
Footstep Planning Among Obstacles for Biped Robots

James J. Kuffner, Jr. Koichi Nishiwaki Satoshi Kagami

Masayuki Inaba Hirochika Inoue

Department of Mechano-Informatics

The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

{kuffner,nishi,kagami,inaba,inoue}@jsk.t.u-tokyo.ac.jp

In Proc. 2001 IEEE RSJ Int’l Conf. on Intelligent Robots and Systems (IROS 2001)

Abstract

We present an algorithm for planning safe navi-

gation strategies for biped robots moving in obstacle-

cluttered environments. From a discrete set of plau-

sible statically-stable, single-step motions, a forward

dynamic programming approach is used to compute

a sequence of feasible footstep locations. In contrast

to existing navigation strategies for mobile robots, our

method is a global method that takes into account the

unique ability of legged robots such as bipedal humanoids

to traverse obstacles by stepping over them. Heuristics

designed to minimize the number and complexity of the

step motions are used to encode cost functions used for

searching a footstep transition graph. We show prelim-

inary results of an experimental implementation of the

algorithm using a model of the H6 humanoid navigat-

ing on an office floor littered with obstacles.

1 Introduction

Humanoid robotics technology has progressed rapid-
ly during the past several years, and the commercial
availability of humanoid robot hardware is likely to
happen very soon. This will lead to a rising demand
for software and algorithms useful to improving the
usability and autonomy of humanoids. One impor-
tant area of need will be software for safe, autonomous
navigation in human environments such as homes and
offices.

Research on global path planning and navigation
strategies for mobile robots has a large and extensive
history in the robotics literature. Since the problem
can usually be modeled as searching for a collision-free
path in a 2D environment, very efficient and complete
algorithms can be employed (for an overview, see [6]).
However, most of these techniques apply to wheeled

Figure 1: Humanoid robot navigating in a cluttered
office.

robots which must always circumvent obstacles. In
contrast, legged robots (including biped humanoids)
have the unique ability to traverse obstacles by step-
ping over or upon them.

2 Related Research

Most existing research on humanoid robots has fo-
cused on pre-generating stable walking trajectories (e.g.
[2, 17, 9]), or on dynamic balance and control (e.g.
[15, 12]). Recently, techniques have been developed
to generate stable walking trajectories online by mix-
ing pre-generated stepping patterns [11], though these
results do not account for obstacles. For quadruped
robots, adaptive gait generation and control on irreg-



REGION
GOAL

Figure 2: Planned footstep locations (Top view).

ular terrain and among obstacles has been previously
studied [3]. This method has not yet been applied to
biped robots. Sensor-based obstacle-avoidance tech-
niques have been developed for bipeds navigating in
unknown environments [16, 7]. However, such reac-
tive methods can become trapped in local loops or
dead-ends, since they do not consider global infor-
mation. Other related techniques in computer ani-
mation that use footprint placement for motion spec-
ification have been developed for bipeds[1, 14], and
quadrupeds[5, 13].

Our approach is to build a search tree from a dis-
crete set of feasible footstep locations corresponding
to statically-stable stepping motions. Using standard
dynamic programming techniques, we compute a se-
quence of footstep placements to reach a goal region
in an obstacle-cluttered environment. Encoded heuris-
tics minimize the number and complexity of the steps
taken, as well as guide the search. This has the advan-
tage of planning a global navigation strategy for bipeds
that includes the ability to step over obstacles. Pre-
liminary results have shown that such a strategy can
be computed efficiently (from a fraction of a second to
a few minutes, depending upon the environment size
and complexity) on standard PC hardware.

The rest of the paper is organized as follows: Sec-
tion 3 gives an overview of the biped stepping model,
Section 4 describes the algorithm, Section 5 shows
some preliminary results on an experimental imple-
mentation, and Section 6 concludes with a summary
discussion.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

FRright

FOOT
LEFT LEFT

FOOT

Figure 3: Statically-stable foot placements for the
right foot. (left: continuous region; right: discrete
subset)

3 Biped Navigation Model

Although the search technique adopted is very general,
we currently make the following simplifying assump-
tions:

1. The environment floor is flat and cluttered with
non-moving obstacles of known position and height.

2. A discrete set of feasible, statically-stable foot-
step placement positions and associated step-
ping motions are pre-computed.

3. Only the floor surface is currently allowed for
foot placement (not obstacle surfaces).

Statically-stable Footstep Locations: The biped
model comes with a pre-determined set of feasible foot-
step locations for each foot. For example, Figure 3
shows the continuous, feasible footstep range FRright

for the right foot while balanced on the left foot, and
an example discrete set of foot placements. The place-
ments for the left foot simply mirror the right foot
placements, which is possible for symmetric bipeds.

In selecting which footstep placements to include
in the discrete set used during the search, we chose a
distribution of placements along the edge of the reach-
able region at different relative foot angles, as well as
a few interior placements to allow the robot to ma-
neuver in tight areas. This choice is currently only
heuristic, and attempts to strike a balance between
maximizing the navigation options, while minimizing
the total number of discrete placements. In our im-
plementation, we selected a total of 15 placements for
each foot (see Section 5).

The number of placements is particularly impor-
tant, as it determines the branching factor of the search



Figure 4: The intermediate posture Qright used for
transitioning between left leg footstep placements.

tree. Some relative rotation of the foot sole with re-
spect to the support leg is necessary in order for the
robot to alter its global orientation. A few backward
foot placements are used to provide additional ma-
neuverability for navigating environments with areas
of limited free space. We note that alternatively, one
could define multi-step “turn-in-place” motions to ex-
plicitly allow for larger changes in orientation at each
discrete search step. This has not yet been imple-
mented in our system.

Footstep Transition Trajectories: In addition to
the set of feasible footstep locations for each foot, the
planner also requires a pre-calculated set of statically-
stable motion trajectories for transitioning between
them. In general, this implies a quadratic number
of transition trajectories between all possible footstep
placement combinations.

In order to reduce the number of transition trajec-
tories, we introduce two statically-stable, intermediate
postures Qright and Qleft that serve as a via points for
all footstep transitions. Qright and Qleft correspond
to default postures in which the robot is balanced en-
tirely on either the right or left foot respectively, with
the other foot suspended high above the walking sur-
face. Figure 4 shows Qright for the H6 humanoid robot
model (Qleft is defined by mirroring Qright).

Using intermediate postures reduces the number of
transition trajectories to roughly equal the number of
footstep placements considered. An arbitrary transi-
tion between two placements of the right foot, Q1 and

Heuristic Footstep

Robot Model

SequenceCost Function

CHECKER

COLLISION

Trajectories

Statically-stable
Transition

FOOTSTEP

PLANNER

Environment

Discrete
Footstep

Placements

Model

Figure 5: Block diagram of the planning algorithm.

Q2, is formed by composing the transition from the
starting posture Q1 to Qleft, and then from Qleft to
Q2. Transitions for the left foot are composed in the
same way, except Qright is used as the intermediate
posture.

4 Footstep Planning Algorithm

The planner accepts as input a discrete set of robot
footprint locations, statically-stable transition trajec-
tories, and a heuristic cost function. The 3D robot
model and environment model is used for collision
checking. If the planner successfully finds a solution,
it outputs a sequence of encoded footstep placements
and transitions. An overview of the planner is shown
in Figure 5. Each of the main components are de-
scribed in the following sections.

Dynamic Programming: Given a set of discrete
placements, we adopt a forward dynamic programming

approach to planning navigation strategies. For an
overview on dynamic programming, the reader is re-
ferred to any textbook on artificial intelligence or game
search trees (e.g. [4] or [10]). Since an exhaustive
search is too expensive, we employ a greedy heuristic
in order to prune the search tree.

Starting from an initial biped configuration Qinit,
a search tree of possible footstep placements is con-
structed as in Figure 6. The planner maintains a prior-

ity queue of search nodes containing a footprint place-
ment configuration and a heuristic cost value (see Sec-
tion 4). The nodes are inserted into the queue based
on their cost.

Initially, the queue is initialized with a single node
Ninit, which contains the starting configuration Qinit.
At each iteration, the planner removes the lowest-cost
(higher priority) node Nmin from the priority queue.



Initial Configuration

2

8

0

5 6 8 9 12

11 3

710

1

5

4

13

2

Figure 6: Search tree rooted at the initial configura-
tion. Successor states that resulted in collisions (dark
leaf nodes) are pruned from the search.

Successor nodes of Nmin are generated that corre-
spond to all potential placement locations for the next
footstep. Collision checking is used to eliminate suc-
cessor nodes which result in obstacle collisions (see
Section 4).

When a successor node is generated that falls within
the predefined goal region, the search terminates and
a solution path back to the root node of the tree is re-
turned. The solution path defines a discrete sequence
of footprint placements which when executed will take
the robot from Qinit to the goal region.

The search can fail in one of two ways:

• No more valid successor nodes can be generated.
In this case, no collision-free footstep sequence
exists using the given discrete set of relative foot-
print placements.

• The size of the search tree exceeded a pre-determined
limit on the maximum number of nodes.

Estimated Cost Heuristic: We encode a simple
greedy heuristic by defining a cost function L(Q) which
is used for maintaining the priority queue. L(Q) com-
bines the cost of the path taken so far along with an
estimate of the cost to reach the goal region.

L(Q) = wdD(NQ) + wρρ(NQ) + wgX (Q,Qg)

The first two terms define the cost of the path to
configuration Q from Qinit. D(NQ) is the depth of
the node NQ in the tree. ρ(NQ) is a function that
encodes a small penalty for path sequences that in-
clude steps which incur orientation changes or back-
ward steps. These terms have the combined effect of

favoring paths with fewer steps, as well as slightly fa-
voring paths with long sequences of forward, straight-
line steps.

The final term represents an estimated cost from
the current configuration to the goal region. X (Q,Qg)
approximates the minimum number of steps needed to
traverse the straight-line distance between the foot-
print location at Q, and a footprint in the center of
the goal region Qg.

Each of the terms are weighted relative to each
other by the factors wd, wρ, and wg. These values were
determined experimentally, and are listed in Section 5.
More research is needed to evaluate the effectiveness
of different possible values for weighting parameters
or alternative heuristic functions (see Section 6).

Obstacle Collision-checking: We require some kind
of collision-checking algorithm to test the feasibility
of potential footstep placement positions. If a node
results in a footstep placement which causes a colli-
sion between the robot and an obstacle, that node is
pruned from the search tree.

In our implementation, we used a two-level collision-
checking strategy. The first phase uses a simple 2D
polygon-polygon intersection test between the outline
of the obstacle projection to the walking surface, and
the outline of the foot geometry at the attempted foot-
step placement position. If the polygons intersect,
the node is discarded. If not, then a 3D polyhedral
minimum-distance determination method is used to
verify that both the target footstep configuration, and

the statically-stable trajectory which connects the cur-
rent configuration to the target configuration are both
collision-free. The minimum distance information al-
lows us to enforce conservative safety bounds on the
how close the robot geometry is allowed to approach
obstacle surfaces. Stepping motions which result in
the robot grazing too close to an obstacle surface can
be either pruned from the search tree, or assigned a
higher cost.

As an optimization, we can skip the 3D collision
check for obstacles which have a “negative” height
(e.g. holes in the floor, or other gaps in the walk-
ing surface). Furthermore, since the minimum dis-
tance determination is the most expensive part of the
planning process, we adopt a lazy-evaluation approach
to collision-checking. Instead of testing all successor
nodes prior to insertion in the queue, we simply in-
sert all successors and perform the minimum distance
calculations after a node is removed from the priority
queue. If there is a collision, we simply discard the
node and extract the next node in the queue.



5 Experiments

This section presents some preliminary results using
a prototype simulation environment. Figure 1 shows
a cluttered office in which a model of the Humanoid
robot “H6” must navigate. Figure 2 shows a top
view of a footstep sequence computed to reach a cir-
cular goal region in the center of the room. There
were a total of 15 discrete foot placements consid-
ered for each foot, and a total of 20 floor obstacles.
The search tree contained approximately 6,700 nodes.
Considering that the number of nodes required for
a brute-force, breadth-first search on a footstep se-
quence length of 18 steps is more than 1021, this is
quite satisfactory. The path was computed in approx-
imately 12 seconds on an 800 MHz Pentium II running
Linux.

We used a polygon-polygon intersection test for the
first phase of collision-checking, and the (V-clip) li-
brary (see [8]) for fast minimum distance determina-
tion between the obstacles and the convex hull of each
of the leg links.

Figure 7 shows several snapshots while stepping
over an obstacle during footstep sequence execution.
All transition motions between subsequent footstep lo-
cations were accomplished via statically-stable trajec-
tories. This seems to be fairly reasonable given the
careful nature in which such motions would have to
likely be performed by a real humanoid navigating in
such a cluttered environment.

The weighting factors used for the cost function
were wd = 1.0, wρ = 0.2, and wg = 1.0. These values
were determined experimentally, and offered reason-
able results.

6 Discussion

We propose a dynamic programming approach to plan-
ning safe navigation strategies for biped robots mov-
ing in obstacle-cluttered environments. By searching
from among a discrete set of plausible statically-stable,
single-step motions, we can account for the unique
ability of legged robots such as humanoids to traverse
obstacles by stepping upon or over them. Since it is
a global planning approach, it does not suffer from
deadlock or local loops like reactive methods. An ex-
perimental implementation of the approach has been
shown to be reasonably efficient for moderately com-
plex environments using standard PC hardware.

Several improvements can still be made, and these
form the basis of our future work:

1. The ability of the robot to step upon the surface

of obstacles.

2. Extending the method to handle environments
with uneven terrain.

3. Incorporating visual or other sensor feedback dur-
ing planning.

4. Designing and investigating the effects of differ-
ent heuristics on the efficiency of the search.

5. Running the algorithm on a real humanoid.

6. Including dynamic stepping motions that increase
the range of reachable footstep placements (in-
cluding hopping or jumping between stable states).

Acknowledgments

This research is supported in part by a Japan Society for the
Promotion of Science (JSPS) Postdoctoral Fellowship for For-
eign Scholars in Science and Engineering, and by JSPS Grant-
in-Aid for Research for the Future: “Research on Micro and
Soft-Mechanics Integration for Bio-mimetic Machines (JSPS-
RFTF96P00801)”, as well as additional Monbusho Grant-in-
Aids for Scientific Research.

References

[1] M. Girard. Interactive design of computer-animated legged
animal motion. IEEE Computer Graphics & Applications,
7(6):39–51, June 1987.

[2] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The
development of honda humanoid robot. In Proc. IEEE
Int’l Conf. on Robotics and Automation (ICRA’98), pages
1321–1326, May 1998.

[3] S. Hirose. A study of design and control of a quadruped
walking vehicle. Int. J. Robotics Research., 3(2):113–133,
Summer 1984.

[4] L. Kanal and V. Kumar, editors. Search in Artificial In-
telligence. Springer-Verlag, New York, 1988.

[5] E. Kokkevis, D. Metaxas, and N. I. Badler. Autonomous
animation and control of four-legged animals. In Proc.
Graphics Interface, pages 10–17, May 1995. ISBN 0-
9695338-4-5.

[6] J. C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Boston, MA, 1991.

[7] O. Lorch, J. Denk, J. F. Seara, M. Buss, F. Freyberger, and
G. Schmidt. ViGWaM - an emulation environment for a
vision guided virtual walking machine. In Proc. IEEE Int.
Conf. on Humanoid Robotics (Humanoids 2000), 2000.

[8] B. Mirtich. VClip: Fast and robust polyhedral collision
detection. ACM Transactions on Graphics, 17(3):177–208,
July 1998.

[9] K. Nagasaka, M. Inaba, and H. Inoue. Walking pattern
generation for a humanoid robot based on optimal gradient
method. In Proc. IEEE Int. Conf. on Systems, Man, and
Cybernetics, 1999.



RIGHT CAMERA VIEW

LEFT CAMERA VIEW

Figure 7: Simulation snapshots during footstep sequence execution.

[10] N.J. Nilsson. Principles of Artificial Intelligence. Tioga,
Palo Alto, CA, 1980.

[11] K. Nishiwaki, T. Sugihara, S. KAGAMI, M. Inaba, and
H. Inoue. Online mixture and connection of basic motions
for humanoid walking control by footprint specification.
In Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA’01), Seoul, Korea, May 2001. To appear.

[12] J. Pratt and G. Pratt. Exploiting natural dynamics
in the control of a 3d bipedal walking simulation. In
In Proc. of Int. Conf. on Climbing and Walking Robots
(CLAWAR99), September 1999.

[13] N. Torkos and M. van de Panne. Footprint-based
quadruped motion synthesis. In Proc. Graphics Interface,
pages 151–160, 1998.

[14] M. van de Panne. From footprints to animation. In Proc.
Computer Graphics Forum, volume 16, pages 211–223, Oc-
tober 1997.

[15] M. Vukobratovic, B. Borovac, D. Surla, and D. Stokic.
Biped Locomotion: Dynamics, Stability, Control, and Ap-
plications. Springer-Verlag, Berlin, 1990.

[16] M. Yagi and V. Lumelsky. Biped robot locomotion in
scenes with unknown obstacles. In Proc. IEEE Int’l Conf.
on Robotics and Automation (ICRA’99), pages 375–380,
Detroit, MI, May 1999.

[17] J. Yamaguchi, S. Inoue, D. Nishino, and A. Takanishi. De-
velopment of a bipedal humanoid robot having antagonistic
driven joints and three dof trunk. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS’98), pages
96–101, 1998.


