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Abstract. A new theoretical model for the study of slow standing sausage mode oscillations in hot (T > 6 MK) active region
coronal loops is presented. These oscillations are observed by the SUMER spectrometer on board the SoHO satellite. The model
contains the transition region and the upper chromosphere which enables us to study the entire process of hot loop oscillations –
from the impulsive footpoint excitation phase to the rapid damping phase. It is shown that standing acoustic waves can be excited
by an impulsive heat deposition at the chromospheric footpoint of a loop if the duration of the pulse matches the fundamental
mode period. The pulse is immediately followed by a standing wave consistent with the SUMER observations in hot loops. The
amount of released energy determines the oscillation amplitude. The combined effects of thermal conduction and radiation on
the behaviour of the standing acoustic waves in hot gravitationally stratified loops are investigated. In addition to damping, these
effects lead to downflows which are superimposed on the oscillations. The implications of the results in coronal seismology are
discussed.
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1. Introduction

In the past few years observations by high-resolution space
imaging telescopes and spectrometers have confirmed the view
that the solar atmosphere has a very complex structure in which
a great variety of magnetohydrodynamic (MHD) waves are
supported. MHD waves are an important diagnostic tool for
the determination of the physical parameters of the medium
in which they propagate (MHD seismology). MHD waves are
also natural carriers of energy and represent a possible source
for heating of the solar coronal plasma and for solar wind
acceleration. Solar coronal structures support both propagat-
ing and standing MHD waves. Propagating slow magnetoa-
coustic waves have been detected in coronal plumes (Ofman
et al. 1997, 1999) and near the footpoints of coronal loops
(Berghmans & Clette 1999; De Moortel et al. 2000). Williams
et al. (2001) have revealed fast magnetoacoustic waves propa-
gating along a loop. Among the standing fast MHD waves ob-
served in coronal loops are the global kink (Aschwanden et al.
1999; Nakariakov et al. 1999) and sausage mode oscillations
(Nakariakov et al. 2003).

� Appendices A and B are only available in electronic form at
http://www.edpsciences.org

Oscillations interpreted as standing slow magnetoacoustic
waves have been recently detected in hot (T > 6 MK) loops
with the SUMER spectrometer on board the SoHO satellite
(Kliem et al. 2002; Wang et al. 2002, 2003). The observed pe-
riods are between 7–31 min. The outward propagating slow
waves observed near the footpoints of coronal loops by EIT
and TRACE can be continuously present for several hours. The
oscillations observed by SUMER are most likely excited im-
pulsively, as evidenced by the presence of large initial Doppler
shifts and impulsive profiles of intensity and line width. The
initial pulses with amplitudes up to 200 km s−1 are followed by
rapidly damped oscillations. The background sound speed in
hot loops is ≈300–400 km s−1 and, therefore, the oscillations
can be highly nonlinear. The damping times are between 5.7
to 36.8 min, i.e., they are proportional to the periods. These
oscillations usually have longer periods and larger amplitudes
than the standing kink mode oscillations in cool loops observed
by TRACE. For comparison, the displacement amplitudes are
about 4–5 times larger. Also, the scaling of the damping time
with the period is different. Unlike the transverse loop oscilla-
tions the SUMER hot loop oscillations are usually not associ-
ated with large GOES flares. They are believed to be excited
in the lower parts of the atmosphere near one of the footpoints.
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These facts suggest that the oscillations observed by SUMER
belong to a different type. The following arguments favour the
interpretation in terms of slow standing (or acoustic) waves.
The period of slow standing waves in a coronal loop can be
expressed in terms of the tube (or sound) speed and the loop
length (Roberts et al. 1984). The SUMER data show that the
phase speeds derived from the periods and loop lengths agree
well with the actual sound speed. Whether a slow mode wave is
a propagating or standing wave can be inferred from the phase
relationship between velocity and intensity: the phase differ-
ence is 1/4 period for standing waves and zero for propagating
waves. The fact that the intensity fluctuation lags behind the
Doppler shifts by a quarter period confirms that the oscillations
observed by SUMER are slow standing modes.

The cause of the rapid decay of the oscillations observed
by SUMER has attracted the attention of several authors. The
transverse standing loop oscillations observed by TRACE are
believed to be damped by resonant absorption (Ruderman &
Roberts 2002; Goossens et al. 2002) or phase mixing (Ofman
& Aschwanden 2002) due to enhanced shear viscosity or resis-
tivity. The mechanism responsible for the damping of trans-
verse waves is different from that acting on slow (predomi-
nantly longitudinal) waves. In the latter case the main dissipa-
tion mechanisms are thermal conduction along magnetic field
lines and compressive viscosity. Ofman & Wang (2002) mod-
elled the damping of slow standing waves with typically ob-
served solar parameters. They find that the damping time due
to compressive viscosity is an order of magnitude longer than
the damping time observed by SUMER. Because of the high
temperature of the loops, the large thermal conduction leads to
rapid damping of the oscillations. The scaling of the damping
time with period agrees well with the scaling derived by Wang
et al. (2003) from the observations. De Moortel & Hood (2003)
showed that in the linear limit the damping time is somewhat
longer compared to the observations. Mendoza-Briceño et al.
(2004) showed that the inclusion of gravitational stratification
results in a further 10–20% reduction of the damping time. The
isothermal 1D loop models used in the above mentioned studies
were enough to explain the rapid damping of the slow standing
mode oscillations and showed that the decay time is mainly
governed by the thermal conduction timescale.

The transverse kink mode oscillations are excited when a
loop is hit by nearby erupting filaments, flares and/or coro-
nal mass ejections. The process of the excitation of standing
acoustic waves is less clear. It has been demonstrated numeri-
cally that the second harmonic of a standing acoustic wave is
readily excited in flaring loops regardless of the location of the
heat deposition in the loop (Nakariakov et al. 2004; Tsiklauri
et al. 2004). However, many of the events observed by SUMER
have periods corresponding to the period of a fundamental
mode standing acoustic wave. The footpoint brightenings seen
in SXT images and the upward moving EUV emission along
the loop near the brightening footpoint suggest that the slow-
standing waves in hot loops seen by SUMER could be excited
by pressure disturbances associated with the injection of hot
plasma at the oscillating loop’s footpoint. (Wang et al. 2003) It
has been speculated that the brightening and the plasma injec-
tion near the footpoint of an oscillating loop could be due to

a sudden energy release caused by the process of magnetic re-
connection (Sarro et al. 1999; Wang et al. 2003). Alternatively,
the heat deposition could be due to nonlinear Alfvén waves
(Moriyasu et al. 2004).

Recently there have been reports on possible correlations
between the oscillations observed in the lower and upper re-
gions of the solar atmosphere (O’Shea et al 2002; De Pontieu
et al. 2003, 2005). In many cases the observations indicate that
the oscillations in the corona are excited at chromospheric or
even photospheric heights (e.g. De Pontieu et al. 2004). In the
present paper we attempt to further develop these ideas by in-
vestigating the possibility of the excitation of standing acous-
tic waves in coronal loops at their chromospheric footpoints
as suggested by the observations. The plasma temperature in-
side the loop undergoes steep variation from the footpoint to
the apex. Therefore, the loop models with constant background
temperature are insufficient for the theoretical investigation of
the excitation process of standing loop oscillations.

In the present work a 1D gravitationally stratified loop
model with an inhomogeneous temperature profile is applied
to the study of standing acoustic waves in coronal loops. The
temperature range covers the upper chromosphere, the transi-
tion region and the corona. This allows us to study the entire
oscillation process – from the impulsive footpoint excitation
phase to the rapid damping phase. It is shown how the fun-
damental standing slow waves can be excited by an impulsive
energy release at the chromospheric footpoint of a loop. The
numerical analysis is complemented by an analytical study. An
important parameter on which the existence of the oscillations
depends is the duration of the heat deposition. The effects of
thermal conduction and radiative cooling are examined.

2. Formulation of the problem

The longitudinal waves can be described by a 1D semicircular
loop model in which the only coordinate is the distance s along
the loop. The magnetic field guides the motion although it does
not appear explicitly in the governing equations. The acoustic
wave motion is governed by the nonlinear hydrodynamic (HD)
equations which can be represented in the conservative form:

∂ρ

∂t
+
∂ρv

∂s
= 0, (1)

∂ρv

∂t
+
∂ρv2

∂s
= −∂p
∂s
+ ρg‖, (2)

∂e
∂t
+
∂

∂s
[(e + p)v] = ρvg‖ + S, (3)

where

e =
p
γ − 1

+
ρv2

2
, (4)

p =
R
µ̃
ρT. (5)

Equations (1)–(3) are solved for the density ρ, the total energy
density e and the momentum density ρv, where v is the s com-
ponent of the velocity along the loop and

g‖ = −g cos
(
πs
L

)
(6)
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is the gravitational acceleration along the loop. In Eqs. (1)–(6)
S,R, µ̃, γ and L represent the net effect of sources and sinks of
energy, the gas constant, the mean molecular weight, the adia-
batic index and the total length of the loop, respectively. It has
been mentioned in the introduction that several mechanisms
could be responsible for the generation of standing acoustic
waves in coronal loops. From a mathematical point of view
the problem is reduced to appropriately selecting the initial-
boundary conditions and the term S on the righ-hand side of
Eq. (3) in such a way that standing acoustic waves are set up in
a loop with given parameter values.

3. Homogeneous loops

We first consider the simple case of an ideal homogeneous loop
in which all background quantities are constants. Assuming
that the perturbations are small we may linearise and reduce
the governing equations to the wave equation

∂2v

∂t2
= c2

s
∂2v

∂s2
, t > 0, 0 < s < L, (7)

where cs is the constant sound speed inside the loop. In the
case of reflecting boundaries Eq. (7) has standing acoustic wave
solutions which can be represented in the form

v(t, s) = cos

(
πkcs t

L

)
sin

(
πks
L

)
· (8)

Each mode is characterised by a harmonic number k = 1, 2, ...,
a period P = 2L/(kcs) and an initial velocity profile

v(0, s) = sin

(
πks
L

)
· (9)

An energy release at the apex will drive flows in opposite direc-
tions which may lead to the initial profile (9) with k = 2, i.e.,
to the generation of the second harmonic. This idea has been
tested numerically and applied to the study of flaring loops
(Nakariakov et al. 2004). However, Eq. (9) gives no clear hints
as to how the fundamental mode (k = 1) can be excited in a
coronal loop.

Standing acoustic waves of the form

v(t, s) = sin

(
(2k − 1)πcs t

2L

)
cos

(
(2k − 1)πs

2L

)
(10)

can be generated by a continuous sinusoidal driver at the foot-
point s = 0. The period of the fundamental mode is P = 4L/cs.
Meanwhile, the observations indicate that the period of the fun-
damental mode is twice shorter. This supports the idea that
standing acoustic waves in coronal loops observed by SUMER
are not likely to be driven continuously at the footpoints of the
loops.

Finally, we examine the excitation of standing acoustic
waves by a single pulse at the loop footpoint. Plasma can be
impulsively injected into the loop as a result of a microflare or
another process which releases energy at the footpoint of the
loop. We impose the following initial and boundary conditions
on the solution of the wave Eq. (7):

v(0, s) =
∂

∂t
v(0, s) = 0, (11)

v(t, 0) =


A sin2

(
πt
P

)
, 0 ≤ t ≤ P,

0, t > P,
v(t, L) = 0, (12)

where A and P = 2L/cs are the velocity amplitude and the
duration of the plasma injection, respectively. The solution of
the problem (7), (11), (12) is

v(t, s) = AH

(
t − s

cs

)
sin2

[
πcs

2L

(
t − s

cs

)]

−AH

(
t − 2L − s

cs

)
sin2

[
πcs

2L

(
t +

s
cs

)]
, (13)

where H is the Heaviside step function. Equation (13) is de-
rived using the useful technique of Laplace transforms which
has been applied to the study of other problems in solar physics
(see, e.g., Berghmans & De Bruyne 1995; Sutman et al. 1998).
The details of the derivation are presented in Appendix A.

For t > 2L/cs Eq. (13) is reduced to

v(t, s) = −A sin
(
πcs t

L

)
sin

(
πs
L

)
· (14)

The injection of plasma at the footpoint of a homogeneous loop
with a velocity profile given by Eq. (12) leads to the formation
of a fundamental mode standing acoustic wave (Eq. (14)) after
a time period of t = P, where P = 2L/cs is the fundamental
mode period. In other words, the standing wave is set up im-
mediately after the plasma injection.

It should be mentioned that the choice of the boundary con-
ditions (12) is important. The mathematical form of the initial
pulse determines whether a standing wave is formed or not. For
example, if Eq. (12) is replaced by

v(t, 0) =


A sin

(
πt
P

)
, 0 ≤ t ≤ P,

0, t > P,
, v(t, L) = 0, (15)

then the stading wave solution (14) is replaced by

v(t, s) = −A
π

∞∑
k=1

8
4k2 − 1

sin

(
πkcs t

L

)
sin

(
πks
L

)
, t > P (16)

(see Appendix B). Equation (16) represents a wave which prop-
agates forth and back inside the loop despite having a period
P = 2L/cs. The dotted line in Fig. 1 shows the variation of the
corresponding wave crest inside the loop. The duration of the
heat input P is also essential for the existence of the stand-
ing waves. In the above analysis the value of P is fixed at
P = 2L/cs. Let us now assume that the boundary conditions are
given by Eq. (12), where P = L/cs or P = 4L/cs. For P = L/cs

and t > P the solution can be represented in the form

v(t, s) = −A
2

sin

(
2πcs t

L

)
sin

(
2πs
L

)
+

A
π

∞∑
k=1

8
(4k2 − 1)(2k − 3)

× cos

(
π(2k − 1)cs t

L

)
sin

(
π(2k − 1)s

L

)
(17)

(see Appendix B). The solution in Eq. (17) has a period
of 2L/cs. However, it represents a wave which propagates forth
and back inside the loop being reflected at the boundaries. The
dashed line in Fig. 1 represents the corresponding variation of
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Fig. 1. The position of the wave crest inside the loop as a periodic
function of time. Distance is normalised with respect to the loop
length L and time is normalised with respect to L/cs. The dotted line
is for Eq. (16) and the dashed line is for Eq. (17). The solid line rep-
resents the fixed crest position of the standing wave solution (14).

the position of the wave crest inside the loop. For P = 4L/cs

the solution is represented by the formula

v(t, s) = AH

(
t − s

cs

)
sin2

[
πcs

4L

(
t − s

cs

)]

+AH

(
t − 2L + s

cs

)
sin2

[
πcs

4L

(
t − 2L + s

cs

)]

−AH

(
t − 2L − s

cs

)
sin2

[
πcs

4L

(
t − 2L − s

cs

)]

−AH

(
t − 4L − s

cs

)
sin2

[
πcs

4L

(
t − 4L − s

cs

)]
(18)

(see Appendix A). It is straightforward to show that the left-
hand side of Eq. (18) equals zero when t > 4L/cs, i.e., the
motion vanishes together with the pulse.

4. Inhomogeneous loops

The results of the previous section can be applied to the analy-
sis of standing waves in inhomogeneous loops. All initial equi-
librium quantities in an inhomogeneous loop such as tempera-
ture, density, pressure and gravity along the loop are variable
functions of the coordinate s. The process of excitation of the
standing acoustic waves and their subsequent damping is exam-
ined by solving the fully nonlinear governing Eqs. (1)–(5). The
sources and the sinks of energy are represented by the term S
in Eq. (3). In order to distinguish the effects of inhomogeneity
from the effects of dissipation on the standing acoustic waves,
we consider two separate cases in the following subsections.
In the first case all dissipative terms in Eq. (3) are switched off,
whereas in the second the effects of radiative and thermal losses
on the oscillations in inhomogeneous loops are examined.

4.1. No dissipation

The absence of dissipation means that the termS in Eq. (3) con-
tains no sinks of energy. We choose a loop length of 150 Mm

and an apex temperature of 6 MK. These values are typical for
the oscillating loops observed by SUMER. The initial tempera-
ture profile along the loop is shown in Fig. 2a. The loop is sym-
metric with respect to the apex and contains a 1.5 Mm long and
20 000 K hot chromosphere on each side. Other quantities such
as density and pressure are derived by solving the hydrostatic
analogues of Eqs. (1)–(5).

The flow-through boundary conditions are implemented
at the boundaries of the loop, i.e., the value of a given con-
vected quantity is extrapolated to a grid point just outside the
boundary. In order to make the flow-through boundary con-
ditions compatible with the requirement of hydrostatic pres-
sure balance, we introduce regions of suppressed gravity near
the left and right boundaries which are well beyond the do-
main of interest. The grid is nonuniform with a high spatial
resolution around the transition region. The nonlinear govern-
ing Eqs. (1)–(3) are solved for the conservative variables ρ, ρv
and e using the total variation diminishing (TVD) scheme with
a Woodward limiter (Tóth 1996). Test runs show that the evo-
lution of the initial state develops flows which are small (less
than 100 m s−1) and should not have a significant influence on
the results of the simulations. We may therefore assume that
the initial loop atmosphere is in hydrostatic equilibrium.

The initial state is disturbed by a release of energy at the
bottom of the transition region near the left footpoint. The en-
ergy release is represented by the term S on the right-hand
side of Eq. (3). Based on the results of the preceding section
we choose the following functional form for the transient heat
input:

S = h ≡


h0 sin2
(
πt
P

)
exp

(
− s − s0

sh

)
, 0 ≤ t ≤ P,

0, t > P,
(19)

where the index h0 is the maximum heat input, s0 and sh are
the location of maximum heating and the heating scale length.
The maximum heat input is fixed at the top of the upper chro-
mosphere (bottom of the transition region), s0 = 1.5 × 108 cm
(1.5 Mm). The heating scale length is sh = 108 cm (1 Mm).
The duration of the heat input is P = 2L/cs = 806 s, where cs

is the sound speed at the apex. For h0 = 10−3 erg cm−3 s−1

a fundamental mode standing acoustic wave with an ampli-
tude of about 1 km s−1 is set up, i.e., the results of the pre-
vious section remain valid when inhomogeneity is included.
Nonlinear effects become important with increasing h. Figure 3
shows the evolution of the velocity profile for h0 = 1.2 ×
10−2 erg cm−3 s−1. The oscillation is no longer a purely sym-
metric wave which is due to the deformation of the initially
symmetric temperature profile of the loop (Fig. 2b). However, it
still has a well-defined period of 806 s corresponding to the fun-
damental mode, nodes at the footpoints and an antinode near
the apex. There is a slight damping caused by the wave leak-
age into the chromosphere which, however, cannot account for
the observed rapid damping. Figure 2b shows that the transition
region is pushed up by about 5 Mm in response to the energy
release at the footpoint.
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Fig. 2. a) The initial temperature profile of the loop. The chromospheric part of the loop is 1.5 Mm long on each side and has a constant
temperature of 20 000 K. The temperature increases through the narrow transition region and reaches its maximum value of 6 MK at the loop
apex; b) the initial loop temperature profile is deformed by a pulse at the left footpoint.

4.2. Dissipative effects

The effects of thermal and radiative losses are readily incorpo-
rated into the model through the term S on the right-hand side
of Eq. (3):

S = H + h − ∂Fc

∂s
− Lr. (20)

Here H is the background heating required to balance the
losses and h is the transient heating defined in Eq. (19); Fc is
the conductive flux along the magnetic field given by

Fc = −κT 5/2 ∂T
∂s
, (21)

where κ = 10−6 erg s−1 K−1 cm−1 is the coefficient of ther-
mal conduction along the field; the term Lr = n2Λ(T ), where n
is the number density, corresponds to optically thin radiative
losses. The chromosphere is mostly optically thick and so does
not radiate as strongly as the overlying atmospheric layers. The
radiative loss functionΛ(T ) is smoothly decreased to zero over
a very narrow temperature interval in regions where the tem-
perature approaches the chromospheric temperature. So, what
we have in the boundary region between the lower transition
region and the chromosphere is a radiative loss function that
will naturally and physically be a steep function of the tem-
perature (see, e.g., Klimchuk et al. 1987; Antiochos et al 1999;
Spadaroet al. 2003; Bradshaw & Mason 2003). Furtermore, the
scale length of the temperature interval over which radiation is
decreased to zero is extremely small when compared with the
scale length of the excitations that are generated at the bottom
of the transition region, and so has a negligible effect on the
results.

The conductive time step required for numerical stability
is very small in an inhomogeneous hot loop. This computa-
tional problem is partly overcome by using an adaptive regrid-
ding scheme for the integration of the time-dependent hydro-
dynamic Eqs. (1)–(3). The conductive flux is set to zero at the
footpoints of the loop. The full details of the HYDRAD code
are described in Bradshaw & Mason (2003).

It is assumed that the background heating H is uniform.
The hydrostatic equations of pressure and energy (which now

contains the thermal and radiative loss functions) are then in-
tegrated to derive the initial atmosphere. The resulting tem-
perature profile is very similar to the one shown in Fig. 2a:
the 1.5 Mm thick chromosphere has a constant temperature of
20 000 K and the loop reaches a peak temperature of 6 MK at
its apex. The uniform heating required to maintain this atmo-
sphere isH = 6.2 × 10−3 erg cm−3 s−1. The total loop length is
150 Mm.

The initial atmosphere is disturbed by a heating pulse h de-
fined in Eq. (19), where the values of the parameters s0 and sh

are left unchanged. The results of the previous subsection have
shown that the maximum heat input required for the excitation
of a fundamental mode with a velocity amplitude of 13 km s−1

is about h0 = 1.2 × 10−2 erg cm−3 s−1. The heating and the
losses add extra inertia to the loop: the amount of heat needed
to excite an oscillation similar to the one shown in Fig. 3 is an
order of magnitude larger compared to the heat input required
in the dissipationless case. For the dissipative loop simulations
we set h0 = 0.7 erg cm−3 s−1 and P = 780 s. Figure 4 displays
the evolution of the velocity profile through its consecutive am-
plitude peaks. The velocity amplitude reaches its first peak of
about 50 km s−1 at t = 570 s. At this stage the oscillation is
not yet fully formed (dotted line in Fig. 4) and it has a high
degree of asymmetry with respect to the apex. Consistent with
the predictions of the analytical study the velocity oscillation
becomes more symmetric after about t = 780 s and acquires
typical features of a standing fundamental mode oscillation:
there are nodes near the footpoints and an antinode at the apex;
the oscillation has a well-defined period of about 780 s which
is close to the analytically predicted period of the fundamen-
tal mode P = 2L/cs. Compared to the dissipationless case the
oscillation has a larger initial amplitude and a lower degree of
asymmetry. It is also rapidly damped. The damping time (i.e.,
the time over which the amplitude decreases by a factor of e)
is proportional to the period which is in agreement with the
results of Ofman & Wang (2002).

Another new feature introduced by the dissipation are the
downflows towards the footpoints which persist in the presence
of the large amplitude velocity oscillations resulting in a slight
asymmetry (Fig. 4). To find out the cause of the downflows su-
perimposed on the fundamental mode standing acoustic wave



718 Y. Taroyan et al.: Footpoint excitation of standing acoustic waves in coronal loops

Fig. 3. The evolution of the velocity profile in response to an initial
pulse. The snapshots taken at different times correspond to the con-
secutive peaks in the velocity amplitude.

Fig. 4. The evolution of the velocity profile in response to the heat
pulse at the bottom of the transition region. The different lines cor-
respond to times when the velocity amplitude reaches its consecutive
peaks.

we examine the evolution of density, temperature and conduc-
tive flux (Fig. 5).

Firstly, the temperature plot in Fig. 5 shows that the
transition region has become more rigid compared to the dissi-
pationless case (see Fig. 2b) despite the larger amount of heat
deposited at the footpoint. This feature allows the velocity os-
cillation to remain nearly symmetric even when the amplitudes
are very large (Fig. 4). The heat deposition at the footpoint
ejects material from the dense chromosphere up into the corona
and increases the density in the coronal part of the loop (the
dotted density line in Fig. 5). The dense loop begins to cool
down because of increased radiation. Indeed, the temperature
plot in Fig. 5 shows that except the dotted line (t = 570 s) all
other lines at subsequent times are below the solid line which
corresponds to the initial temperature profile. The temperature
also starts to oscillate together with the velocity. Figure 5 shows
that when t = 970 s the conductive flux near the right footpoint
(dashed line) is below its original value (solid line) because of
the reduced temperature. As a result, there is not enough con-
duction from above to balance the cooling by radiation below
the point where the divergence of the conductive flux becomes
negative. A downflow is generated towards the right footpoint

Fig. 5. The evolution of density, temperature and conductive flux. All
parameters are the same as in Fig. 4.

to compensate the heat deficit. The downflow is opposite to the
flow generated by the oscillation. The downflow towards the
left footpoint is generated by the same mechanism.

After about t = 1370 s the density profile in the coronal
part of the loop is reduced below the original solid line due to
the persistent nature of the downflows (Fig. 5). The heating ex-
ceeds the losses and the original temperature profile of the loop
is restored. The downflows vanish together with the oscillation.

As an implication in coronal seismology, the periods and
the amplitudes of the standing waves could be used to estimate
the duration and the amount of heat released at the footpoints of
the loops. The duration of the heat release is equal to the period
of the fundamental mode P. The location of maximum heat in-
put s0 determines the wave amplitude. In the present paper the
footpoint excitation of acoustic waves is examined and s0 is



Y. Taroyan et al.: Footpoint excitation of standing acoustic waves in coronal loops 719

Fig. 6. The velocity maximum at t = 570 s as a function of the maxi-
mum heat input h0. All other parameters are the same as in Fig. 4.

fixed at the top of the chromosphere. The amplitudes of the ex-
cited oscillations are smaller if the heat is released in the lower
parts of the chromosphere. Therefore, the wave amplitude pro-
vides a lower estimate for the amount of heat released at the
chromospheric footpoints of the loops. The dependence of the
maximum velocity on the maximum heat input h0 is plotted in
Fig. 6. The velocity reaches its maximum at about t = 570 s.
Figure 6 shows that the velocity maximum increases as the am-
mount of heat deposited at the loop footpoint increases.

Additional simulations show that the main features pre-
sented in the above analysis remain valid when the loop pa-
rameters such as the maximum heat input, the loop length or
the loop temperature are changed.

5. Conclusions

We have investigated the footpoint excitation of standing
acoustic waves in coronal loops. The case of a homogeneous
loop is treated analytically. It is shown that a fundamental mode
standing acoustic wave can be excited by a single pulse at the
footpoint if the duration of the pulse matches the period of the
fundamental mode. The standing wave is set up immediately
after the deposition of heat. This theoretical result is consistent
with the SUMER observations and, therefore, the presented re-
sults could explain the excitation of oscillations in hot loops
(Wang et al. 2003). The amplitude of the oscillation is propor-
tional to the pulse amplitude. The results and conclusions of
the linear analysis remain valid for an inhomoheneous strati-
fied loop. The oscillations are initiated by a heating pulse at
the chromospheric footpoint of the loop. The oscillations be-
come more and more asymmetric and the velocity amplitude
increases when the heat input is increased. The inclusion of
dissipation has several effects: the heat input required to ex-
cite standing waves with similar amplitudes increases by a fac-
tor of 10; the transition region does no longer freely move in
response to the heat pulse so that standing waves with much
larger amplitudes can be excited; the oscillations are rapidly
damped mainly due to the thermal conduction and the damp-
ing time is proportional to the period (this is in agreement
with the conclusions of previous studies by Wang et al. 2003;
Ofman & Wang 2002; Mendoza-Briceño et al. 2004); back-
ground downflows towards the footpoints are superimposed on

the oscillations. The mechanism responsible for the downflows
is explained.

The presented results have two important implications in
coronal seismology: it is shown that the duration of the heat
release is equal to the period of the fundamental mode P; the
velocity amplitude maximum provides a lower estimate for
the amount of heat released at the chromospheric footpoint of
the loop.

The SUMER oscillations are mainly detected in the Fe
and Fe spectral lines which have formation temperature
higher than 6 MK. One reason for this preference of high
temperatures could be the following: the oscillation looses its
standing wave pattern when the velocity amplitude becomes
too large approaching the background sound speed: the down-
flows dominate the oscillation and it can no longer be iden-
tified as a standing wave. The sound speed is higher in hot
loops and therefore the standing waves in hot loops can have
large enough amplitudes to be observed. However, the fact that
the Doppler signal is weak does not necessarily mean that the
standing waves cannot exist in cooler loops.
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Appendix A: Derivation of formulae (13) and (18)

LetV(σ, s) be the Laplace transform of v(t, s):

V(σ, s) =

∞∫

0

v(t, s) exp(−σt)dt. (A.1)

The initial conditions (11) imply that the Laplace transform of
Eq. (7) has the form

∂2V
∂s2
=
σ2

c2
s
V. (A.2)

The general solution of Eq. (A.2) is

V(σ, s) = a(σ) exp

(
−σ

cs
s

)
+ b(σ) exp

(
σ

cs
s

)
· (A.3)

The boundary conditions (12) are transformed into

V(σ, 0) =
2Aπ2[1 − exp(−Pσ)]

P2σ

σ2 +

(
2π
P

)2
, V(σ, L) = 0. (A.4)

Applying the boundary conditions (A.4) with P = 2L/cs to the
solution (A.3), one finds

V(σ, s) =
2Aπ2

P2σ

σ2 +

(
2π
P

)2

×
[
exp

(
−σ

cs
s

)
− exp

(
−σ

cs
(2L − s)

)]
. (A.5)

Taking the inverse Laplace transform of Eq. (A.5) and using
the second shifting theorem, we obtain the solution (13).

The derivation of Eq. (18) consists of the same steps as
those used to derive Eq. (13).

Appendix B: Derivation of formulae (16) and (17)

We start with the derivation of Eq. (16). Taking the Laplace
transform of the boundary conditions (15), we have

V(σ, 0) =
Aπ[1 + exp(−Pσ)]

σ2 +

(
π

P

)2
, V(σ, L) = 0, (B.1)

where P = 2L/cs. The boundary condition (B.1) combined
with Eq. (A.3) leads to the solution

V(σ, s) =
Aπ[1 + exp(−Pσ)]

P

[
σ2 +

(
π

P

)2
]

[1 − exp(−Pσ)]

×
[
exp

(
σs
cs

)
− exp

(
σ(2L − s)

cs

)]
· (B.2)

The inverse Laplace transform of Eq. (B.2) is given by the
Bromwich integral

v(t, s) =
1

2πi

α−i∞∫

α−i∞
exp(σt)V(σ, s)dσ. (B.3)

The integration in Eq. (B.3) is to be performed along a line
σ = α in the complex plane σ. The real number α is chosen so
that σ = α lies to the right of all singularities but is otherwise
arbitrary. The functionV(σ, s) has simple poles at

σ = ±πi
P

; σ = σk =
2πik

P
, k = 0,±1,±2, . . . , (B.4)

all of which lie on the imaginary axis. Therefore, the line σ =
α0 = 1/P lies to the right of the poles. Let ∆m be a circle with
centre at the origin O and radius

Rm =
2π
P

(
m +

1
2

)
, (B.5)

where m is a positive integer. The required inverse (B.3) can
be found by considering a closed contour Cm which consists

of the line from α0 − i
√

R2
m − α2

0 to α0 + i
√

R2
m − α2

0 and

the arc of ∆m Γm, traversed in the positive (counterclockwise)
direction:

v(t, s) = lim
m→∞

1
2πi

α0+i
√

R2
m−α2

0∫

α0−i
√

R2
m−α2

0

exp(σt)V(σ, s)dσ

= lim
m→∞

1
2πi


∮

Cm

−
∫

Γm

 exp(σt)V(σ, s)dσ. (B.6)

The choice of Rm in Eq. (B.5) ensures that the contours Cm

and Γm do not pass through any of the poles. In general, the
evaluation of the right-hand side of Eq. (B.6) is not straightfor-
ward. However, we find that when t > P the integral around Γm

in Eq. (B.6) approaches zero as m→ ∞. This is done using the
substitution σ = Rm exp(iθ). Therefore, the Bromwich integral
is reduced to

v(t, s) = lim
m→∞

1
2πi

∮

Cm

exp(σt)V(σ, s)dσ, t > P. (B.7)

According to the residue theorem the right-hand side of
Eq. (B.7) is equal to the sum of residues of the integrand
exp(σt)V(σ, s) at all poles of V(σ, s). The residues at the
poles σ = ±iπcs/(2L) equal zero because of the presence of
the factor 1 + exp(−Pσ) in Eq. (B.2). The resudues at σ = σk,
k = 0,±1,±2, . . ., are

lim
σ→σk

(σ − σk) exp(σt)V(σ, s)

= − 4iA
π(4k2 − 1)

exp
(
−iπk

cst
L

)
sin

(
πks
L

)
, (B.8)

where the limit was evaluted using L’Hospital’s rule. Taking
the sum of the residues, we have

v(t, s) = −A
π

∞∑
k=−∞

4i
4k2 − 1

exp
(
−iπk

cst
L

)
sin

(
πks
L

)

= −A
π

∞∑
k=1

8
4k2 − 1

sin
(
πk

cst
L

)
sin

(
πks
L

)
, t > P. (B.9)

Finally, we present the derivation of Eq. (17). This case is
treated in a manner similar to the previous case. For the sake
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of brevity we will only outline the main steps of the deriva-
tion. The Laplace transform of the boundary conditions is rep-
resented by Eq. (A.4), where P now has the form P = L/cs.
The solution of the problem (A.2), (A.4) is

V(σ, s) =
4Aπ2 sinh [σ(L − s)/cs]

P2σ

σ2 +

(
2π
P

)2 [1 + exp(−Pσ)
] · (B.10)

It has simple poles at

σ = 0,±2πi
P

; σ = σk =
(2k − 1)πi

P
, k = 0,±1,±2, . . . , (B.11)

all of which are again located on the imaginary axis. We can
therefore go through a similar procedure to find the required
inverse v(t, s). The analysis shows that the second integral
in Eq. (B.6) [where V(σ, s) is now the right-hand side of
Eq. (B.10)] approaches zero as m → ∞ provided t > P. The
problem is thus reduced to the evaluation of the integral in

Eq. (B.7), where V(σ, s) is given by Eq. (B.10). The residue
at σ = 0 is zero due to the presence of the sinh function in
Eq. (B.10). The residues at σ = ±2πi/P are

lim
σ→±2πi/P

(
σ ∓ 2πi

P

)
exp(σt)V(σ, s)

= ± iA
4

exp

(
2iπcst

L

)
sin

(
2πs
L

)
· (B.12)

The residues at σ = σk, k = 0,±1,±2, . . ., where σk is defined
in Eq. (B.11), are evaluated using L’Hospital’s rule:

lim
σ→σk

(σ − σk) exp(σt)V(σ, s) =
4A

π
(
4k2 − 1

)
(2k − 3)

× exp

(
iπ(2k − 1)cst

L

)
sin

(
π(2k − 1)s

L

)
· (B.13)

Taking the sum of all residues in Eqs. (B.12) and (B.13), we
arrive at Eq. (17).


