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FootprintID: Indoor Pedestrian Identification through Ambient

Structural Vibration Sensing

SHIJIA PAN, TONG YU, MOSTAFA MIRSHEKARI, JONATHON FAGERT, AMELIE BONDE,
OLE J. MENGSHOEL, HAE YOUNG NOH, and PEI ZHANG, Carnegie Mellon University

We present FootprintID, an indoor pedestrian identi�cation system that utilizes footstep-induced structural vibration to

infer pedestrian identities for enabling various smart building applications. Previous studies have explored other sensing

methods, including vision-, RF-, mobile-, and acoustic-based methods. �ey o�en require speci�c sensing conditions, including

line-of-sight, high sensor density, and carrying wearable devices. Vibration-based methods, on the other hand, provide

easy-to-install sparse sensing and utilize gait to distinguish di�erent individuals. However, the challenge for these methods

is that the signals are sensitive to the gait variations caused by di�erent walking speeds and the �oor variations caused by

structural heterogeneity.

We present FootprintID, a vibration-based approach that achieves robust pedestrian identi�cation. �e system uses

vibration sensors to detect footstep-induced vibrations. It then selects vibration signals and classi�ers to accommodate

sensing variations, taking step location and frequency into account. We utilize the physical insight on how individual step

signal changes with walking speeds and introduce an iterative transductive learning algorithm (ITSVM) to achieve robust

classi�cation with limited labeled training data. When trained only on the average walking speed and tested on di�erent

walking speeds, FootprintID achieves up to 96% accuracy and a 3X improvement in extreme speeds compared to the Support

Vector Machine. Furthermore, it achieves up to 90% accuracy (1.5X improvement) in uncontrolled experiments.
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1 INTRODUCTION

Indoor pedestrian identities are essential information for smart building applications such as patient/sta�
monitoring in hospitals, elder monitoring in retirement facilities, personalized services in smart homes, etc. For
example, when the system detects a registered user walking in the kitchen, it locks the liquor cabinet if the
user is underage. Various sensing methods have been explored, including vision [61, 68, 77], radio frequency
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[71, 76], mobile [17, 32, 38, 56, 64], acoustic, [2, 20] and structural vibration [16, 52] based methods. Each of these
methods has limitations. Vision-based methods only work with a clear visual path, and this may limit sensor
installation locations [6, 61, 77]. RF-based methods o�en need dense deployment to achieve high sensing accuracy
[71, 76]. Mobile-based methods rely on the target carrying a speci�c device [17, 32, 38, 56, 64]. Acoustic-based
methods are sensitive to ambient audible noise [2, 20]. Structural vibration-based methods, on the other hand, are
easy-to-retro�t and provide sparse sensing ability [16, 52]. However, when applied to the pedestrian identi�cation
problem, they are o�en sensitive to many common condition variations, such as structural variation and individual
walking speed changes. Hence, for scenarios where pedestrian walking speeds show high variation, such as
sta� in a nursing home or kids at home, a large amount of labeled training data that covers each condition is
required for a pure data-driven approach. Unfortunately, this precondition is usually impractical in real world
identi�cation system.
In this paper, we present FootprintID, a sparse structural vibration sensing system that enables ubiquitous

pedestrian identi�cation. When a person walks, their footsteps induce the �oor to vibrate and this vibration
can be detected by vibration sensors (e.g., geophone, accelerometers). Since di�erent people strike the �oor
di�erently [18], their unique walking pa�erns induce distinguishable vibration, which our system utilizes to
identify the individual [9]. �e challenge for vibration-based methods lies in their sensitivity to changing walking
conditions, including walking speeds and stepping locations.
Signal changes due to walking speed and step location changes can be summarized as a few representative

signal waveforms. �ese waveforms’ distribution gradually changes with the individual walking speed and
stepping location. With this physical insight, we present our algorithm that 1) selects step signals based on
estimated step location, 2) selects classi�ers (supervised learning v.s. transductive learning) based on detected
walking speeds, and 3) applies our transductive learning algorithms Re�ned Transductive Support Vector Machine
(RTSVM) and Iterative Transductive Support Vector Machine (ITSVM) when the tested walking speeds vary from
those in the labeled training set.
Our ITSVM algorithm tailors the learning model with the unlabeled testing data (transductive learning) and

updates the labeled data set model with unlabeled testing results based on physical insights and result con�dence.
Compared to supervised learning, ITSVM allows robust classi�cation when the unlabeled testing data shows high
variation from the labeled training data. ITSVM accomplishes this by utilizing physical insights to iteratively
update the classi�cation model with high certainty unlabeled data.
In this paper, we focus on scenarios in which one person walks through the sensing area at a time for two

reasons: 1) in a home or a nursing home, the density of the population is relatively low, and one person walking
through a sensing area is a typical case; and 2) identi�cation of multiple pedestrians walking in an indoor
environment can be built on the foundation of robust one-pedestrian identi�cation. We evaluate the system
through two sets of experiments with 10 pedestrians to explore the robustness of the system: 1) controlled
experiments walking at several designated step frequencies, and 2) uncontrolled experiments walking at natural
step frequencies in a more realistic se�ing.

In summary, the contributions of this paper are threefold:

• We introduce FootprintID, a system that identi�es a pedestrian through their footstep-induced vibration.
• We characterize the walking speed and step location variation of footstep-induced structural vibration
signals and utilize this information to achieve robust person identi�cation.
• We present our transductive learning algorithm RTSVM and the improved ITSVM that dynamically updates
the model of the labeled data based on the walking speed and step location of a person’s footstep to
extend the classi�er and to handle extreme cases.

�e rest of the paper is organized as follows: Section 2 introduces physiological information about human
gaits. In Section 3, we describe the overall system functions, followed by Section 4, where we describe the sensing
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unit used for signal acquisition. �is signal is analyzed in Section 5 to guide the algorithm design, introduced
in Section 6. Next, in Sections 7 and 8 we evaluate the accuracy of FootprintID under di�erent scenarios. We
discuss challenges that our system may encounter in Section 9 and then present past work in Section 10. Finally,
we conclude our work in Section 11.

2 BACKGROUND

To provide a background understanding of our system, this section explores why people have di�erent gaits and
why the location and frequency of the steps a�ect the sensing signal.

2.1 Why Do People Have Di�erent Gaits?

Gait describes a subject’s walking pa�ern, i.e., the characteristics of the subject’s limb locomotion [18]. From the
moment the heel strikes the �oor to when the toe leaves the �oor, a series of muscle contractions cause the leg to
move: the lengthening of the dorsi�exors of the ankle, the lengthening of the gastrocnemius-soleus muscles,
and then the shortening of the gastrocnemius-soleus [18]. �ese muscles are a�ached to the bone structure,
therefore the bone morphology also a�ects such motions [3, 10]. In di�erent people, muscular ability, degrees
of freedom in the joints, and bone morphology vary [10, 13, 45], all of which have an impact on gait. Another
determining factor for human gait is neurological [39, 59, 67, 72]. An individual’s actual movement is controlled
by neurons connected to the spine and brain. People have varying neurological control over their limbs, which
results in di�erent gaits. Prior work demonstrated that gait variation among pedestrians can be detected in their
footstep-induced vibration signals [52].

2.2 Structural E�ects

Footstep-induced vibration waves travel through the structure before they are captured by the sensors and
hence are a�ected by structural properties such as modulus of elasticity1. �erefore, spatially non-uniform
structural properties can result in di�erent vibration signal waveforms in di�erent parts of a space (e.g., hallway).
Speci�cally, two factors contribute to this non-uniform behavior: 1) material heterogeneity, and 2) structural
layout.
In heterogeneous materials2, as the wave propagates from one section of the material to the next one, it

undergoes re�ection and refraction3 causing the signals in these two sections to show di�erent waveforms [58, 73].
Furthermore, footstep location with respect to structural layout results in di�erent wave re�ection pa�erns
and thus can change the signal characteristics4 [1, 37]. For example, for the same footsteps, sensors at di�erent
distances from a wall receive signals of di�erent shapes as the re�ected part of the signals arrive at di�erent times.
In another example, the presence of structural joints5 prevents the wave from traveling across adjacent regions.

2.3 Individual Variation: Step Frequency

Step frequency is one of the most critical parameters in the study of gait variation [15, 44, 55, 63]. �e pedestrian’s
step frequency a�ects their step length and walking speed: the higher the step frequency, the longer the step
length, and the faster the walking speed [44].

1Modulus of elasticity is a measure of the resistance of the material to elastic deformation. In general, a sti�er material has a higher modulus

of elasticity [66].
2Materials with non-uniform distribution of properties.
3Change of wave propagation direction due to di�erences in structural properties
4In other words, di�erent structural layout results in di�erent boundary conditions.
5�ere are di�erent types of joints in structures. For example, expansion joints are gaps between di�erent parts of the structure to deal with

concrete’s volume change [14].
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Fig. 1. Fast walk (a.1-3) v.s. slow walk (b.1-3). (a.1-2) show a person’s gait phases when walking at the step frequency of 142
steps/min, and (b.1-2) show the same person’s gait phases when walking at the step frequency of 95 steps/min. (a.3) and (b.3)
show the Step Events extracted under these step frequencies.

In addition, the kinematic and kinetic parameters of a person’s gait change with their step frequency [31, 46, 70].
As marked in Figure 1 (a.1) and (b.1), when a person walks fast, their heel strike movement shows a larger foot-
ground angle. �is is caused by the more powerful eccentric contraction of the dorsi�exors of the ankle when
the subject tries to maintain a fast pace. �is also leads to a longer step length as shown in Figure 1 (a.2) and (b.2).
�is means the footstep-induced vibration will also be a�ected by the person’s step frequency.
Each individual may change their step frequency due to various reasons, including mood, health, urgency,

personal preference, etc. Based on prior work on human gait parameters, the average step frequency is µM = 119
steps/min with a standard deviation of σM = 8 steps/min for males between 20-29 [44]. For female participants
between 20-29, the average step frequency is µF = 125 steps/minwith a standard deviation ofσF = 9 steps/min [44].
�erefore, the system needs to take the variation of step frequency into account to conduct robust identi�cation.

In summary, we discussed the reasoning behind the gait-based identi�cation as well as the background of two
major factors that a�ect vibration-based identi�cation using gait information. We will further discuss variation
in structural vibration characteristics caused by these factors in Section 5 a�er introducing our system.

3 FOOTPRINTID SYSTEM OVERVIEW

FootprintID is a vibration-based sensing system that identi�es pedestrians from gait pa�erns. �e system consists
of four major modules as shown in Figure 2: the sensing module, the information extraction module, the structural
variation handling module, and the step frequency variation handling module (our classi�er that is robust to step
frequency variations).

When a person steps on the �oor, their step induces the �oor to vibrate. �e sensing module obtains the �oor
vibration signal (Section 4) and sends it to the information extraction module. �e information extraction module

�rst detects the footstep-induced signals, which we name as Step Events (SE), and then extracts the following
information from these signals: 1) the location and frequency of the SEs (inter-step information), and 2) the signal
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Fig. 2. System Overview.

feature of each SE (intra-step information). When a person passes through the sensing area, a sequence of SEs is
detected, which we name as a trace. In this paper, we focus on one pedestrian walking through the sensing area
scenarios, and we will discuss multiple pedestrians walking through the sensing area situation in Section 9.

�e structural variation handlingmodule estimates the relative location of each SEwithin a consecutive sequence,
which we refer to as a trace, and selects the SEs that are closest to the sensor in each trace for further analysis. In
this way, the system mitigates structural variation’s e�ect on the SE signals. �e step frequency variation handling
module �rst trains both supervised classi�ers and transductive classi�ers in the bootstrap/learning phase (Section
8.3 and 9.1.1), and then conducts identi�cation prediction in the classi�cation phase. When predict the identity,
FootprintID selects a classi�er to obtain the identity of each SE based on the step frequency extracted. If the
testing SE’s step frequency is in the labeled training set, FootprintID selects the supervised learning method
Support Vector Machine (SVM) to obtain the SE identity. On the other hand, if the testing SE’s step frequency is
not in the labeled training set, FootprintID selects our tailored transductive learning method ITSVM to estimate
the SE identity.

�e ITSVM initially starts as a transductive learning model with the same labeled training data as the SVM. If
the testing SE’s step frequency is adjacent to that of the labeled training data, i.e., the testing SE’s similarity to
prior training SEs is high, FootprintID updates the re�ned transductive support vector machine (RTSVM) model’s
labeled data with the traces with high con�dence results, otherwise, the model remains the same. Either way,
ITSVM outputs the identities of the SEs. In the end, FootprintID calculates the identity of the trace based on
the estimated identity of the SEs within the trace through a majority vote and takes the most frequent identity.
�e con�dence of the decision is calculated and the system can reject low con�dent identities as ‘unknown’ by
thresholding on this con�dence value according to the application requirement.

4 SENSING

In this section, we introduce the sensing hardware that we use to measure footstep-induced structural vibrations
[53]. To obtain the vibration signals, a sensing unit is placed on the �oor. �e sensing unit, as shown in
Figure 3, consists of �ve main components: the geophone, the ampli�er module, the processor board, the
communication module (XBee radio), and the ba�eries. We �x the geophone to the �oor with beeswax to help
preserve high-frequency signals [7].
�e geophone converts the velocity of the monitored surface to voltage for ambient structural vibration

monitoring. We used model SM-24 for its low cost and sensitivity to the frequency range of interest in this
work (0-200 Hz) [25]. �e voltage change induced by vertical �oor vibration when people walk is very small
(approximately 10−6 to 10−5 m/s range). �erefore, the system needs to amplify the signal for identi�cation
purposes. FootprintID sensing nodes have three levels of ampli�cation (approximately ×2000, ×4000, and ×6000)
on the ampli�er board [53]. �e system selects the maximum ampli�cation se�ing that does not cause clipping
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Fig. 3. A sensing unit consists of a geophone sensor, an amplifier board, a processor board with a communication module
(Xbee radio), and ba�eries.

to obtain a high signal resolution for people with di�erent stepping strengths. Note that in the deployment
introduced in this paper, we use the ampli�cation gain of ×2000 for the designated sensing area. �is way,
we achieve the lowest clipping rate while maintaining high signal resolution for the step signals selected for
identi�cation (we will further discuss the usability of the system in terms of sensing range in Section 9). Once
the processor board obtains the ampli�ed analog signal, it converts the signal into a digitized signal with a 10-bit
ADC module sampled at 1000 Hz.

�ese ampli�ed and digitized signals are then used for characterization and analysis. Figure 4 demonstrates
two footstep-induced signals in both the time and frequency domain from two di�erent pedestrians. We observe
a clear di�erence in both the time and frequency domains between the two signals, which may be caused by their
gait di�erence. For example, person #2 may have a longer heel to toe motion duration than Person # 1. In the
time domain, the signal shows a larger lateral distance between the �rst and second peak, which we believe to be
caused by the initial heel strike and the �nishing toe pushing. We characterize the footstep-induced vibration
signals in the next section.
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Fig. 4. Footstep-induced structural vibration signal examples. (a, b) show the time domain and frequency domain signal of a
person # 1’s footstep, and (c, d) demonstrate those of a person #2’s footstep.
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Fig. 5. Cluster example of Person # 1. (a) The x-axis is the cluster ID, and the y-axis is the number of steps in each cluster.
The black, red, and white bars represent the SEs in di�erent areas in a building. Di�erent areas are dominated by di�erent
clusters. (b) The x-axis represents the relative step frequencies and the y-axis is the cluster ID. The grid values represent the
number of SEs clustered to each cluster ID. Di�erent step frequencies correspond to di�erent clusters.

5 SIGNAL CHARACTERIZATION

To design a robust identi�cation algorithm, we need to characterize the factors (discussed in Section 2) that cause
variations in footstep-induced vibration signals. Prior work demonstrates the variation between Step Events from
di�erent people [52]. In this section, we explain how to quantify the variations within an individual’s Step Events
(Section 5.1) and what causes such variations (Section 5.2). We further discuss how to design the algorithm to
account for these variations in Section 6.

5.1 Step Event Variation and Clustering

�e Step Events (SEs) from an individual’s dataset show variations that can be summarized by a few representative
signal waveforms. In order to investigate the collected SEs in a systematic manner, we conduct hierarchical
clustering [27] using pairwise cross-correlation values between time-domain signals of di�erent SEs. We calculate
the distance between each pair of SEs SEi and SEj as distance = 1 − xcorr (SEi , SEj ), where xcorr calculates the
peak cross correlation value of the signal pair. �en the pairs with the shortest distance are grouped into clusters
made up of two objects. We repeat this process for the resulting clusters until all the objects in the original dataset
are linked together in a hierarchical tree. To decide how many clusters to form for a speci�c tree generated
from a person’s data, we select a threshold value. �e threshold value is empirically determined based on the
experiments in the Load Test with Ball-drops (discussed in Section 7.1) to incorporate the structural variation
within a designated area. �en we search the hierarchical tree and generate the clusters by the internal nodes of
the tree. We use these clusters to explain the cause of the Step Event variation in the following section.

5.2 Causes of Step Event Variation

We have discussed the causes of Step Event (SE) variation in Section 2 from two angles: 1) a person may have
multiple gait pa�erns that generate di�erent waveforms when striking the �oor at di�erent step frequencies, and
2) when a person steps on di�erent locations in the sensing area, the structural response of the same impulse
changes due to the structural variation. �ese are the reasons that a pedestrian’s SEs can be clustered. �ey also
account for SEs with di�erent distributions when location and walking speed vary. We present these clusters’
distribution of Person #1’s SEs as an example in Figure 5 and discuss these causes in detail in this section.

5.2.1 Structural Variation. A person’s SEs in di�erent locations within the sensing range may look di�erent,
which can be caused by the structural variation. Figure 5 (a) categorizes the clusters based on the estimated step
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location. Area 2 is closest to the sensor location, while Area 1 and Area 3 are on either side of Area 2. We can
observe that cluster 2 appears in Area 3 more o�en than in Area 2 and Area 1, and cluster 3 shows an opposite
trend through the three areas. �is indicates that the SE signals are also a�ected by step locations. �is could
be caused by the structural response variation or the slightly anisotropic characteristics of the �oor [60]. We
further show that such structural variation is gradual, which explains the repetitive appearance of the cluster at
the same area in Section 7.1.

5.2.2 Step Frequency. A person’s gait changes when they walk at di�erent step frequencies as discussed in
Section 2. When their gait changes, their SEs change correspondingly. Figures 1 (a.3) and (b.3) show the example
step signal when a person passes by the sensor with a di�erent step frequency. As we can see in the time domain
signal of (b.3), the part of the signal around 0.2 seconds decays more smoothly than that of (a.3). �is is caused by
the slow stance phase (the foot remains in contact with the ground) in the gait cycle when people walk slowly. In
addition, the �rst dip of the signal has a greater value in the fast walking SE than in the slow walking SE. �is
could be caused by the heavier heel strike when the walking speed is high. �ese SEs are repetitive in signals
from the same person walking at the same designated step frequency. �erefore, we make the assumption that a
person’s footstep-induced vibration when walking through a designated area with di�erent step frequency can
be summarized into a few representative waveforms, i.e., di�erent clusters.
Figure 5 (b) categorizes the clusters of Person # 1 by controlled step frequencies. A participant walking at

a designated step frequency generates a footstep signal. We assign the designated step frequencies to 7 levels,
including the average step frequency µsf , low frequencies from µsf − 3σsf to µsf − σsf , and high frequencies

from µsf + σsf to µsf + 3σsf , where σsf is the step frequency standard deviation as discussed in Section 2 6. We
introduce experiment details in Section 7.2.
In this �gure, 9 clusters are generated from the SEs of 7 di�erent step frequencies, and Clusters 2, 3, and 8

appear most frequently. Clusters 2, 3, and 8 appear more o�en in the high, low, and medium step frequency SEs
respectively. From the low step frequency SEs to the high step frequency SEs, the portion of Cluster 3 decreased
and the portion of Cluster 2 increased. �is observation further veri�es our conclusions on the relationship
between step frequencies and gait changes.

6 ALGORITHM

�eFootprintID algorithm is designed leveraging our study introduced in the last section and obtains a pedestrian’s
identity from their step-induced �oor vibration signals. As discussed in Section 3, our algorithm consists of three
modules: the information extraction (Section 6.1), the structural variation handler (Section 6.2), and the step
frequency variation handler (Section 6.3).

6.1 Information Extraction

�e information extracted from the raw ambient �oor vibration includes two aspects: 1) the inter-footstep
information (e.g., step frequency) and 2) the intra-footstep information (e.g., features of each SE). �e system �rst
needs to separate the vibration induced by the footsteps (SEs) from the ambient noise. Based on these SEs, the
system further extracts the inter-footstep step frequency and relative location. Finally, for each SE, the system
extracts its intra-footstep frequency components.

6.1.1 Step Events Detection. FootprintID detects the segments of vibration signals that are induced by footsteps
and extracts them as Step Events [48]. When there is no foot striking the �oor, the sensor detects the ambient
structural vibrations, which we consider noises. Previous work characterizes such noise signal as Gaussian noise
[48], therefore its signal energy follows a Chi-Square distribution. When a foot strikes the �oor, the impact

6Note that in the rest of the paper, we refer to μsf and σsf as μ and σ for simplicity.
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generates an impulse-like signal, which we call a Step Event. An SE contains higher signal energy than the
ambient noise signals [48, 52]. �erefore, the system treats the footstep induced vibration signal as an anomaly
from the noise signal and conducts anomaly detection based on the learned noise [29, 36, 48].

A�er it obtains the vibration signals, the system applies a sliding window to the signals. It calculates the mean
µwse and standard deviation σwse of the windowed energy values of the noise signals. �en for each windowed
signal, the system calculates the signal energy and compares this energy value with a threshold calculated from
the noise model. If the energy value is over the threshold, the window is considered a candidate window. �e
consecutive candidate windows then form an SE. �e threshold for anomaly detection is selected with statistical
analysis to control the sensitivity of the detection algorithm as discussed in prior work. We choose the threshold
of µwse +3σwse to ensure a 99.7% step detection rate (because the threshold of µwse +3σwse reduces the theoretical
false positive rate to below 1%) [48].

6.1.2 Inter-Step Information Extraction. �e system focuses on two types of inter-footstep information: the
steps’ relative locations to the sensor [48] and the step frequency of the walk. �e step frequency is estimated
based on the average time interval between consecutively detected SEs. To avoid noise a�ecting the step frequency
estimation and causing the system to miss an SE, the system takes the mean excluding the highest and lowest K
values of the time interval array within each trace (K = 2 in this work). �e location of the step is estimated based
on a heuristic tracking algorithm based on SE signal energy change trend [48]: the closer the step is to the sensor,
the higher the signal energy of the SE. �e details are discussed in Section 6.2 with location-based SE selection.

6.1.3 Intra-Step Information Extraction. In order to e�ectively represent a person’s footstep, we conduct feature
extraction on the selected SEs. First of all, for intra-footstep feature extraction, we normalize the signal energy to
remove the footstep-sensor distance di�erence. From our preliminary experiments, the detected signal frequency
is concentrated in the range between 0 to 200 Hz, which is su	cient to cover the characteristic frequency band of
human footsteps. �e frequency band is selected based on the sensor properties: the sensor’s response frequency
is fr esponse ≤ 240 Hz, and the �oor velocity response to footsteps has the characteristic frequency band between
20 and 90 Hz [16]. �erefore, we select the cut-o� frequency at least twice as much as 90Hz and below 240Hz. In
this work, for each SE, the 0 to 200 Hz power spectrum is selected as a feature to describe the characteristics of
the signal.

�e system then combines the inter-step and intra-step information as features in the form of an array:

Feature (SE) = [f1, f2, ..., fN ] = [SE f req domain(1Hz), ...,SE f req domain(200Hz), step f req] (1)

where N = 104. �e �rst 103 features represent frequency domain signals between 0 to 200 Hz discretized
evenly. �e last feature is the step frequency of the walk discussed in Section 6.1.2. For each fnum (num = 1...N ),
the system conducts feature normalization using the corresponding feature values from labeled training data
(fnum train ) to achieve uniform weight through all features, i.e.,

fnum norm = ( fnum −min( fnum train ))/(max( fnum train ) −min( fnum train )) (2)

�en the system generates the SE features x by normalizing each feature in the array and using it for SE
classi�cation in Section 6.3:

x = [f1 norm , f2 norm , ..., fN norm] (3)

.

6.2 Structural Variation Handler: Location-based SE Selection

When a pedestrian walks through the sensing area, the structural variation through the sensing area causes the
same pedestrian to have SEs with di�erent waveforms despite a consistent gait. On the other hand, when the
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consistent gait is applied at the same location, the SEs share a similar waveform (Section 5). �is means that even
similar foot strikes are only comparable when they are from the same area.
�erefore, to ensure the SEs are comparable, we select SEs that are from approximately the same area from

each trace. �e overall trend of the SE energy change can be used as an indicator of their relative locations to
the sensor [48]. �erefore, we use a sliding window on the SE energy values to smooth the trend change in one
individual’s consecutive SE sequence, which we refer to as a trace. �en, for each window, we calculate the
average value of the SE energy as the representative energy of the area covers these SEs. Finally, we select the
peak of this sequence of calculated value. �e selected SEs within that window are from the area that is closest to
the sensor. We will further discuss the structural variation and e�ects of location-based SE selection in the load
test Section 7.1, and step location evaluation Section 8.1.2.

6.3 Step Frequency Variation Handler

One of the key challenges for gait-based person identi�cation through structural vibration sensing is that the
footstep-induced structural vibration signal is sensitive to the gait changes induced by step frequency variations.
�erefore, for a pure data-driven approach, a large amount of labeled training data collected from diverse walking
speeds is required to achieve robust identi�cation. If SEs of a particular walking speed range are missing from
the labeled data, the identi�cation accuracy for SEs in that range decreases. FootprintID handles this problem by
choosing between supervised learning and transductive learning based on the detected footstep step frequency.
As shown in Figure 2, for a dataset with step frequencies in the labeled training data, the system applies the
supervised learning model directly. Otherwise, the system chooses the transductive learning model [19]. In this
paper, we adopted a Support Vector Machine based transductive learning model for three reasons: 1) SVM-based
methods [8] have proved an e	cient classi�cation method for decades, 2) compared to a neural network, SVM-
based methods require less labeled data in general to achieve accurate modeling [22] and in our application the
data labeling has high manual cost, and 3) our prior work on person identi�cation [52] uses SVM and therefore
we selected SVM-based learning method so that it is easier to compare the system performance with the prior
work.

We present ITSVM (marked in blue in Figure 2), an iterative transductive support vector machine algorithm, to
resolve the SE variance caused by di�erent step frequencies. In this section, we will �rst introduce the traditional
support vector machine (SVM, Section 6.3.1) and how it handles step frequency variation between training and
testing datasets. �en we introduce the transductive SVM (TSVM, Section 6.3.2) and how we tailor TSVM (Section
6.3.3, 6.3.4) to incorporate the physical properties of our data.

6.3.1 Support Vector Machine (SVM). �e Support Vector Machine (SVM) has been widely used to solve
classi�cation problems. Given two-class training data (y1,x1), . . . (yl ,x l ), it aims to �nd the maximum-margin
hyperplanew by minimizing the following loss function:

min
w ,b

1

2
| |w | |2 +C

l∑

q=1

max(1 − yq (w
Tϕ (xq ) + b), 0), (4)

where xq ∈ Rn ,∀q are training samples, yq = ±1,∀q are corresponding labels, and C is a penalty parameter

balancing regularization term ( 12 | |w | |
2) and training losses (

∑l
q=1 max(1 − yq (w

Tϕ (xq ) + b), 0)) that control the

generalization of the model. �e kernel function ϕ (·) in nonlinear SVM enables us to build models with high
class-separability and generalization ability, even with a small amount of training data [11, 52]. A�er obtaining
w with some optimization techniques, the sign of function value f (xq ) = w

Tϕ (xq ) + b can help us decide the
class test data xq belongs to.

For multi-class problems, most existing multi-class SVMmethods decompose the problem into several two-class
classi�cation problems [24]. �e two commonly used methods are 1) the one-against-one strategy, which trains a
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model for every two classes of training data, and 2) the one-against-rest strategy, which trains a model for every
class against the rest of the classes.
�e traditional nonlinear multi-class SVM achieved high accuracy in identifying the participants when they

walk at a speci�c speed during a short amount of time [52]. However, when participants walk with di�erent step
frequency, we observe signi�cant variations of Step Events across di�erent step frequencies, as shown in Section
5. When this variation appears between training and testing dataset, the traditional supervised learning may fail.
We further validate this conjecture with empirical results in the experiments in Section 7.2.

6.3.2 Transductive SVM (TSVM). Limited training data in some pedestrian step frequencies will cause variation
between training and testing datasets. To avoid this problem faced by traditional SVM (Section 6.3.1), we
investigate SVM in the transductive learning se�ings. �at is, we leverage the structure of available unlabeled
data (Section 5) to help improve prediction accuracy when the distribution of the available training data is
di�erent from the test data.
Instead of �nding a decision boundary with maximal margins over labeled data by SVM, TSVM aims to train

a boundary with maximal margins over both labeled data and unlabeled data. �erefore, compared to the loss
function in Equation 4, TSVM has an additional loss function term representing the margin over all the unlabeled
data. Given two-class training data (y1,x1), . . . (yl ,x l ) and unlabeled data x l+1, . . .x l+u , TSVM aims to �nd the
maximum-margin hyperplanew and bias term b by minimizing the following loss function:

min
w ,b

1

2
| |w | |2 +C1

l∑

q=1

max(1 − yq (w
Tϕ (xq ) + b), 0)

+ C2

l+u∑

q=l+1

max(1 − |wTϕ (xq ) + b |, 0),

(5)

where C1 and C2 are the penalty parameters balancing regularization term and training losses over labeled data
and unlabeled data, respectively. Intuitively, TSVM tends to �nd boundaries in regions where there is less labeled
and unlabeled data. �us, it is one kind of low-density separation method studied in transductive learning
problems [12].
By drawing from our knowledge of the multi-class SVM we discussed in Section 6.3.1, we extend TSVM to

handle a multi-class problem using a one-against-one or a one-against-rest strategy. For a k-class problem, the
one-against-rest strategy solves k binary SVM problems, each of which treats one class as positive and all the
rest as negative, and its accuracy o�en yields to the one-against-one strategy [21, 24]. Hence, in the following
discussion of TSVM on our dataset, we focus on the one-against-one TSVM to handle the multi-class problem.

6.3.3 Refined TSVM (RTSVM). One potential problem in the one-against-one se�ing for multi-class TSVM is
irrelevant unlabeled data. For example, in a k-class problem, when we construct the binary model for class 1
and 2, the unlabeled data is from all k classes, while only the unlabeled data from 1 and 2 is relevant to the
binary classi�cation problem between class 1 and 2. �e drawbacks are twofold. First, (k − 2)/k percentage of the
unlabeled data is irrelevant and the binary TSVM can not e�ectively capture the information hidden behind the
unlabeled data of class 1 and 2. Second, the training of TSVM can be slow because of a large amount of unlabeled
data. Note that solving TSVM is a combinatorial optimization problem, where the size of search space grows
exponentially when the number of unlabeled data increases. �erefore, the increasing amount of unlabeled
data may signi�cantly reduce the training speed. In this case, a selected unlabeled dataset, which contains less
unlabeled test data for modeling, leads to a faster training speed.
In order to overcome the irrelevant unlabeled data problem, we design a mechanism to re�ne the relevant

unlabeled data for the training of each binary TSVM in the one-against-one se�ing we call RTSVM. In RTSVM, every
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Fig. 6. The importance of continuously changing frequency in unlabeled datasets for TSVM. The triangles indicate the labeled
data while the circles indicate the unlabeled data. The data points marked in blue are in the positive class while the points in
red with dash outline are in the negative class. From bo�om to top, the data frequency increases. (a) shows a dataset with a
continuous increase and the TSVM hyperplane perfectly separating the two-class data. On the other hand, when there is
one or more discontinuity in the same class data distribution, the low-density separation in TSVM may separate the data
incorrectly in the regions where there are fewer points as shown in (b).

time the system trains a binary TSVM between class i and j , it utilizes supervised SVM to pre-select unlabeled SEs,
which are ‘most likely’ to be class i or j. �e multi-class SVM modeled from the labeled data is used to predict
the identity of all unlabeled SEs. �en the RTSVM calculates the most frequently appearing class in each trace as
the class of the trace and uses SEs from traces of class i or j for the binary TSVM modeling.

Based on the labeled SEs of class i and j and the selected unlabeled SEs, the system trains a TSVM for class i and
j . A�er FootprintID obtains the binary TSVM for each class pair in the multi-class problem, it extends TSVM to solve
the multi-class problem via one-against-one strategy. We use RTSVM as an intermediate step in our algorithm.

6.3.4 Iterative TSVM (ITSVM). One assumption in the RTSVMmethod is that for each one-against-one comparison,
the unlabeled data and the labeled data are from the same two classes selected based on the SVM results. However,
as discussed in Section 2.3, due to the step frequency variation, the individual gait varies. �is causes supervised
learning performance to reduce dramatically when detected step frequencies have a large gap in the labeled
training data (e.g., step frequencies that are in the range of µ ± 2σ , µ ± 3σ ). On the other hand, for data with step
frequencies that have a relatively small gap in the labeled training data (µ ± σ ), because the SVM classi�cation
results have higher accuracy, the RTSVM results built upon that have higher accuracy as well (we further analyze
this in Section 8.1 and 8.2).
From the signal characterization in Section 5, we understand the dataset between rare and average step

frequencies (µ ± σ ) are a combination of Step Events with waveforms from those datasets (µ, µ ± 2σ , µ ± 3σ ).
�erefore, based on those observations, we can train our multi-class TSVM model in an iterative way, which we
refer to as ITSVM:

(1) First, we construct multi-class RTSVM for the test data in the frequency of µ ±σ . �is model can be used to
label some unlabeled data in the frequency of µ ± σ . A�er this labeling procedure, the size of the ‘labeled’
dataset increases. Note that the ‘labeled’ dataset grows in a conservative way. When the RTSVM result
con�dence is higher than a threshold, the system labels the unlabeled data. �e system calculates this
con�dence as the percentage of unlabeled SE’s in a single trace predicted to be the same class by RTSVM.
�e updated labeled dataset is across the frequencies of µ and µ ±σ , which allows the SVM with rare step
frequency data to achieve higher accuracy compared to the SVM with the original labeled dataset (µ).
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(2) Second, based on the updated labeled dataset, we construct multi-class RTSVM with the test data with
step frequencies of µ ± 2σ and µ ± 3σ .

In the second step, we construct the transductive learning model with both the data of rare step frequencies
(µ ± 2σ and µ ± 3σ ) and the data used in the �rst step ( µ and µ ± σ ). We use the data from the �rst step because
of the low-density separation intuition behind TSVM [12], where a continuous changing of unlabeled data from
di�erent frequencies helps locate the true decision boundary. �e low-density separation cases are illustrated in
Figure 6. Figure 6 (a) shows the intuition data distribution of all unlabeled data (between µ and µ + 3σ ), and (b)
demonstrates the intuition data distribution of rare step frequencies (between µ + 2σ and µ + 3σ ). If we exclude
the data with frequency µ + σ (similarly, µ − σ ) in the unlabeled set when training TSVM, the sparsity of data in
µ + σ region may place the TSVM’s hyperplane in that region.

6.4 Trace Identity Calculation

Once FootprintID conducts identity estimation on each SE using the classi�cation algorithm introduced above, it
further combines the results of each SE in a trace to estimate the identity of each trace. Since each trace can be
assigned to one person, utilizing multiple data points (SEs) would improve estimation accuracy. �e FootprintID
conducts a vote and selects the most frequent result as the representative of the trace ID. As we will discuss later
in Section 8, the identi�cation accuracy is based on the result of each trace instead of each SE.

Furthermore, for each trace, the system calculates the con�dence of the identi�cation decision. �en, based on
the identi�cation accuracy requirement for di�erent applications, the system assigns the traces with con�dence
values lower than the application-based threshold as ‘unknown’. To calculate the decision con�dence, we �rst
calculate the step-level prediction con�dence, then the trace-level prediction con�dence from the step-level
con�dence. We calculate the step-level prediction con�dence for each SE from outputs of one-against-one SVM
or ITSVM in FootprintID. For a k-class problem, a number of k × (k − 1) pairwise decision con�dence can be
obtained. For an SE predicted as class i , there are k one-against-one (binary) SVM or ITSVM models. Each of
these models predicts a class with the con�dence c j , where j ∈ {1, 2, · · ·k }. We calculate sample x ’s distance

from the hyperplanew of j-th (binary) SVM or ITSVM model as dj =
w
T ϕ (x )+b

|w |
, then we linearly normalize dj as

the con�dence score c j so that di�erent pairwise classi�ers can have con�dence scores in the same range. �e

con�dence of this data point being classi�ed as class j is Cstep
=

∑k
j=1 c j . Note that the scale range of di�erent

binary SVM or ITSVM’s con�dence c j may be di�erent for di�erent j ∈ {1, 2, · · ·k }. �us, in practice, for each
binary SVM or ITSVM, we linearly normalize its prediction con�dences into the same scale range [0, 1]. �en,
we calculate the trace-level prediction con�dence based on the step-level con�dence of partial steps in this trace.
Assume the system predicts a trace with m steps as class i a�er the vote, and there are n steps in this trace

predicted as class i . For each step in these n steps, the corresponding con�dence is C
step
p , where p ∈ {1, 2, · · · ,n}.

�en the system calculates the trace-level decision con�dence as Ctrace
=

∑n
p=1C

step
p .

7 EXPERIMENTS

We conducted three experiments with varying parameter control levels to evaluate our FootprintID system: a load
test with tennis ball-drops (Section 7.1), a human walking experiments with controlled step frequencies (Section
7.2), and an uncontrolled human walking experiments (Section 7.3). We designed the load test to investigate
the sensing area’s vibration response characteristics. �e impulse source and location are controlled. We use
the results to guide the selection of the clustering threshold introduced in Section 5. We designed the human
walking experiments to investigate di�erent system parameters and evaluate algorithm robustness. In the �rst
walking experiment, the step frequency of each participant is controlled. �e uncontrolled experiment is designed
to evaluate the overall system robustness in realistic scenarios. �e experiments are conducted based on the
guideline approved by the CMU Institutional Review Board (IRB) review (Registration Number: IRB00000603).
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Fig. 7. Load test with ball drops. (a) Experimental se�ing: A sensing unit is placed on a side of the testing hallway and
five impulse locations are selected as shown in the figure. Each neighbor pair has a two-foot sensor interval. (b) Similarity
comparison results: The structural variation is gradual, and the nearby area (within 2 feet) has similar impulse responses.

7.1 Structural Variation: Load Test with Ball-drops

In the load test, we use ball drops (known impulse excitations) at di�erent locations to understand location-based
variation in the structural vibration responses. Human footsteps are subject to human behavior randomness.
To understand the location-based variation in structural vibration responses, we employ controlled impulses
generated by ball-drops from designated heights. At each location, we drop a ball 5 times from approximately
2� above the �oor to keep consistency. �erefore, when the impulse signals at di�erent locations demonstrate
variation, we can consider it the results of structural di�erence. Based on the structural di�erence-caused signal
variation, we select the threshold to cluster the Step Events in the Signal Characterization Section indicating
negligible di�erences caused by structural variation.

Figure 7 (a) shows the experimental se�ing for the load test, and the analysis results from the experiments are
shown in Figure 7 (b). �e variation between signals from the same location is relatively low (with an average
cross-correlation value of 0.96) as compared to signals from di�erent locations. In di�erent locations, the signal
change from one location to another can be large, e.g., location 1 and location 5 have an average cross-correlation
value of 0.58. �is means that the structural variation e�ects on footstep induced vibration data can be clearly
observed in the area monitored by one sensor.

However, the average value of the cross-correlation between impulse signals two feet away from each other is
0.87. �e signals that are within two feet of each other (the adjacent testing locations) always have over 0.84 cross
correlation value, which we then use as the threshold for the Step Events clustering as we mentioned earlier. �is
means that the Step Events clustered together have less variation than the variation the same impulse applied a
step-distance away might have from structural factors, i.e., the structural variation is negligible within a cluster.
�ese observations allow us to understand two situations we observed from the signal characterization in

Section 5: 1) when a person walks by a sensor, their steps at di�erent locations within the sensing range look
di�erent, even when their gait is similar and 2) if a person passes by a location multiple times, the footstep signal
from di�erent traces at locations in close proximity look similar. We will further discuss these two situations and
their e�ects on the algorithm in Section 8.

7.2 Step Frequency: Human Test with Controlled Step Frequency

In order to test the system in a practical se�ing, we deployed a sensing unit in a hallway (shown in Figure 8 (a,
b)) and asked the participants to walk through the hallway. 10 people (aged between 20 to 29 years) volunteered
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Fig. 8. The human walking experiment. (a) Experimental se�ing: a sensing unit is placed on the side of the hallway. (b)
Data collection: human subjects are asked to walk along the hallway multiple times at the step frequency controlled by a
metronome. (c) The measured step frequency in controlled experiments for the 10 participants. (d) Natural step frequency in
uncontrolled experiments for the 10 participants.

to participate in the experiments, of which 8 are male and 2 are female. �eir walking area is 30 � × 6 �. �e
deployed sensor can obtain between 10 to 15 steps’ signals from each trace signal, and the system selects the 7
steps that are closest to the sensor from each trace for analysis.

We asked the participants to step with metronome beats to control their step frequency [44]. �ey were asked
to wear �at bo�om shoes that they are comfortable with when walking fast and for a long time. As introduced in
the Signal Characteristics Section, we collected data for seven controlled step frequencies summarized in Table 1.
Note that we require the participants to follow the metronome beats as consistently as possible. If the beats are
too fast for them to follow while walking, they are encouraged to walk as fast as they can instead of jogging or
running, because those are considered di�erent gaits compared to walking and hence fall out of the scope of this
paper.

Gender \ Step Freq µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

Male 95 103 111 119 127 134 142
Female 98 107 116 125 134 143 152

Table 1. Metronome Frequencies (beats/min)

Furthermore, even when the participants are asked to follow the frequency of the metronome, their step
frequencymight still vary due to randomness in human behavior. We show the boxplot of detected step frequencies
for SEs of each controlled step frequency in Figure 8 (c). �e x-axis shows seven controlled step frequency levels
corresponding to the �rst row in Table 1. �e y-axis shows the detected step frequencies in each controlled step
frequency experiment. We observe that although each step frequency level has variations, the variations are
small enough that the 25th and 75th quartiles of each level do not overlap with those of others, i.e., each level
is clearly distinguishable. �is allows us to investigate the relation between the step frequency and the signal
waveform discussed in Section 5.

7.3 Uncontrolled Experiments

We designed the uncontrolled experiments to evaluate system performance when the pedestrians walk at their
natural speeds. �e uncontrolled experiment was conducted the same day as the controlled experiments for
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each participant. �erefore, the participant’s physical condition, as well as their shoes, remain the same as the
controlled experiments. �ey were asked to walk along the hallway in a way comfortable to them.
�e experiment se�ings are the same as discussed in Section 7.2, except that the participants are asked to

walk based on their natural step frequency. When they are asked to walk in their self-selected pace, their step
frequency shows a di�erent range as shown in Figure 8 (d). For example, Person 1’s self-selected step frequency
is around 100 step/min, which is a value between the controlled experiment frequency µ − 2σ and µ − 3σ . As
shown in Figure 5 (b), his Step Event cluster pa�ern for self-selected frequency is similar to that of µ − 2σ and
µ − 3σ , meaning at a speci�c step frequency, a person’s gait is stable possibly due to the individual physical
characteristics. �e results are presented in Section 8.3.

8 RESULTS AND ANALYSIS

In this section, we analyze the results from three angles: the baseline experiments that evaluate three key factors
of the system: the amount of labeled training data, the structural variation, and the step frequency variation
(Section 8.1), the controlled experiments that mainly evaluate the robustness of the algorithm (Section 8.2), and
the uncontrolled experiments that evaluate the overall performance of the system (Section 8.3).

8.1 Baseline: System Factors

�e baseline experiments compare di�erent training and testing data combinations with the SVM algorithm
to understand the properties of the data distribution. All the baseline experiments produce the trace level
identi�cation accuracy, which is the voting result of 7 consecutive SEs from the area that is closest to the
sensor, as the �nal results. �ere are three main aspects which a�ect the identi�cation accuracy: the amount of
the training data (Section 8.1.1), the location of the selected SEs (Section 8.1.2), and the step frequency of the
training/testing datasets (Section 8.1.3).

8.1.1 Amount of the Training Data. �e amount of labeled training data a�ects the SVM classi�cation accuracy.
�e more labeled training data the system has access to, the higher accuracy the system achieves. Figure 9 (a)
shows the identi�cation accuracy of SVM when the number of labeled training data changes from 1 to 9. �e
system investigates three di�erent types of accuracy: 1) step level accuracy, 2) selected step (closest to the sensor)
accuracy, and 3) trace level accuracy. �e results are for 10-fold cross-validation.

First, we compare the identi�cation accuracy when the number of traces in the labeled training data increases.
We observe an improving trend when the labeled training data size increases. When we only train on 1 trace,
the system achieves 60% for step level accuracy, 62% for selected step accuracy, and 80% for trace level accuracy.
When the training data increases to 6 traces, the step level accuracy rises to 83%, the selected step accuracy
improved to 87%, and the trace level accuracy achieves up to 97%. �ese accuracy values show a converging
trend when the amount of labeled training data is more than 6 traces per person.
�e selected step shows a higher average accuracy than that of the overall steps. However, the trace level

accuracy is signi�cantly higher than both the selected step accuracy and the overall step level accuracy. �e
comparison between these three lines in Figure 9 (a) indicates that 1) within a trace, the SEs that are closest to
the sensor achieve higher identi�cation accuracy than the ones that are far away, and 2) by taking multiple SEs
into consideration, the estimation accuracy has signi�cant improvement. For a �xed number of traces, when
the number of SEs used in a trace increases, we believe the accuracy increasing rate should gradually decrease
and the accuracy value should converge to 100%, which is similar to the trend in Figure 9 (a) when the number
of traces increases. We select 7 consecutive SEs in this evaluation for two reasons: 1) multiple decisions can
help average the outlier decisions, compared to only select 1 speci�c SE to determine the identi�cation; 2) in our
experimental setup, 7 steps distance approximately covers a structural slab region, meaning the selected SEs will
not show slab partition caused distortion.
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Fig. 9. Baseline experiments with SVM. (a) Identification accuracy comparison between the di�erent amount of labeled
training data in the unit of traces. The evaluated step frequency is the average step frequency µ. The blue line with circle
markers indicates the step level accuracy. The red line with cross markers shows the selected (closest to the sensor) step
accuracy. The yellow line with diamond markers shows the trace level accuracy. (b) Identification accuracy comparison
between di�erent sub-areas (3 SEs from each area). The diagonal accuracy values are higher than those on the side, which
demonstrates the structural variation lower the identification accuracy. The diagonal values are lower than those in (a) and
(c) due to the reduction in the number of SEs used in each trace. (c) Baseline step level results when training with one step
frequency SEs. The x-axis is the training set step frequency, and the y-axis is the testing set step frequency. The values in the
cube are the classification accuracy for 10 participants. The µ and σ are those discussed in Background Section, and the
actual values are plo�ed in Figure 8 (c).

8.1.2 Step Location of the Training Data. �e SEs’ locations in the training and testing data impact the
evaluation accuracy. As discussed in Section 7.1, when impulses happen in the same area, their signals show
consistency in waveforms, while in di�erent areas, their signals show di�erences in waveforms. Similarly, when
using SEs from the same area, the identi�cation accuracy should be higher than those from di�erent areas due to
the consistency in waveforms.

For the SEs extracted from the same relative location in each trace signal, we further separate the investigating
area into �ve sub-areas (with 3 consecutive SEs in each area) each approximately one step away from the next area.
Figure 9 (b) shows the identi�cation accuracy when the model is trained and tested on SEs from corresponding
areas. When the training and testing datasets are from the same area based on the approximate localization (the
average of diagonal values in the matrix in Figure 9 (b) is 90%), the identi�cation accuracy is higher than when
the areas are distant (32% and 40% respectively). Furthermore, we observe that areas closer to Area 5 have higher
identi�cation accuracy compared to those closer to Area 1. �e average accuracy in Area 4 and Area 5 is 93.5%
and the average accuracy in Area 1 and Area 2 is 85.5%, meaning some areas might be more homogeneous than
others and allow higher classi�cation accuracy. To summarize, selecting the SEs from the same area for training
and testing allows higher identi�cation accuracy.

8.1.3 Step Frequency of the Training Data. �e SE’s step frequencies in the training data determined the
testing accuracy. Figure 9 (c) shows identi�cation accuracy for SEs trained and tested at di�erent step frequencies
respectively. �is result veri�es our assumption that the closer the training and testing datasets’ step frequencies
are, the higher the step identi�cation accuracy is. As we observe in Figure 9 (c), the diagonal values in the matrix
are the highest through all the rows, reaching an average of 96% accuracy. For each evaluated step frequency, the
one level lower/higher frequency shows a slight decrease in the identi�cation accuracy, which has an average
value of 76% but still has a signi�cantly higher accuracy than those of the step frequencies that fall outside of
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the µ ± σ range. �ose results indicate that the identi�cation accuracy is higher when the step frequency gap
between training and test data is smaller and further motivate us to build our model in an iterative way by ITSVM.

8.2 Controlled Experiments: Algorithm Analysis

�e controlled experiments evaluate the algorithm robustness especially through testing data with di�erent
step frequencies discussed in Section 7.2. We mainly focus on two aspects of the evaluation: 1) how our
method outperforms traditional SVM and how each component of the algorithm works (e.g., SVM v.s. TSVM v.s.
RTSVM v.s. FootprintID), and 2) how biased datasets a�ect the algorithm performances. We use the so�ware
SVM l iдht [26] to run SVM and TSVM in our experiments. For SVM in (4), we use the RBF kernel, where
ϕ (xq )ϕ (xr ) = exp (−γ |xq − xr |

2). �e basic parameters from SVM with the RBF kernel are γ = 1 and C = 16. We
select this parameter combination because it achieves the highest accuracy in the 5-fold cross-validation on our
labeled dataset. For TSVM in (5), we also use the RBF kernel. Similar to SVM, the key parameters γ and C1 are 1
and 16. �e weightC2 of the loss function introduced by the unlabeled data is 1, which follows the default se�ing
in SVM l iдht . In this case, C1 is larger than C2, meaning that the model gives higher weight to the loss of the
labeled data than that of the unlabeled data. For ITSVM, the threshold used to determine if unlabeled SEs in a
trace can be labeled is 70%. It means that when over 70% of the RTSVM results predict the same class, the system
labels them as this class. �e threshold is determined empirically based on when the expansion of the supervised
model has greater than 70% similarity.

8.2.1 Algorithm Components Comparison. To understand the contribution of each component in the algorithm,
we evaluate four di�erent algorithms mentioned in Section 6, including SVM, TSVM, RTSVM, and ITSVM, by
comparing their runtime and identi�cation accuracy. For each person at each step frequency, we collect 10
traces. For the traces of average step frequency µ, we select 6 traces as labeled training data and the remaining 4
as testing data. For the traces of other step frequencies, we select 4 out of 10 as testing data to match the dataset
size. �e cross validation is conducted 10 times for each test case.

Case I: Support Vector Machine (SVM). In this case, the system only applies SVM on the labeled training data,
and the results are shown as the dark blue bars in Figure 11 (a). When the model is trained on the average step
frequency µ, the identi�cation accuracy on rare step frequencies (µ ±2σ and µ ±3σ ) data demonstrate tremendous
decrease to the same level as a random guess. �e test on average step frequency µ data shows as high as 98%
accuracy, while the rare step frequencies like µ ± 3σ drop down to 10% and 16% accuracy. �e overall accuracy
on datasets of all step frequencies shows an average of 43%. As discussed in Section 8.1.3, the more similar the
training and testing step frequency, the higher the identi�cation accuracy.

Case II: Transductive SVM (TSVM). In this case, the system applies the transductive SVM without selecting
unlabeled data. �e results are shown in Figure 11 with light blue bars. For datasets with step frequencies within
the range of µ ± σ , the TSVM achieves 57% accuracy, which is 20% lower than that of the SVM. For datasets
with step frequencies outside the range of µ ± σ , the TSVM achieves similar average accuracy compared to that
of the SVM, which is 17%. As discussed in Section 6.3.2, the multi-class SVM is built upon binary-class SVM,
and the irrelevant cases over�t the model. �erefore, this inaccurate model reduces the accuracy of the testing
identi�cation compared to use SVM.

Case III: Re�ned TSVM (RTSVM). In this case, the system applies the transductive SVM and re�nes the binary-
class TSVM by only taking the selected subset of unlabeled data. �is subset of unlabeled data is selected by
applying SVM and choosing the data with corresponding classes. �e results are shown as light green bars in
Figure 11. For datasets with step frequencies within the range of µ ± σ , the TSVM achieves 77% accuracy, which
is similar to that of the SVM. On the other hand, for datasets with step frequencies outside the range of µ ± σ ,
the TSVM outperforms the SVM by an average increment accuracy of 5%. Since the selective unlabeled data in
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Fig. 10. Average runtime for each tested footstep. (a) shows the runtime analysis when the number of people (registered
users) increases. Then for the case of 10 people, (b) shows the runtime di�erence when the amount of unlabeled data changes,
and (c) shows the runtime when the amount of labeled data changes.

the binary-class transductive learning process has a higher precision than that in the TSVM, the �nal accuracy
increases compared to the TSVM.

Case IV: Iterative TSVM (ITSVM). In this case, we evaluate the �nal se�ings of the presented algorithm (Figure
2). First of all, for traces with step frequencies in the range of the labeled training dataset, the system applies
supervised learning (SVM) directly. �en, the system further selects the SEs with higher con�dence in the �rst
iteration of transductive learning to improve the accuracy of the additional labels. �e accuracy of the rare
step frequency (µ ± 3σ ) datasets increases tremendously from 10% to 36% and 16% to 38%, approximately 2.85X
average improvement. �e overall accuracy on datasets of all step frequencies shows an average of 62%, 1.5X
improvement compared to that of the SVM.

Algorithm Runtime Comparison. We compare the runtime of the algorithms listed above to understand their
scalability. �e results for 10 times cross-validation are shown in Table 2. �e SVM algorithm is sensitive to the
amount of labeled training data, as shown in the �rst two columns. When the labeled training data size increases
7X , the runtime increases about 9.7X . When we apply the TSVM, the labeled and unlabeled data, considered
together, are of a similar size to the second case, in which the labeled training data includes all the step frequencies.
When that happens, the runtime increases almost 40X compared to the second case. �e RTSVM, on the other
hand, decreases the runtime 5X compared to TSVM by re�ning the unlabeled data used. ITSVM conducts RTSVM on
selected SEs and labels the SEs with high prediction con�dence in the �rst iteration. It then conducts RTSVM on
the rest of SEs in the second iteration. �erefore, ITSVM takes 2.8X the runtime compared to RTSVM.
�en for ITSVM, we further evaluate the average runtime to identify each SE, and study the e�ect data size

has on the average runtime. To do this, we compare the average runtime per SE of the �rst iteration to that
of the two iterations together. �e runtime results are shown in Figure 10. We can see in Figure 10 (a) that

Algorithms SVM (train on µ) SVM (train on µ ± 3σ ) TSVM RTSVM ITSVM (FootprintID)

Runtime Avg. (s) 0.8724 9.7886 382.4303 74.7586 218.9920

Runtime Std. (s) 0.0496 0.9174 94.8886 8.3837 18.9385

Table 2. Runtime Comparison for 196 Testing Footsteps.
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the average runtime increases almost linearly when the number of classes increases, and when there are two
iterations, the increase ratio is almost 3 times that of the �rst iteration. In Figure 10 (b) the total runtime increases
when the number of unlabeled data increases; however, the average runtime for each SE decreases for the �rst
iteration and remains stable for two iterations. �is is because that although the total runtime is a monotonic
increasing function of the amount of unlabeled data, the average runtime for unlabeled SEs is not. �e increasing
or decreasing trend is determined by the ratio of labeled and unlabeled data. We will further analyze the time
complexity later as a veri�cation. On the other hand, in Figure 10 (c), for both the �rst iteration and both iterations
together, the average runtime per SE increases with the increase of the labeled training data.
We also analyze the time complexity of di�erent methods to validate the experimental observations. Note

that the number of labeled data samples is l , and the number of unlabeled data samples is u. We further assume
that the system classi�es n users. Each time the system re-trains the model, the local search algorithm runs
T repetitions in TSVM and runs k iterations in ITSVM. In SVM l iдht , optimizing the loss function of TSVM is a
combinatorial optimization problem, which is solved by the local search algorithm. In each repetition of the local
search, an SVM is trained by the quadratic programming. �erefore, the running time complexity of TSVM and
RTSVM is typically O (T (l + u)2n2). �e time complexity of ITSVM is O (kT (l + u)2n2). In contrast, the running
time complexity of n-class SVM is O (l2n2).

Based on the time complexity analysis, we further explain the runtime shown in Table 2. When compared to
the n-class SVM, TSVM takes T repetitions as opposed to 1 for SVM, and the amount of unlabeled data u makes
each repetition longer, therefore TSVM takes multiple times the runtime. RTSVM, on the other hand, has a smaller
amount of unlabeled data compared to TSVM since its data is selected, resulting in a lower runtime. Compared to
RTSVM, ITSVM has a higher runtime because ITSVM takes more iterations to train the �nal model. ITSVM needs
less time than TSVM because ITSVM also only uses partial unlabeled data.

Although the calculation repetitions increase the transductive SVM’s runtime, the algorithm saves more time
in collecting the labeled data the supervised SVM needs, which can take the SVM an additional 1-2 hours per
person. To achieve the identi�cation accuracy shown in this paper, the system also needs a bootstrap phase to
collect the unlabeled SEs with di�erent step frequency, which we will introduce in the uncontrolled experiment
as well as the discussion section.

Step Frequency Accuracy Comparison. We compare the identi�cation accuracy with datasets of di�erent step
frequencies in Figure 11. Note that the step frequencies here are the 7 levels (from µ − 3σ to µ + 3σ ) assigned
during the data collection process. We �rst compare the identi�cation accuracy values of data in each step
frequency. �en we further compare the identi�cation accuracy of data in di�erent ranges. In Figure 11 (a), we
observe a tremendous drop in identi�cation accuracy from µ ± σ to µ ± 2σ when supervised learning method
(SVM) is used. �e identi�cation accuracy remains higher than 65% when the step frequency is between µ ± σ .
�e accuracy drops to 10% when the step frequency decreases to µ − 2σ , and to 30% when the step frequency
increases to µ + 2σ . �e TSVM and RTSVM have similar performances as the SVM at the extreme step frequencies
(µ ± 3σ ). �e TSVM shows a lower accuracy compared to the SVM due to the confusion from multi-class unlabeled
data, which we discussed in Section 6. �e RTSVM shows the improvement compared to the SVM on the step
frequencies that are not in the labeled training dataset. �e ITSVM outperforms the rest of the algorithms in all
evaluated step frequencies.
Figure 11 (b) presents the average identi�cation accuracy within the step frequency range in the x-axis to

demonstrate the overall accuracy when unlabeled data with di�erent step frequencies are involved. �e supervised
learning model (SVM) shows up to 98% identi�cation accuracy when the test SEs’ step frequencies are closer
to the labeled training data, which is higher than that of the RTSVM (93%) in the same scenario. �is is because
the supervised model most accurately describes the SEs with a similar step frequency to the labeled training
data. �erefore, for traces in which the step frequency falls into the step frequency range of the labeled data, the
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Fig. 11. Comparison between di�erent algorithms. (a) identification accuracy when tested on signals of a specific step
frequency; (b) identification average accuracy when tested on signals from a range of step frequencies. E.g., µ ± 3σ in (b)
indicates the range between µ − 3σ and µ + 3σ , which is the average accuracy of all 7 levels of step frequency’s results.

FootprintID (ITSVM) uses the supervised model and achieves the same high accuracy (98%). When the variety of
the SE step frequencies increases, the advantage of our system is shown. When the test SE has a step frequency
in the range between µ − 3σ and µ + 3σ , the average identi�cation accuracy for FootprintID is 62%, while that
of the SVM is 43%. In general, ITSVM improves the most in comparison to SVM when the di�erence between
testing and training data’s step frequencies is larger (e.g., train on µ and test on µ ± 3σ ).

Decision Con�dence and �resholding. In many applications, identifying users as unknown is more tolerable
than making wrong predictions. �erefore, FootprintID utilizes the decision con�dence calculated for each trace
to determine whether to output an ID from the labeled dataset or output unknown. �e trace-level decision
con�dence for a trace is calculated as discussed in Section 6.4.

Figure 12 demonstrates the trace-level decision con�dence threshold’s e�ect on the ITSVM results from Figure
11 (b). When the threshold is not applied, all trace decisions are considered con�dent and the identi�cation
accuracy is as discussed earlier in Case IV: Iterative TSVM (ITSVM). When the system increases the threshold
value to 0.227, for the case of µ ± 3σ , the ratio of the traces labeled ‘unknown’ goes up to 50%, and the accuracy
increases from the original 62% to 83%. When the unlabeled data range decreases, i.e., when not considering rare
step frequency data, both the corresponding identi�cation accuracy and con�dent ID ratio increase, as shown
in Figure 12 with blue, green and purple lines. �e error estimation in the rare step frequency data is of low
con�dence, and the thresholding e�ectively mitigates the error estimation.

8.2.2 Dataset with Biased Size. In this section, we discuss the system robustness when the unlabeled data used
for updating the transductive learning model has biased size. �is scenario could happen when the participants
appear in the sensing area at di�erent frequencies. �e baseline for this experiment is SVM, and all the available
traces are used. We evaluate the bias dataset e�ects using the accuracy reduction ratio compared to this baseline.

In general, the dataset of a speci�c step frequency of a participant can be insu	cient or su	cient. �e de�nition
of insu	cient and su	cient indicates the degree of bias. When the number of people with su�cient dataset is high,
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Fig. 12. Decision confidence thresholding on ITSVM results from Figure 11 (b). For example, the orange solid line with cross
marker indicates the average identification accuracy of all controlled step frequencies when di�erent threshold values are
applied, and the corresponding dash line shows the confident ID ratio in that case. When the system classifies a trace with a
confidence lower than the threshold, the system considers the pedestrian ID as ‘unknown’. The higher the threshold, the
higher the accuracy of the identified cases.

the identi�cation accuracy should increase. When the dataset of di�erent step frequencies has a di�erent bias, e.g.,
only the rare step frequencies are biased, the identi�cation accuracy varies too.

In the rest of this section, we, �rst of all, select the biased step frequencies based on di�erent scenarios. �en
we go through the di�erent combination of degree of bias and the number of people with su	cient datasets.

Bias Variable I: Degree of Bias. We de�ne the degree of bias as the de�nition of a su	cient and insu	cient
unlabeled dataset for each participant. �at is, how much bias appears between the participants who show up in
the sensing area most o�en? Here we investigate the cases when the unlabeled data ratios are 1:8, 2:7, 3:6, and
4:5 for people who show up less o�en (having insu	cient dataset sizes) v.s. those who show up o�en (having
su	cient dataset sizes).

Bias Variable II: Number of People with Su�cient Dataset. We consider the scenarios where some of the
participants have a su	cient unlabeled dataset, while the rest have an insu	cient unlabeled dataset. �at is, how
many people show up o�en (having su	cient dataset sizes)? For example, when only a small number of people
have a su	cient unlabeled dataset, the system may have lower accuracy compared to when a large number of
people have a su	cient unlabeled dataset.

Bias Variable III: Step Frequencies. When di�erent step frequencies are biased di�erently, will the system
performance be a�ected by the di�erence in the bias as well? �at is, which iteration of biased datasets a�ects
the system performance more?

Analysis. Figure 13 demonstrates the comparison of the identi�cation accuracy regarding these three factors.
As shown in both (a) and (b), when the gap between su	cient and insu	cient are large (insu	cient:su	cient
dataset size is 1:8), the identi�cation accuracy is lower for all cases. When even number people have insu	cient
and su	cient datasets, the accuracy actually drops when the degree of bias is large. �is is because when the size
of a dataset is too small, the estimation tends to have a higher error rate, which is expected from the analysis in
Section 8.1.1.
We further analyzed the accuracy of insu	cient and su	cient datasets respectively and made the following

observations: 1) the su	cient dataset cases have similar accuracy; 2) for the insu	cient dataset cases, the accuracy
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Fig. 13. Identification accuracy drop of biased datasets compared to fair datasets. (a) All step frequency unlabeled data is
biased between di�erent participants. (b) The rare step frequency unlabeled data is biased between di�erent participants.

increases when the number of people with su	cient datasets increases. �e la�er happens because when the
system identi�es more people accurately, the error for the rest of the decisions decreases as well. Hence, due to
the portion of insu	cient and su	cient datasets, the second row (5 people with insu	cient datasets and 5 people
with su	cient datasets) has a lower error than the �rst row (1 person with a su	cient dataset and 9 people with
insu	cient datasets).
On the other hand, the third column (bias 3:6) in the third row (1 person with an insu	cient dataset and 9

people with su	cient datasets) outperforms the second (bias 2:7) and the fourth column (bias 4:5) in the third row.
�is nonmonotonous trend could be caused by a combination e�ect of accuracy increase for insu	cient datasets
and accuracy decrease for su	cient datasets. As discussed in the baseline evaluation in Section 8.1.1, when the
training data increases to 6 or more traces, the trace level accuracy remains high and does not change much.
However, as the training data increases from 1 to 5, the trace level accuracy demonstrates a signi�cant increase as
shown in Figure 9 (a). In the situation we observe here, the accuracy from the population with a su	cient dataset
may remain high till the dataset size drops to 5, while the accuracy from the population with an insu	cient
dataset keeps increasing. �e ratio combination of the population and their accuracy decrease/increase makes
the trend nonmonotonous.

When comparing the cases in which all unlabeled datasets are biased by a person (Figure 13 (a)) v.s. only the
rare step frequencies dataset are biased by a person (Figure 13 (b)), the la�er achieves higher accuracy especially
when the degree of bias is high and the number of people with su	cient datasets is low. �is is because when
the �rst iteration of datasets is su	cient, the estimation has higher accuracy and therefore the new labeled data
has a label with higher accuracy, hence the model describes the data more accurately.

When the dataset is biased, we can improve the identi�cation accuracy by tuning the con�dence threshold. As
discussed in Figure 12, when the unlabeled dataset is large enough, the threshold used to select additional labels
from the RTSVM results can be increased. �e more accurate the �rst iteration model is, the more accurate the
�nal results will be, as shown in the comparison between cases in Figure 13 (a) and (b).

8.3 Uncontrolled Experiments: Algorithm Robustness

We further evaluate the system with uncontrolled experiments where pedestrians walk through the sensing area
one at a time with their natural walking form. As discussed in Section 7.2, when the participants are asked to
walk with their natural form, their step frequencies vary as shown in Figure 8. When using ITSVM, the system
determines the step frequency range that applies supervised SVM as between 116 and 122 steps/min, which is
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Models SVM TSVM RTSVM ITSVM (FootprintID)

labeled: µ, unlabeled: µ ± σ ,
µ ± 2σ , µ ± 3σ , uncontrolled

56% 52% 52% 67%

labeled: µ, unlabeled:
µ ± σ , µ ± 2σ , µ ± 3σ

56% 54% 51% 67%

labeled: µ,
unlabeled: uncontrolled

50% 22% 22% 45%

Table 3. Runtime Comparison for 196 Testing Footsteps.

the step frequency range of the labeled data with walking speed µ shown in Figure 8 (c). We investigate the
system practicality especially in terms of system bootstrapping from historical data with the combination of data
from both controlled and uncontrolled experiments.

8.3.1 System Bootstrapping and Modeling. �ere are three modeling se�ings we investigated and listed in
the table: 1) the system takes the labeled data with step frequency µ and unlabeled historical data with step
frequency between µ ± 3σ as well as the uncontrolled data to build the model, 2) the system takes the labeled
data with step frequency µ and unlabeled historical data with step frequency between µ ± 3σ to build the model,
and 3) the system takes the labeled data with step frequency µ and the uncontrolled data to build the model.
�ese three cases represent di�erent scenarios of the system. �e �rst modeling case represents the scenario
when the system is in the bootstrap phase and there is enough historical data. In the bootstrap phase, the system
rebuilds the model a�er collecting new unlabeled data. �e second modeling case represents the scenario a�er
the bootstrap phase. In the post-bootstrap phase, the system only applies the model; it doesn’t rebuild it. �e
third modeling case represents the system in the bootstrap phase where there is not enough historical data yet.

8.3.2 Comparison and Analysis. We run the four algorithms compared in the controlled experiments, SVM,
TSVM, RTSVM and ITSVM, on the uncontrolled experiment data and compare the average identi�cation accuracy in
Table 3. We can see that for the �rst two modeling cases, the ITSVM outperforms the other three algorithms. �is
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Fig. 14. The accuracy of the uncontrolled experiment in which people walk at their natural frequency. The x-axis is the
decision confidence threshold value. The y-axis on the le� (corresponding to the blue solid line) is the identification accuracy
of the results a�er applying the threshold. The y-axis on the right (corresponding to the red dash line) is the ratio of the
cases where the system successfully obtains an ID based on the decision confidence threshold. When the threshold discards
half of the data (black dash line), the identification accuracy achieves 90%.
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is because the detected step frequencies of the collected uncontrolled traces are spread out between µ − 3σ and
µ + σ . �erefore, the improvement in the ITSVM is mainly due to the higher identi�cation accuracy on the low
step frequency data. We can also see that when the model covers a large enough step frequency range, the extra
unlabeled data does not necessarily increase the identi�cation accuracy (67% for the �rst and the second model).
In addition, when there is not enough gradually changing historical data like that shown in Figure 6, the system
may end up with a lower accuracy when compared to SVM (45% for the third model).

In addition, we took the results from the �rst modeling case and analyzed the ‘unknown thresholding’ changing
and its e�ects on the identi�cation accuracy using ITSVM. When the system considers the results only when the
probability is beyond a pre-de�ned threshold, and otherwise the result of the identi�cation is ”unknown” [52],
we have the corresponding identi�cation accuracy demonstrated in Figure 14. As shown in the �gure, when
FootprintID thresholds on half of the high con�dence trace, the identi�cation accuracy rises from 67% to 90%.

9 DISCUSSION

We further discuss system practicality and potential extension here. For system practicality, we mainly discuss
the runtime comparison and the system bootstrap phase, the sensing range, and the robust footstep detection
against other types of excitation induced vibration. For system extension, in addition to the step frequency
discussed in this paper, there are many other factors that await to be explored. Here we describe how sensor
deployment location, di�erent shoes people are wearing, and the number of people walking at the same time
may impact our work.

9.1 System Practicality

We discuss the system practicality in three di�erent ways, including the system runtime and bootstrap phase, the
sensing range, and the robust footstep detection method.

9.1.1 System Runtime and Bootstrap Phase. In this section, we discuss our model training method’s practicality
based on the analysis on the system runtime in Section 8.2 and the system bootstrap in Section 8.3. As discussed
in the runtime evaluation section, although the amount of unlabeled data and the calculation iteration increase
the runtime, labeling data is the most time-consuming step in the system. It also shows that the runtime increases
signi�cantly when the unlabeled data increases because the size of search space grows exponentially when the
number of unlabeled data increases. Furthermore, with the analysis in the uncontrolled experiments, when the
size and distribution of the historical data grow to a certain degree, adding more data may not lead to a higher
identi�cation accuracy anymore. �erefore, the key to the system practicality lies in the control of the bootstrap
phase regarding duration and unlabeled data size. For example, when the system is deployed, it will have a
one-month bootstrap phase in addition to the labeled data collection. During the bootstrap phase, the system
collects the unlabeled SEs and selects them based on their step frequencies to retrain the model iteratively. �en
a�er the bootstrap phase, the system identi�es the person based on the �xed model. Note that in this paper we
systematically evaluate the controlled walking step frequency between µ ± 3σ based on the survey paper [44].
However, when the pedestrian’s walking step frequency exceeds the range of µ ± 3σ , the system will conduct
more iterations so the model covering range can propagate until it includes those extreme step frequencies.

9.1.2 Sensing Range. �e sensing range of each sensor is a�ected by multiple factors that mainly fall into two
categories: structure and excitation signal. �e structural factors include structural slab region sizes, material
properties (sti�ness, density, etc.), sensor locations on a slab region, etc. �e excitation signal factors include the
impact strength, which is a�ected by pedestrian physical characteristics, shoe material, analog ampli�er gain, etc.
We addressed the sensing range in our prior work [48, 52] with experiments done in hallways. �e detection
range can be as far as the 10m radius from the sensor [48, 52].
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9.1.3 Robust Footstep Detection. In practical scenarios, there are many types of excitations that generate
vibrations other than footsteps, such as doors opening and closing, objects falling, a chair dragging, etc. Our
prior work has analyzed di�erent types of excitation and the vibration signals they induce from both time and
frequency domains [29, 36]. �is work utilizes the one-class SVM to distinguish impulses that are induced by
footsteps from other types of excitation when the signals are not overlapping. With this robust footstep detection,
the system can apply the algorithm introduced in this paper on footstep induced vibration signals.

9.2 System Extension

We further discuss the variations that may a�ect the system in practical scenarios here, including step frequency
change during a walk, sensor location variation, di�erent shoe types, and scenarios with multiple pedestrians
walking together.

9.2.1 Irregularity within a Walk. When a person walks in an indoor environment, their walking may di�er
from that discussed in this paper, e.g., their step frequency may change every few steps, they may walk away from
the sensor instead of passing by it, etc. When these less predictable behaviors happen, our current system with
only one sensor deployed may not be able to identify the person (e.g., not enough footstep detected). However,
when the system adopts multiple sensors to achieve a larger coverage, the predictable behavior may be detected
elsewhere. Hence the system can conduct the identi�cation with the se�ings introduced in this paper.
For example, when a person’s step frequency is continuously changing, the system can use the sensing area

with most stable step frequency to identify the person. Similarly, if a person walks away from one sensor, they
may walk pass by the other sensor in the next sensing area. However, when multiple sensors are involved, their
location variation may become another challenge, which we will discuss in the following section.

9.2.2 Sensor Location Variation. When the sensing system is deployed at di�erent locations, the vibration
signal of the same person walking could look di�erent due to structural variation. �at is to ask if the system can
identify an individual passing by one sensor with the training data collected from another sensor at a di�erent
location. In this paper, we assumed a small deployment area, such as a hallway, where each sensor can be
trained individually. In scenarios with larger sensing areas and multiple sensors, we believe a transfer function
that maximizes the similarity between Step Event features extracted by sensors at di�erent locations could be
extracted.

9.2.3 Shoe Types. In a practical scenario, each individual may have multiple shoes. When the same person
wears di�erent shoes, their footstep-induced vibration signal changes. �ere are two intuitive reasons behind this
e�ect: 1) di�erent shoes change a person’s gait [75], and 2) di�erent shoe soles are made of di�erent materials
with varying hardness, resulting in impulse responses of di�erent magnitude, frequency, and duration [23].

We envision two major methods to handle the shoe type di�erence challenge: 1) modifying the model to
achieve a shoe-invariant model, and 2) to extend the model for individuals that includes multiple shoe pro�les.
For the �rst method, we may revisit the feature selection to see if there are 1) shoe-invariant features from each
Step Event, and 2) behavior level features from the obtained trace signal, e.g., le�-right foot imbalance. For the
second method, we may utilize the tracking information of the person to link the identity to the o	ce or routine
paths, which, in turn, can be used to label di�erent shoe types and expand the existing models of individuals.

9.2.4 Multiple Pedestrian Scenario. In real-world situations, it is common for multiple people to walk within a
sensing area at the same time. When this happens, footsteps of multiple people induce the �oor to vibrate and
the sensor will observe the mixture of these signals. Some works have started to explore the detection of multiple
people walking together [51]. Based on the occupant tra	c estimation, further signal separation can be explored.
In addition, signal separation, localization, and identi�cation are closely connected, and utilizing this information
obtained concurrently may help the system achieve more accurate estimation in each task.
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10 RELATED WORK

FootprintID is inspired by di�erent research topics, including gait kinetic, person identi�cation sensing methods,
and structural vibration monitoring. �is section discusses works that are closely related to this work.

10.1 Gait Kinetics

Kinetics of human gaits usually refers to the study on 1) forces passing through the joints, 2) force plate embedded
in the �oor records, and 3) ground reaction force vectors. Studies have shown that the force that a human subject
applies to the ground can be used for identi�cation of animals and human beings [62]. Further investigation
on the ground’s reaction to the force of indoor human footsteps also indicates the possibility of identifying
pedestrians through the measurement of the force applied on the �oor [33, 47]. �e excitation force induces shape
changing on the pressured part of the �oor and vibrations of the structure [4]. �e prior work focuses either on
the gait’s ground reaction force or the structural vibration induced by an excitation force, and the connection
between these two are missing. We focus on the footstep-induced vibration sensing, which 1) allows sparse
deployment due to the wave propagation properties in structure and 2) captures the gait kinetic information for
identi�cation purposes.

10.2 Sensing Methods Comparison

Various of sensing methods have been explored to obtain person identities in the indoor environment. �ey
mainly fall into a few categories, including vision [49, 61, 65, 68], RF [69, 76], mobile [38, 64], inertial sensors
[17, 32, 56], acoustic [2, 20], and vibration [16, 52] based methods.
Vision-based methods extract visual biometrics of an individual, including facial structure [5, 65], hand

geometry [49, 57], and gait [61, 68]. Although the accuracy of the identi�cation is high (over 95% accuracy for
the mentioned biometrics) the systems o�en require a clear visual path. �is makes it a challenge to utilize them
in a surveillance scenario or ubiquitous sensing without requiring them to interact with a sensing system.

On the other hand, RF-based methods overcome such problems and have been explored to obtain a variety of
information about people in an indoor environment [69, 76]. WiWho achieves an accuracy of 80% for identifying 6
people [76]. WiFiU achieves a false acceptance rate of 8.05% and a false rejection rate of 9.54% [69]. �ese methods
o�en require the sensing target to be between a pair of transmi�ers, therefore they need dense deployment to
achieve high accuracy information inquiry. Furthermore, such data-driven approaches usually require a large
labeled training set, which makes the deployment of the system a challenge.
Mobile-based methods [38, 64] utilize the relation between the sensing target and the device with a unique

ID and assume each target will carry the registered device. Another way to identify pedestrians with mobile
devices uses inertial sensor based methods [17, 32, 56], which is through the gait information re�ected on the
motion. �e recognition rates reported in these work are around 85% (Equal Error Rate between 6.7% and 7.3%).
However, these mobile-based methods o�en assume that there are wearable devices on the pedestrian to obtain
the gait information. �erefore, it might be di	cult to use when deployed in applications such as elderly care or
patient care, in which people may not carry their phones all the time.

Acoustic- and vibration-based methods have their similarities [16, 52]. Compared to acoustic sensing, vibration
sensing is less sensitive to the audible noise in the environment. However, both are data-driven approaches and
require a large amount of the labeled training data to achieve robust identi�cation, especially when the walking
speed varies 7. In this paper, we presented our system FootprintID, a vibration-based method that takes physical
insights into account and allows robust identi�cation with a limited amount of labeled training data.

7We compare the accuracy of supervised SVM and FootprintID in Section 8.
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10.3 Structural Vibration Sensing

Work has been done on structural vibration monitoring through sensor networks for various applications,
including structural health monitoring [28, 40–43, 74]. �e insight on these works provides a good understanding
of the wave propagation and characteristics of the human-induced structural vibration. Recent research also
starts to utilize such signals for indoor human monitoring [29, 30, 34, 35, 48, 54]. �e sensing challenges of
structural vibration monitoring for indirect human sensing include 1) noisy ambient noise [30], 2) multi-path of
the vibration signal in an indoor environment [54], and 3) the distortion and low resolution of the sensing signal
[50]. We adopted the solution proposed in our previous works to acquire high-resolution signals and avoid signal
distortions. �ese prior works do not address the identi�cation purpose utilizing structural vibration, whereas in
this paper we present a robust identi�cation method. A preliminary work explained the possibility of utilizing
�oor vibration for pedestrian identi�cation purpose [52]. Compared to that, this work presents a low-cost sparse
sensing system that can robustly identify pedestrians under di�erent types of variations as discussed earlier in
the Signal Characterization Section.

11 CONCLUSION

In this paper, we presented the FootprintID system, which identi�es pedestrians passing through the sensing
area through their footstep induced structural vibrations. Our algorithm overcomes the large amount of labeled
training data needed for a data-driven approach to achieve pedestrian identi�cation under various sensing
conditions, especially variations in stepping frequency and structure. We characterized the variation of footstep-
induced structural vibration signals and designed the ITSVM learning algorithm to achieve robust pedestrian
identi�cation for signals of rare step frequency. We conducted experiments with 10 people who each walked at
seven di�erent step frequencies. When the system is trained only on the average step frequency µ dataset, ITSVM
achieves up to 96% accuracy, 1.5X improvement with test datasets of all step frequencies, and approximately 3X
improvement on rare step frequency (µ ± 3σ ) dataset when compared to traditional SVM. Furthermore, ITSVM
demonstrates approximately 1.5X improvement on identi�cation accuracy in uncontrolled experiments.
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