B. Software

The µC software consists of a runtime framework, software

communication interfaces, and filter algorithm implementa-

tions. The software has been written in C, and compiled

and tested with GCC and the avr32gcc compiler utility. The

µC power-up

Reprogramming

pushbutton pressed
Start

bootloader

Initializ-

ation

Wait for

interrupt

Read data

from IMU

Process

sequence

Receive

commands

Transmit

data

f[0]()

f[1]()

f[2]()

f[N]()

Main-

routine

Fig. 6: Flow chart of the runtime framework. The runtime framework runs
in an infinite loop that reads data from the IMU, cycles through the process
sequence, and receives commands from and transmits data to, the user.

Atmel Software Framework (ASF), which is openly available

from Atmel, provides many of the low-level functionalities.

The µC program memory contains a USB-bootloader, which

means that the system can be reprogrammed via the USB

interface. The programming mode is entered by pressing the

reprogramming push button (see Fig. 5e) on power-up.

The runtime framework contains the main-routine and is

directly or indirectly responsible for calling all other run-

time routines. Figure 6 shows a flow chart of the runtime

framework and its components. The runtime framework calls

initializations routines after which it enters an infinite loop

in which it: waits for an interrupt, read data from the IMU,

runs through a process sequence, and receives commands from

and sends data to the user. The initialization routines setup

and configure necessary µC components. After power up, the

IMU regularly sends interrupts, signaling that new inertial

measurements are available. These are the interrupts that

the runtime framework is waiting for. The process sequence

is a dynamic sequence (pointer array) of arbitrary filtering

functions (function pointers). Functions can be inserted or

removed from the process sequence based on user commands

(by command response functions) or by functions in the

sequence itself. This way the runtime framework can be

configured to run user implemented algorithms. During normal

operations, this sequence contains the functions for the ZUPT-

aided INS, i.e. implementations of equations (1)-(3). Upon

receiving data from the user, the runtime framework parses

them, and executes command response functions. All valid

commands are associated with a response function, which is

executed on the µC. The transmitted data can be any state.

States can be transmitted a single time, continuously with the

rate determined by a rate divider, or based on some condition

detected in the process sequence. The commands and the

transmitted data have standard formats with a header, payload,

and a checksum. Following the transmit stage, the system

listens for the next interrupt.

The software communication interface provides the means

of communicating between the IMU and the µC and between

the µC and a user platform (USB host). The ASF provides

low-level SPI and USB functionalities while higher-level func-

tionalities, such as commands and command level parsing and

responses, are encoded in the communication interface. The

USB device controller in the µC is configured to appear as a

virtual serial port (CDC device).

The filter algorithm implementations are the processing

algorithms corresponding to (1)-(3) together with auxiliary

functions. With an update rate of 820 [Hz] and a clock

frequency of 42 [MHz], the filtering is limited to ∼ 5 · 104

clock cycles. However, this can be tweaked by reducing the

update rate and increasing the clock frequency. The current

implementation of (1)-(3) executes within ∼ 2 · 104 clock

cycles.

The system has 3 main modes of operation: 1) For data

collection, it can work as a pure IMU. Low-pass filters can

be added, and the output downsampled from the maximum

sampling rate of 820 [Hz] to a desired output rate. 2) For stand-

alone navigation, the system can work as a stand-alone ZUPT-

aided INS (or run any user defined algorithms). Any system

states can be output in realtime up to 820 [Hz] or based on user

defined conditions. 3) For integration in a larger pedestrian

navigation system, it can work as a displacement and heading

change sensor. In short, this means that the system transmit

relative displacement and heading changes, together with error

covariances, for each step.

C. Footware

Although the shoes we have used were especially made for

the system, there is nothing special about them except for

the casing and cabling integration. The custom made shoes

were made possible at a reasonable cost (∼ $30) by the Indian

partner in the project. However, any standard shoe with a

carved out hole in the sole will do. Note that the mounting

point is important. We stress that, as exemplified in Fig. 1,

the system should be integrated in the sole to get as close

as possible to the contact surface between the user and the

ground. If the system is attached to the uppers of the shoes,

system parameters need to be changed and the performance

will be worse. Since the system has a permanently mounted

extension cable and can be programmed via the USB, the units

themselves do not need to be easily accessible. Note that the

system assembly is strong enough to support the weight of a

user.

IV. SYSTEM REPRODUCTION AND MODIFICATION

All software and hardware design are licensed under per-

missive open-source licenses and can be freely used, copied,

modified, integrated, and/or redistributed. Reproducing the

implementation only requires basic engineering skills. For

reproduction, the following four steps have to be done:

1) Acquire an IMU.

2) Have the PCAs produced by a PCB print and population

service.

3) Have the casing printed by a rapid prototyping service.

4) Connect the different parts and program the µC.

After completing these steps, the system will be ready for use.

Optionally, one may chose to print and populate the PCBs

oneself. However, this requires some special equipment and

soldering skills since currently the implementation is based on

a 4-layer PCB design and the components are surface mounted.

The reproduction cost is less than $800, with the IMU making

up the bulk of the cost ($700), and the printing and population

of the PCBs and printing of the casing making up the rest.
Likewise, modifying the system is simple. PCB and casing

designs are available in standard formats and can readily

be changed to suit ones needs. The software is documented

with tagged comments (Doxygen), and the code is available

together with AVR Studio 5 project files, making linking

with new user-implemented algorithms straight forward. The

procedure to implement and run new algorithms is as follows:

1) Divide the algorithm into a suitable set of processing

functions. The functions can take no arguments and most

therefore use global variables (states) to communicate.

2) Implement the functions in C and configure the runtime

environment to recognize (link with) the functions.

3) Setup a new command with a response function which

inserts the new functions into the process sequence.

4) Compile and link the code for the AVR32 platform and

program the µC.

5) Power up the system and send the newly defined com-

mand over the USB.

If needed, new state variables can be setup in the runtime en-

vironments. Note that the inertial measurements are available

for the processing functions as state variables.

V. PERFORMANCE EVALUATION

The nonlinear and unstable nature of a foot-mounted INS

filtering makes a general performance analysis difficult. The

performance is dependent on the true trajectory in a non-

trivial way. The main obstacle is that the position errors are

strongly coupled with the heading errors via the true (relative)

position. A heading error of 0.5◦ gives a relative position error

of 1% of the traveled end-to-end point distance. However, if

the user then walks back the same distance, the position errors

cancel out. Scale errors are canceled out likewise. Two extreme

trajectory types can be identified: a straight-line trajectory in

which the heading error couples the strongest with the position

error; and a closed-loop symmetric trajectory in which the

heading and other trajectory induced errors largely cancel

themselves out. By studying the errors in such trajectories,

we can get a rough separation of the position errors induced

by the heading errors and the other error sources.
In Fig. 7, 100 straight-line and 100 figure-of-eight trajec-

tories are shown. Close-ups of the final position estimates of

Fig. 7: The straight-line and the figure-of-eight evaluation trajectories. Blue
lines correspond to right foot trajectories and black lines correspond to left
foot trajectories. Close up of the final positions are found in Figs. 8 and 9.

Fig. 8: Scatter plots of the position errors at the end of the straight-line
trajectories shown in Fig. 7. Green crosses correspond to right foot end
positions and red circles correspond to left foot end positions. The black
cross indicates the reference final position.

Fig. 9: Scatter plots of the position errors at the end of the figure-of-eight
trajectories shown in Fig. 7. Green crosses correspond to right foot end
positions and red circles correspond to left foot end positions. The black
cross indicates the reference final position.

the two different types of trajectories together with 1σ error

covariance ellipsoids are shown in Figs. 8 and 9. The trajecto-

ries are recorded from the right (blue) and the left (black) foot

with two different IMUs (four IMUs in total). The gyroscopes

were calibrated prior to recording the trajectories but not

between individual trajectory measurements. The trajectories

were taken over a period of roughly 1 hour for each IMU

pair. The conditions of the trajectories are normal walking

speed (∼ 1.6 [m/s]) on a solid floor. The system works fine for

running motion (not displayed). Running motion even gives a

somewhat better performance for the same trajectories. This is

due to the fact that less gyro measurement errors accumulate

since the travel times of the trajectories become shorter. For

a closed-loop trajectory, the initial heading alignment errors

cancel out, but for a straight-line trajectory they will not.

Therefore, the mean of the final positions for the straight-

line trajectories was used to calculate the initial orientation. A

plate with imprints of the shoes was used to get the same initial

orientation for each trajectory. The length of the straight-line

trajectory was set to 50 [m] with a Class III measurement tape

(<2 [cm] error on 50 [m]).

The Figs. 7, 8, and 9 are intended to give an idea of

the behavior and performance of the system. A detailed

performance analysis is beyond the scope of this article.

However, it can be noted that the errors perpendicular to

the trajectory for the 50 [m] straight-line trajectory is around

±0.5 [m]. This corresponds to 1% of the traveled distance.

This is probably a combination of initial heading alignment

errors, integrated gyroscope measurement errors, and filter

induced errors. We expect to have an accuracy of approx.

±1 [mm], between heel and toe of the shoe, of the initial

alignment. This corresponds to ±0.15 [m] induced error over

50[m] (±0.3%) and consequently the rest is judged to be

due to measurement and filter induced errors. The errors

along the straight-line trajectory (distance errors) is around

±0.15 [m] corresponding to ±0.3% of the traveled distance.

The closed-loop errors on the figure-of-eight trajectory is

around ±0.15 [m] corresponding to ±0.2% of the traveled

distance (approx. 80 [m] long trajectory). Since the systematic

errors are consistent between different IMUs, they are most

likely caused by couplings to the trajectory itself. We can get

a verification of the cancelation of errors in the closed-loop

trajectory by noting that the variance in the length direction of

the straight line trajectory is roughly the same as the variance

in the symmetric closed-loop case. Position errors in the height

direction (not displayed) are also around ±0.3% of the traveled

distance.

VI. CONCLUSIONS

We have presented an open-source, embedded, foot-

mounted INS implementation containing both hardware design

and software. The system can easily be reproduced and used

without deeper understanding of the technology. Due to the

openly available software and hardware design, the implemen-

tation sets a reference for the field. Evaluation of the system

performance shows that the system has heading related errors

in the order of percent and residual errors in the order of tenth

of a percent of the traveled distance. Consequently, the heading

related errors dominate the system errors. The focus of the

implementation has been simplicity. However, the performance

results are in line or even better than many results published

in the literature.

ACKNOWLEDGMENT

We would like to acknowledge Syam Krishnan (ECE, IISc),

who helped us with the main PCB design, and Afzal Ameen

(APDAP, IISc), who helped us with review and production of

the casings.

Parts of this work have been funded by The Swedish Gov-

ernmental Agency for Innovation Systems (VINNOVA) and

Department of Science and Technology (DST), Government

of India.

REFERENCES

[1] C. Fischer, P. T. Sukumar, and M. Hazas, “Tutorial: implementation of a
pedestrian tracker using foot-mounted inertial sensors,” IEEE Pervasive

Computing, vol. 99, no. PrePrints, 2012.
[2] C. Jekeli, Inertial Navigation Systems with Geodetic Applications. de

Gruyter, 2001.
[3] I. Skog, P. Händel, J.-O. Nilsson, and J. Rantakokko, “Zero-velocity

detection: An algorithm evaluation,” Biomedical Engineering, IEEE

Transactions on, vol. 57, pp. 2657 –2666, nov. 2010.
[4] J. A. Farrell, Aided Navigation. Mc Graw Hill, 2008.

