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ABSTRACT: An analysis of variance (ANOVA) model 
is developed for determining the existence of significant 
differences among strategies employing heuristics. Use of 

the model is illustrated in an application involving 
capacity assignment for networks utilizing the dynamic 
hierarchy architecture, in which the apex node is 
reassigned in response to changing environments. The 
importance of the model lies in the structure provided to 
the evaluation of heuristics, a major need in the 
assessment of benefits of artificial-intelligence 
applications. A nested three-factor design with fixed and 
random effects provides a numerical example of the 
model. 

1. INTRODUCTION 

The need to apply objective discrimination to the 
performance of algorithms is evident throughout the 
mathematical sciences, but most prevalently in the 
domain of heuristic techniques or heuristic program- 
ming. Lacking the definitive qualifications imparted 
by analytical methods, the heuristic techniques 
must be judged on a “results” basis in an experimen- 
tal setting. Such a judgment is often complicated by 

(1) a large number of heuristics from which only a 
small set of alternatives can be examined; 

(2) no convenient or convincing basis for selecting 
alternatives; 

(3) no clear ordering among alternatives based on 
the results obtained; 
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(4) the appearance of interaction among fa.ctors in 
the experimental setting, complicating the dis- 
crimination of performance differences. 

Lin and Kernighan describe the means for evalu- 
ating heuristic approaches by applying statistical 
analyses to solution techniques in traveling- 
salesman problems [lo] and to graph partitioning 
problems [5]. In a subsequent paper, Lin [9, p. 401 
notes the difficulty of objectively comparing heuris- 
tic algorithms for solving combinatorial optimization 
problems. Operation counts or examination of the 
structure of algorithms, although employed in the 
past for evaluation, do not suffice for definitive dis- 
crimination. Even experimental comparison must be 
applied knowledgeably to permit valid evaluation 
conclusions. 

The subject of this paper is the presentation of an 
analysis of variance (ANOVA) model that h,as gen- 
eral applicability to the statistical evaluation of heu- 
ristic procedures, and the illustration of the model 

through application to a computer network design 
problem. A brief explanation of the network design 
application is given in Section 2, followed by the 
heuristic techniques in Section 3. The development 
of the ANOVA model is explained in Section 4 and 
illustrated in Section 5. Summary and conclusions 
constitute the final section. 

2. BACKGROUND AND MOTIVATIONS 

The statistical model and analysis addressed in this 
paper are motivated by the authors’ research of a 
topic in the area of local-area network (LAN) design, 
namely, the link capacity assignment problem for 

430 Communications of the ACM May 1987 Volume 30 Number 5 



Research Contributions 

dynamic hierarchical networks. Detailed discussions 
of dynamic hierarchical networks (or dynamic hier- 
archies), a network performance measure, and 
various capacity assignment strategies are given 
elsewhere [IS, 141. This information is presented 
here in condensed form to provide a framework for 
development of the statistical test procedure and 
also to serve as an example of its application. 

2.1 Dynamic Hierarchical Networks 
The dynamic hierarchy is an architectural concept 
for a LAN that is embedded within an application 
system displaying the following characteristics: 

(1) 

(2) 

(3) 

Real-time or time-critical response is manda- 
tory; 

demands in the application system can vary and 
alter the load placed on individual elements of 
the embedded LAN (the message traffic and the 
processing requirements); 

the encapsulating system has stringent require- 
ments for high capability, reliability, adaptabil- 
ity, and survivability that must be imparted as 
requirements of the LAN. 

The dynamic hierarchy represents a generaliza- 
tion of the conventional tree-structured architecture 
in which the network operates under a centralized, 
strictly hierarchical mode of control. An overriding 
characteristic of these conventional (static) hier- 
archies is that at the root of a tree-structured topol- 
ogy exists a single (apex) node that has primary 
control responsibility. Secondary capabilities filter 
down through the remainder of the network in a 
hierarchical manner. A dynamic hierarchical net- 
work is a hierarchical network in which the node 
assuming the apex position can vary among a desig- 
nated subset of nodes. 

A dynamic hierarchy is suitable for an application 
demanding quite different services under varying 
external situations. For each situation an apex node 
(and a corresponding hierarchical topology) is desig- 
nated as the one most beneficial for the particular 
situation. At any given instant, the network con- 
forms to one of the specified topologies. When a situ- 
ation change occurs, the network undergoes a transi- 
tion, with the designated node becoming the apex of 
the hierarchy corresponding to the reconfigured 
topology. In the architectures considered to date, the 
network topology remains static: Once the network 
is constructed, the interconnections remain fixed. 
However, the network topology is logically variable 
as a result of changes in the apex node (and the 
corresponding changes in the hierarchical distribu- 
tion of contro1 responsibilities). 

2.2 Performance and Capacity Assignment 
Mean network delay is taken as the primary mea- 
sure of performance of the dynamic hierarchy. For 
conventional networks, given the assumptions made 
by Kleinrock [6, 71, a closed form expression for 
mean delay is derived through the application of 
elementary queueing theory. This expression is 
extended as follows to provide an approximate mea- 
sure of delay in the dynamic hierarchy: 

Define 

lti) = long-run probability of occurrence of 
configuration (and environment) i.’ 

Considering each configuration i separately (as if it 
were a static hierarchy), let TcO denote mean net- 
work delay, as derived by Kleinrock, for that config- 
uration. We then take the measure of network delay 
for the dynamic hierarchy to be the weighted sum of 
the individual configuration mean delay values. 
That is, 

where M is the number of possible configurations, 
Although this is only an approximation of mean 
delay, it is still useful for the purpose of comparing 
capacity assignment strategies within the class 
of dynamic hierarchical networks. 

Now let 

L = number of links, 
Cj = capacity of link j, 

C = total network capacity,’ and 
T max = upper bound on mean network delay. 

The dynamic hierarchy capacity assignment prob- 
lem can be formulated as follows: 

Given (I) the set of network configurations, and 
(2) for each configuration (environment) i, its (a) sta- 
tionary probability of occurrence ,$(‘I and (b) traffic 
characterization, minimize 

Cc $ Cj, 
j=l 

with respect to 

subject to 

{Cj:j = 1, 2, . . . , L], 

Two distinct methods are used to create approxi- 

‘We assume that the underlying model of the environment is such that these 

probabilities are nonzero. 

‘All of the strategies assume a unit cost function. Thus total capacity is equal 

to total cost. 
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mate solutions to this problem. The first method 
yields a set that we refer to as the probabilistic strat- 
egies. Each of these strategies is defined in a way 
similar to the construction of the dynamic hierarchy 
delay measure. Considering each configuration i sep- 
arately, for each link j, let Cl” denote an allocation of 
capacity for link j that is in some sense optimal for 
the static network represented by configuration i. 
Then, for the capacity of link j, set 

where kj represents a minimum required capacity 
term and C’y’ is related to C’ji’ (the exact form of 
C’g) depends on whether kj = 0 or not). Among this 
set of probabilistic strategies, the two most promising 
are labeled DSR and DMX. 

The second method, algorithmic in nature, 
produces a set that we refer to as the heuristic strat- 
egies. First, a collection of capacity assignment heu- 
ristics are defined. These heuristics and the func- 
tions they perform are 

generation of an initial set of assignments: 

SETLOW, SETHIGH; 

choice of a link for a capacity increase: 

ADDl, ADD2; 

choice of a link for a capacity decrease: 

DROPl, DROP2; 

increase or decrease of all capacities: 

ADDALL, DROPALL. 

Various combinations of these heuristics are then 
formed to produce a set of composite assignment 
strategies. (This approach is employed extensively 
by Maruyama et al. to construct design algorithms 
for conventional networks; e.g., see [Ill.) The strate- 
gies in this set are referred to as HEURISTICl, 
HEURISTIC2, . . . , HEURISTIC12. 

3. DETERMINATION OF BEST STRATEGIES 

THROUGH ANOVA PROCEDURES 

Having developed the sets of probabilistic and heu- 
ristic strategies, comparison of these strategies for 
the purpose of identifying the best within each set 
and the best overall becomes a necessary task. This 
task is performed by analyzing the results of various 
collections of capacity assignment experiments. 

For each set of strategies, the experimentation 
consists of the generation of capacity assignments 
under nine different sets of parameters for each of 
six test networks. For each network three sets of 
stationary configuration probabilities are used. 
Under each set assignments are generated for three 

different delay constraints. Note that, for a given 
network, the topologies and set of link traffic rates 

remain fixed throughout the experimentation. Differ- 
ent experiments are defined by varying the station- 

ary configuration probabilities and maximum mean 
delay through nine combinations of values. (Hence- 
forth, a selection of values for maximum mean delay 
and stationary configuration probabilities is referred 
to as an auxiliary parameter setting or a-setting.) A 
single experiment consists of applying the members 
of a set of strategies to a particular network/a-set- 
ting combination. The output is a set of assignments 
and the resulting value of total cost (capacity) that 
constitute the basis for the evaluation. 

In the absence of a theoretical (analytic) basis for 
comparing the strategies, alternate method:s are em- 
ployed. The methods used here are derived from 
statistical hypothesis testing and parameter estima- 
tion procedures. Specifically, ANOVA techniques 
are used to determine whether differences exist in 
the effects of the assignment strategies. That is, it is 
determined whether at least one strategy produces 
assignments that are different from (better than) 
those produced by the remaining strategies. The 
ANOVA computations produce as byproducts point 
estimates of certain population means, which pro- 
vide additional information on the effects of the 
strategies. 

One normally applies statistical techniques to 
observed random variables. Clearly, neither the in- 
put to nor results from our experiments constitute 
conventional random variables. However, the ration- 
ale behind the approach is as follows: 

Consider the six test networks as representative of 
the members of a conceptually infinite population of 
(dynamic hierarchical) test networks. Also, consider 
the nine a-settings used with each network as repre- 
sentative of a conceptually infinite population of 
a-settings. Then the total cost values associated with 
each strategy are viewed as random variables-their 
values vary according to a random selection of dif- 

ferent network and a-setting combinations :from the 
respective populations. 

ANOVA is applied to the observed cost values as 
if the six test networks and their a-settings are ran- 
domly sampled from their underlying populations. 
As a consequence, when one concludes from this 
analysis that the strategies differ in their effects on 
total cost, the results extend beyond the network/ 
a-setting combinations used in the study to include 
strategy differences over all possible network/ 
a-setting combinations through sampling the under- 
lying network and a-setting populations. The net- 
work and a-settings need not be randomly sampled 
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in practice. However, essential in interpreting these 
general conclusions is the delineation of the bound- 
aries of the conceptual populations from which the 
networks and the corresponding a-settings in the 
study can be reasonably regarded as a random 
sample (cf. Sheffe [15, p. ZX]). 

In a conventional ANOVA, one is concerned with 
the identification of variability due to random obser- 
vation (error) effects. When one concludes that the 
treatment effects are different, one is concluding 
that different treatments and not random error 
effects contribute significantly to variability in the 
results. As noted below, the statistical model dis- 
cussed here does not include random error effects 
(from data or otherwise). The randomness in our 
data is induced by the choice of networks and 
a-settings. 

The experimental design is a variant of a three- 
factor, nested design with fixed and random effects. 
To derive the appropriate model, assume that the 
factors 

(1) (choice of) network, 
(2) assignment strategy, and 
(3) (choice of) auxiliary parameter setting 

all contribute to differences in total cost values. 
Under the stated sampling assumption, network and 
a-setting are random effects. A-setting is a nested 
factor within networks. The assignment strategy 
is a fixed effects factor. 

In addition to the effects of factors (l), (2), and (3), 
the following effects must also be included: 

(4) network/strategy interaction, and 
(5) a-setting/strategy interaction. 

Network/a-setting interaction and second-order 
interaction effects are absent since a-setting is nested 
within rather than crossed with network. 

The combination of effects from sources (l)-(5) 
produces the following model: 

Xijk = /L + Ni + P(t)j + Sk + (NS)ik + (PS)(i)jk 

where 

xijk = total cost value resulting from the applica- 
tion of strategy k to network i and its jth 
a-setting; 

p = mean of parent population; 
Ni = main effect of network i, i = 2, 3, . . . , 6; 

Pci)j = main effect of a-setting j within network i, 

j = 1, 2, . . . , 9; 

Sk = main effect of strategy k, k = 1, 2, . . . , T; 

T = number of strategies; 
$S)ik = interaction effect of network i and 

strategy k; 

(PS)ti,,k = interaction effect of a-setting (i) j and 
strategy k. 

Two aspects of this model require elaboration. 
First, the equalities 

Sk = C(k - /6 k = 1, 2, . . . , T, 

where pk is the mean of the treatment population 
corresponding to strategy k, define the main strategy 
effects. Since strategy is a fixed effects factor, the 
T strategies are viewed as an exhaustive sample of 
the population of strategies (treatment levels), which 
implies 

T 

CL = $ ,F; CLk. 

so, 

T 7 T 

c Sk = kgl &k - d = c 
k=l 

k=l Ilk - TL‘ = 0. 

A second important aspect of the model of xijk is 
its lack of a random error factor. In formulating a 
model for ANOVA, one normally assumes that each 
treatment observation is affected by a random error 
component. Applied to this model, such an assump- 
tion would add an error term tijk to each xijk. The 
deterministic nature of assignment strategies distin- 
guishes this problem from those that lead to conven- 
tional ANOVA models. A given network/a-setting/ 
strategy combination determines capacities and 
unique total-cost values. Replication of the assign- 
ment process with the same combination algorithmi- 
cally produces identical (error-free) values. Hence 
the model correctly reflects the absence of random 
error effects in the xijk. 

In general, ANOVA with this statistical model 
requires the following assumption: 

(1) (NiJ, {Po)jJ, {(NS)ik), and ((PS)(i)jk] are random 
samples from independent normal populations 
with mean zero and variances &, a$, a&s), and 
[r&s), respectively. 

The classical hypothesis testing procedures for 
ANOVA models are known to be valid under this 
assumption. However, (1) is too restrictive for our 
purpose since it implies that the xijk are independent 
and normally distributed and, consequently, that no 
two observations (total costs) may have the same 
value. The data in Table IV in the Appendix show 
that observations do take the same value, and so 
assumption (1) must be relaxed. 

Jensen and Good [3] have shown that all statistical 
inference procedures that are valid under (1) remain 
valid if the following assumption holds in its place: 
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Source of variance 

Networks 

A-settings 

Strategies 

Network/strategy interaction 

A-setting/strategy interaction 

Total 

TABLE I. Analysis of Variance (total cost) 

Degrees of freedom Mean square 

101.3543 5 20.2709 

319.4691 48 6.6556 

99.1074 11 9.0098 

46.5195 55 0.8458 

37.1555 528 0.0704 

603.6059 647 0.9329 

(1) INi], IP[i)jIt i(NShl, and i(PS)(i)jkI are random 
samples from populations that are jointly sym- 
metrically distributed about zero with variances 
ak, crZ, g&s), and a&s), respectively. 

A population is said to be normally distributed 
with an atom at the point p if the variable of interest 
equals p with positive probability and is normally 
distributed with mean p otherwise. The data in the 
Appendix could arise from our model for Xijk if the 
random effects Ni, P(i),, and (NS),k are from normal 
populations with atoms at zero and if, for each i, j, 

tps hi),k is from a normal population with an atom 
at -Sk. Under this assumption the common value 
X+ = X#‘, for fixed a-setting j within network i, 

would RSLllt if (Ps)(i]jk = -Sk, (PS)(r)$’ = -Sk’, and 
(NS);k = (NS)ik, = 0 in our model. The common value 

xijk = xi’j’k for fixed heuristic k would result 
if Ni = Ni, = Pci)j = Pci,)j, = (NS)ik = (NS),*k = 0 and 
(pS)[iJ,k = (ps)[iT)j’k = -Sk. Finally, llOk that, 
ifHo:SI=Sz= . . . = ST = 0 is true and there is no 
difference in the main effects of the strategies, then 
all of the random effects are jointly symmetrically 
distributed with atoms at zero, (1’) holds, and the 
standard test for Ho remains valid. 

Lin and Rardin [8] propose a related ANOVA 
model for comparing algorithms that solve integer 
linear programming problems. This model differs 
from the above by combining all random effects into 
a single “random problem” effect. In contrast, we 
prefer to represent the random effects of networks 
and a-settings separately in our model, providing the 
added flexibility to examine separately the main 
effects of networks and a-settings and their inter- 
actions with strategies. 

4. A NUMERICAL EXAMPLE 

This section, together with the data contained in the 
Appendix, provides a numerical example of the 
statistical approach. In this example we compare 
HEURISTICl, HEURISTICS, . . . , HEURISTIC12 on 
the basis of total cost. The figures and tables in the 
Appendix, which contain all the information neces- 
sary to perform the capacity assignment experiments 
and the analysis, are subdivided as follows: 

(1 

(2) 

(3) 

(4) 

Network topologies (Figure 1). Only one config- 
uration is illustrated for each network. These 
illustrations show the physical interconnections 
for the networks. Note that networks 4-6 have 
identical topologies, but differ in their traffic 
statistics and a-settings. 
Network statistics (Figure 2). These (traffic) sta- 
tistics consist of throughput, mean message 
length, and individual link arrival rates. 
Experiment control data (Figure 3). A-settings 
are formed by taking various combinations of 
these data. 
Experimental results (Table IV). These total-cost 
values form the basis for the statistical analysis 
of the example. (As noted below, the analysis 
actually uses the natural logarithm of these 
values.) 

For the comparison of this example, we have 

xijk = (log of) total cost 3 of network i with a-setting 
i under strategy k (HEURISTICk), 

Sk = (main) effect of strategy k on total cost, and 
a&s) = variance of network/strategy interaction 

effects on total cost. 

The test for strategy effects is 

Ho:SI=S*= ... =&=O 

against the alternative 

H,: Sk # 0 for at least one k; 

the test statistic is 

MSs 
Fs=----= 

S&/l 1 

M~(Ns, SSlNS)/55 

the critical value at level a! is F,~,ll,SS. 

The test for network/strategy interaction is 

&:C&!Ns) = 0 

against 

H,: a$,s) > 0. 

‘In an attempt to achieve homogeneity of variance. the transform log.(x) is 

applied to the data before performing the ANOVA calculations. 
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This test has test statistic 

MS(NS] _ ss(~s)/55 
FINS) = ~ - 

MS(PS, SS(ps)/528 

(where the “(PS)” subscripts denote a-setting/ 
strategy interaction statistics) and critical value 
F di5.528~ 

The ANOVA computations are summarized in 
Table I. For the first test, these values yield a test 
statistic Fs = 10.6524. At a significance level of 
(Y = 0.05, the critical value is Fo.05,11,55 = 1.9725. We 
reject Ho and conclude that the strategies are differ- 
ent in their effects on total cost. Similarly, we reject 
the null hypothesis in the second test. The applica- 
ble statistic values are FINS) = 12.0142 and Fo.05,55,528 

< Fo.05,55,200 = 1.40. Thus we must partially attribute 
the variability of total cost to interaction between 
networks and strategies. 

Having concluded that differences in strategy 
effects exist, we proceed with multiple comparisons 
to characterize these differences more precisely. Our 
multiple comparisons procedure follows the two- 
stage approach proposed by Fisher [2] (cf. Miller [12, 
p. 901). Stage one is the F test for H,:S, = SZ = . . . = 
S12 = 0, at significance level (Y = 0.05, that is summa- 
rized in Table I. Had this F test not rejected Ho, the 
analysis would have found no significant differences 
among the main strategy effects without proceeding 
to step two. When the F test is significant, pairwise 
comparisons among the effects S1, SZ, . . . , ST2 may 
then be made with appropriate a-level tests at stage 
two. If the test comparing S; and Sj is significant, 
then Si and Sj are considered to be different in the 
final conclusion. Since the stage one F test is per- 
formed at level (Y, the experimentwise error rate is 
also LY for the joint conclusion from the simultaneous 
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TABLE II. Mean Performance Levels (total cost) 

Strategy Mean level 

HEURISTIC1 9.6552 

HEURISTIC2 9.6130 

HEURISTIC3 9.6552 

HEURISTIC4 10.5429 

HEURISTIC5 9.6552 

HEURISTIC6 9.6230 

HEURISTIC7 9.6282 

HEURISTIC8 9.6130 

HEURISTIC9 9.6552 

HEURISTIC1 0 10.5396 

HEURISTIC1 1 9.6401 

HEURISTIC1 2 10.5377 

tests of stage two. Finally, note that since all pair- 
wise comparisons (among S,, SZ, . . , Sll) may be 
investigated during stage two, it is appropriate to 
perform only a subset of these that may be suggested 
by the data. The experimentwise error rate then 
remains no larger than CL 

Table II suggests that the strategies may fall into 
two groups because strategies 4, 10, and 12 perform 
about equally poorly and the remaining strategies 
perform about equally well. Accordingly, we replace 
all pairwise comparisons of stage two by F tests for 
the equality of effects within the following groups of 
heuristics: 

(A) G, = (HEURlSTlCk, k = 1, 2, 3, 5, 6, 7, 8, 9, 11) 
(B) (HEURISTlCk, k = 1, 2, 3, 5, 6, 7, 8, 9, 11, 12) 
(C) (HEURlSTlCk, k = 1, 2, 3, 5, 6, 7, 8, 9, 10, 11) 

(D) {HEURlSTlCk, k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 11) 
(E) G, = {HEURlSTlCk, k = 4, 10, 121 

Table III contains the test statistics, critical values, 

TABLE III. Results of Multiple Comparisons 

Strategy Network/strategy interaction 

Test statistic’ Critical Rejact Test statistic’ ClitiCSI 

Test and value value HO and value value 

A Fs = $$ = 0.0220 ~~~~~~~~~~ = 2.12 No F(M) = 2 = 0.0227 Fo.05.40.52a A 1.4725 

B Fs = g = 5.1571 Fo.05.9.55 = 2.06 Yes F(m) = 
!J!z& = 5.9233 
MS&, 

Fo.05.45.528 s 1.455 

C Fs = 
MS: 

- = 5.2140 
MS &, 

Fo.o5.s.~s = 2.06 Yes F(m) = L?!zi& = 5.8631 
MS $s, 

Fo.05.45.528 h 1.455 

D Fs = MSQ = 5.2523 
MS $a) 

Fo.05.9.55 = 2.06 Yes F - !!!%I = 5.9247 
C-J’) - MS&, 

Fo.05.45.528 -?- 1.455 

E Fs = $$ = 0.00041 Fo.05,2,5s = 3.17 No F(Ns) = MsFN5) = 0.00057 
MS $5, 

~0.05.10.523 * 1.89 

‘MS’ = mean square statistic from ANOVA table for comparison i. MS’ = mean square statistic from Table I. 

Reject 

HO 

No 

Yes 

Ye5 

Yes 

No 
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and results of the stage-two multiple comparisons. 

Note, for example, that in (A) the test statistics are 

MS< 

Fs = MS & 

MS $VSJ 
and FtNs) = 0 

MS UPSI ’ 

where, for increased precision, MS&s) and MS&) are 
chosen from the table of the stage-one ANOVA com- 
putations (Table I) rather than from the table for (A). 
The mean squares MS< and MS&s, are chosen from 
the table for (A). The corresponding critical values 

are F0.05.8.55 and FO.O5,40.528. 

With experimentwise error rate (Y = 0.05, the joint 
conclusion from the simultaneous tests in Table III is 
that no significant difference exists among the heu- 
ristics in G1 (test A); no significant difference exists 
among the heuristics in Gz (test E); and the heuris- 
tics in G, and G2 differ from each other (tests B, C, 
and D). The practical consequence is that the heuris- 
tics in G, are to be preferred over those in Gz. 

5. CONCLUSIONS 
In the course of exploring design strategies for the 
dynamic hierarchy, a new concept in reconfigurable 
network architectures, the authors have derived a 
statistical model and applied the resultant test pro- 
cedure to compare the effects of these strategies. 

ANOVA techniques are used to determine whether 
significant differences exist among assignment strat- 
egies. When differences are detected, multiple com- 
parison procedures are used to characterize the 
differences. 

The statistical technique is potentially quite gen- 
eral. Both fixed (strategy) and random (network, 
a-setting) effects are included in the model. The 
approach does not preclude the existence of random 
error effects. Additionally, in cases where our model 
does not apply directly to the data of interest, this 
paper illustrates the method by which conventional 
ANOVA techniques may be applied in a variety of 
experimental settings. 

A referee has noted that the technique of entropy 
data analysis (see Jones [4]) may offer some inherent 
advantages over the more traditional ANOVA ap- 
proach, particularly with regard to the assu:mptions 
about the underlying populations for the component 
effects. Time and space preclude development of 
a comparative treatment in this paper. 

Finally, we offer this application of ANOVA to the 
discrimination among heuristics as yet another 
example of a problem domain in the intersection of 
computer science and statistics. This domai-n adds 
yet another fertile area of investigation to those sug- 
gested recently by Barlow and Singpurwalla. [l]. 

APPENDIX A 

(a) Network 1 (c) Network 3 

(b) Network 2 (d) Networks 4,5, and 6 

FIGURE 1. Network Topologies 
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(a) Network 1 

Number of configurations: 3; Number of links: 13 

Configuration Throughput 

1 49.4953 

2 58.6475 

3 8.2955 

Mean message length: 100.0 

Arrival rates 

Configuration 

Link 1 2 3 

(c) Network 3 

Number of configurations: 4; Number of links: 9 

Configuration Throughput 

1 17.7751 

2 9.3854 

3 7.7540 

4 10.0783 

Mean message length: 100.0 

Arrival rates 

Link 

Configuration 

1 2 3 4 

1 3.4190 6.9229 1.7588 
2 2.0515 3.6077 9.5031 

3 9.2433 4.6049 0.2534 
4 3.1729 4.1172 7.7430 

5 6.2562 6.9361 7.2866 

6 9.0486 6.0137 7.2008 

7 1.1967 2.3302 4.7877 

8 1.8832 3.4728 6.8186 

9 0.1826 6.2331 1.4092 

10 7.3828 9.6381 2.3904 

11 2.7075 9.3868 4.8310 

12 4.5558 4.7949 4.5601 

13 8.4576 7.9091 1.8160 

(b) Network 2 

Number of configurations: 2; Number of links: 6 

Configuration Throughput 

1 2.7017 

2 16.8263 

Mean message length: 100.0 

Arrival rates 

Link 

Configuration 

1 2 

9.1201 2.8299 1.2963 4.8119 

2.5600 1.7485 4.9787 8.4113 
5.4387 6.1683 7.0878 9.2017 
8.3500 1.8290 4.7762 3.8477 

9.9332 8.6454 3.5377 7.1967 

9.1846 5.1439 7.0931 5.4839 
7.5754 3.4996 5.1247 8.6585 

1.1359 7.4501 1.5486 5.3842 
9.5691 4.2993 5.6052 2.0882 

(d) Network 4 

Number of configurations: 3; Number of links: 14 

Configuration Throughput 

1 28.0000 

2 20.2326 
3 5.0366 

Mean message length: 100.0 

Arrival rates 

Link 

Configuration 

1 2 3 

1 1.0416 6.4589 
2 5.4727 5.9396 

3 0.0430 7.0999 
4 0.7439 7.9838 
5 1.1552 5.1225 

6 3.7621 3.9253 

2 

3 
4 

5 

6 
7 

8 

9 

10 
11 

12 

13 
14 

0.6000 0.5000 0.6000 

0.8500 0.7500 0.9000 

0.8500 0.7500 0.7000 

0.6000 0.5000 0.5000 

5.0000 1 .oooo 0.8000 

1 .oooo 4.5000 1.5000 

1 .oooo 1 .oooo 4.5000 

8.5000 0.4000 0.3000 

9.5000 0.6500 0.6000 

0.5000 6.5000 1 .ooOO 

0.7500 8.0000 1.5000 

0.5000 0.6000 7.0000 

0.7500 0.8500 7.5000 

3.2000 0.1000 0.1000 

FIGURE 2. Network Statistics 
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(e) Network 5 

Number of configurations: 3; Number of links: 14 

Configuration Throughput 

1 12.9093 

2 26.8664 

3 10.9943 

Mean message length: 100.0 

Arrival rates 

Link 1 

1 0.8060 
2 0.9000 

4” 0.7500 1 .oooo 

5 6.0000 

6 4.5000 

7 4.0000 

8 8.0000 

9 9.0000 

10 5.8000 

11 5.9000 

12 3.5000 

13 5.0000 

14 3.2000 

Configuration 

2 

1 .lOOO 
1 SO00 

1 1.5000 .oooo 

4.0000 

5.5000 

4.2000 

5.0000 

4.5000 

7.0000 

8.0000 

6.5000 

6.0000 

2.5000 

3 

0.9000 
1.4000 

1.2000 

1 .oooo 

5.0000 
4.7000 

5.8000 

5.0000 
6.0000 

5.0000 

4.5000 
7.0000 

7.1000 

2.9000 

(f) Network6 

Number of configurations: 3; Number of links: 14 

Configuration Throughput 

1 12.9944 
2 9.3612 

3 7.9490 

Mean message length: 100.0 

Arrival rates 

Link 

1 

2 
3 

4 

5 

6 

7 
8 

9 

10 

11 

12 

13 

14 

Configuration 

1 2 

0.7000 0.8000 

0.8600 1.1300 
0.9300 1.1300 

0.6800 0.7500 

5.9000 2.5000 

2.7500 4.5000 

2.5000 2.6000 
8.5000 2.7000 

9.5000 2.5800 

3.1500 6.5000 

3.3300 8.0000 

2.0000 3.5500 

2.8800 3.4300 

3.2000 1.3000 

3 

0.7500 

1.1500 

0.9500 

0.7500 

2.9000 
3.1000 

4.5000 

2.6500 
3.3000 

3.0000 

3.0000 

7.0000 
7.5000 

1.5000 

FIGURE 2. Network Statistics (continued) 
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(a) Run 1 

Configuration probability sets 

Set 1 

1 0.3400 

2 0.2000 

3 0.1000 

Design constraints 

Iteration 1 2 
Constraint value 10.0 1 .O 

(b) Run 2 

Configuration probability sets 

Set 

1 

2 

3 

Design constraints 

iteration 1 2 
Constraint value 10.0 1 .O 

Configuration 

2 

0.3300 

0.3000 

0.1000 

3 
0.1 

3 

0.3300 

0.5000 

0.8000 

(d) Run 4 

Configuration probability sets 

Configuration 
Set 1 2 3 

1 0.3400 0.3300 0.3300 

2 0.2000 0.5000 0.3000 

3 0.1000 0.1000 0.8000 

Design constraints 

Iteration 1 2 3 
Constraint value 10.0 1.0 0.1 

Configuration 

1 2 

0.5000 0.5000 

0.2500 0.7500 

0.8000 0.2000 

3 

0.1 

(c) Run3 

Configuration probability sets 

Configuration 

Set 1 2 3 

1 0.2500 0.2500 0.2500 

2 0.3500 0.2000 0.2000 

3 0.7000 0.0500 0.0500 

Design constraints 

Iteration 1 2 3 

Constraint value 10.0 1 .O 0.1 

(e) Run 5 

Configuration probability sets 

Configuration 

Set 1 2 3 

1 0.3300 0.3300 0.3400 

2 0.5000 0.2000 0.3000 

3 0.1000 0.8000 0.1000 

Design constraints 

Iteration 1 2 3 
Constraint value 10.0 1.0 0.1 

4 

0.2500 
0.2500 

0.2000 

(f) Run6 

Configuration probability sets 

Configuration 

Set 1 2 3 

1 0.3300 0.3400 0.3300 
2 0.2000 0.3000 0.5000 

3 0.1000 0.8000 0.1000 

Design constraints 

Iteration 1 2 3 
Constraint value 10.0 1 .O 0.1 

FIGURE 3. Experiment Control Data 
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TABLE IV. Experimental Results: Total Cost 

2 

3 
4 

5 

6 
7 

8 

9 

10 
11 

12 

13 

14 

15 

16 
17 

18 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 

29 
30 
31 

32 

33 
34 

35 

36 
37 

38 

39 

40 
41 

42 

43 
44 

45 

46 
47 

48 

49 
50 

51 
52 

53 
54 

10.880.0 10,880.O 

13.568.0 13,056.O 

50,432.O 48,000.0 

10,880.O 10,880.O 

14,336.0 13,952.0 

63,360.O 59,136.0 

10,880.O 10,880.O 

15,616.0 15,104.o 

85,760.O 77,824.0 

4,224.0 4.224.0 

5,248.0 5,248.0 

22,784.0 21,376.0 

4,224.0 4,224.0 

5,248.0 5,248.0 

19,840.O 19,456.0 

4,224.0 4,224.0 

5.376.0 5,120.O 

26,240.O 22,656.0 

8.576.0 8,576.0 
10,752.O 10,752.O 

47,872.0 47,488.0 

8,576.0 8,576.0 

10,880.O 10,880.O 

46,976.0 46,592.0 

8,576.0 8,576.0 
10,880.O 10,880.O 

43,008.O 42,496.0 

7,552.0 7,552.0 

10,496.O 9,600.O 

43,520.O 37,504.o 

7,552.0 7,552.0 

10,112.o 9,472.0 

41,856.0 35,584.0 

7,680.O 7,680.O 

11,776.0 10,368.O 

68,608.O 53,248.0 

8,192.0 8,192.0 

12,032.O 11,520.O 

61,952.0 56,832.0 

8,192.0 8,192.0 

12,288.0 11,776.0 

65,792.0 60,032.O 

8,192.0 8,192.0 

10,240.O 9,984.0 

44,032.O 40,832.O 

7,552.0 7,552.0 

12,160.O 11,520.O 

67,584.0 61,824.0 

7,552.0 7,552.0 
12,416.0 11,648.0 

70,912.o 64,768.0 

7.552.0 7,552.0 

11.520.0 11,008.O 

66,944.0 60,544.O 

10,880.O 34.816.0 10,880.O 10,880.O 
13,568.0 36.608.0 13,568.0 13,568.0 

50,432.O 65,536.0 50,432.O 48,128.0 
10,880.O 34.816.0 10,880.O 10,880.O 
14,336.0 37.376.0 14,336.0 14,336.0 
63,360.O 75,904.o 63.360.0 59.264.0 
10,880.O 22,656.0 10.880.0 10.880.0 
15,616.0 26,752.0 15,616.0 15,616.0 
85,760.O 86,656.0 85,760.O 77,952.0 

4,224.0 4,224.0 4.224.0 4.224.0 

5,248.0 5,248.0 5.248.0 5,248.0 

22,784.0 21,376.0 22,784.0 21,504.o 
4,224.0 4,224.0 4,224.0 4,224.0 

5,248.0 5.248.0 5,248.0 5,248.0 

19,840.O 19,456.0 19,840.O 19,584.0 
4,224.0 16,256.0 4,224.0 4,224.0 

5,376.0 17,024.O 5.376.0 5,376.0 

26,240.O 32,256.0 26,240.O 22,784.0 

8,576.0 8,576.0 8,576.0 8,576.0 
10,752.O 10,752.O 10.752.0 10,752.O 

47,872.0 47,488.0 47.872.0 47,488.0 

8,576.0 8,576.0 8,576.0 8.576.0 
10.880.0 10,880.O 10.880.0 10,880.O 

46.976.0 46,592.0 46,976.0 46,592.0 
8,576.0 8,576.0 8,576.0 8.576.0 

10.880.0 10,880.O 10.880.0 10,880.O 

43,008.O 42,496.0 43.008.0 42,624.0 

7,552.0 70,656.O 7,552.0 7.552.0 

10,496.O 71,808.O 10.496.0 10,240.O 
439520.0 89,216.0 43,520.O 37,888.0 

7,552.0 94,848.0 7,552.0 7,552.0 
10,112.o 95,616.0 10,112.o 9,856.0 

41.856.0 107,904.o 41,856.0 35,968.0 

7,680.O 70,016.O 7,680.O 7,680.O 
11.776.0 71,552.0 11,776.0 11,136.0 

68,608.O 99,840.O 68,608.O 53,376.0 

8.192.0 58,624.0 8,192.0 8,192.0 
12,032.O 60.800.0 12,032.O 11.776.0 

61,952.0 94,336.0 61,952.0 56.960.0 
8.192.0 58,624.0 8,192.0 8,192.0 

12,288.0 61,056.O 12,288.0 12,032.O 

65,792.0 97,024.o 65,792.0 60,288.O 

8.192.0 58.624.0 8,192.0 8.192.0 
10,240.O 59,648.0 10,240.O 10,240.O 

44,032.O 81,792.0 44,632.O 40,960.O 
7.552.0 58,240.O 7,552.0 7.552.0 

12,160.O 60,672.O 12,160.O 11,904.o 

67,584.0 91,152.0 67.584.0 61,952.0 

7.552.0 58,240.O 7,552.0 7.552.0 
12.416.0 60,800.O 12.416.0 11,904.o 

70,912.o 99,200.o 70,912.o 65,024.O 
7,552.0 58,240.O 7,552.0 7,552.0 

11,520.O 60,160.O 11,520.O 11,264.0 

66,944.0 95,488.0 66,944.0 60,800.O 
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Experiment 7 

TABLE IV. (continued) 

stretegy “_ 

8 9 10 

1 10,880.O 10,880.O 
2 13,056.O 13,056.O 
3 48,896.0 48,000.0 
4 10,880.O 10,880.O 
5 13,952.0 13,952.0 
6 61,184.0 59,136.0 
7 10,880.O 10,880.O 

8 15,104.o 15,104.o 
9 81,920.O 77,824.0 

10 4,224.0 4,224.0 

11 5,248.0 5,248.0 
12 22,272.0 21,376.0 
13 4,224.0 4,224.0 
14 5,248.0 5,248.0 
15 19,712.0 19,456.0 
16 4.224.0 4,224.0 
17 5,120.O 5,120.O 
18 24,832.0 22,656.0 
19 8,576.0 8.576.0 
20 10,752.O 10,752.O 
21 47,616.0 47,488.0 
22 8,576.0 8,576.0 
23 10,880.O 10,880.O 
24 46,720.O 46,592.0 
25 8,576.0 8,576.0 
26 10,880.O 10,880.O 
27 42,624.0 42,496.0 
28 7,552.0 7.552.0 
29 9,600.O 9,600.O 
30 40,576.O 37,504.o 
31 7,552.0 7,552.0 
32 9,472.0 9,472.0 
33 38,400.O 35,584.0 
34 7,680.O 7.680.0 

35 10,496.O 10,368.O 
36 63,872.0 53,248.0 
37 8.192.0 8,192.0 

38 11,520.O 11,520.O 
39 58,496.0 56.832.0 
40 8,192.0 8,192.0 
41 11,776.0 11,776.O 
42 62,080.O 60,032.O 
43 8,192.0 8.192.0 
44 9,984.0 9,984.0 
45 41,472.0 40,832.O 
46 7.552.0 7,552.0 
47 11,520.O 11,520.O 

48 64,256.0 61,824.0 
49 7,552.0 7,552.0 

50 11,648.0 11,648.0 

51 67,712.0 64,768.0 
52 7,552.0 7,552.0 

53 11,008.O 11,008.O 

54 63,872.0 60,544.O 

10,880.O 

13,568.0 

50,432.O 

10,880.O 

14,336.0 

63,360.O 

10,880.O 

15,616.0 

85.760.0 

4,224.0 

5,248.0 
22,784.0 

4,224.0 

5,248.0 

19,840.O 
4,224.0 

5,376.0 

26,240.O 

8,576.0 
10,752.O 
47,872.0 

8.576.0 

10,880.O 
46.976.0 

8,576.0 

10,880.O 

43,008.O 
7,552.0 

10,496.O 

43,520.O 

7,552.0 
10,112.o 

41,856.O 

7,680.O 

11,776.0 

68,608.O 

8.192.0 

12,032.O 

61,952.0 

8,192.0 
12,288.0 

65,792.0 
8,192.0 

10,240.O 

44,032.O 
7.552.0 

12.160.0 

67.584.0 

7,552.0 
12,416.0 

70,912.o 

7,552.0 

11,520.O 

66,944.0 

34.560.0 10,880.O 34,560.O 
36,480.O 13.056.0 36,352.0 
65,536.0 49,792.0 65,280.O 
34.560.0 10,880.O 34,560.O 
37,504.o 13,952.0 37,120.O 
75,904.o 62,720.O 75,648.0 
22,528.0 10,880.O 22,528.0 
27,136.0 15,104.o 26,624.0 
86.656.0 84.992.0 86.528.0 

4,224.0 4,224.0 4,224.0 

5,248.0 5,248.0 5.248.0 
21,504.o 22,528.0 21,376.0 

4,224.0 4,224.0 4,224.0 
5248.0 5,248.0 5,248.0 

19,584.0 19.584.0 19.456.0 
16,128.0 4,224.0 16,128.0 
16.896.0 5,120.O 16,896.0 
32,128.0 25,856.0 32,128.0 

8,576.0 8,576.0 8,576.0 
10,752.O 10,752.O 10,752.O 
47,488.0 47,744.o 47,488.0 

8,576.0 8.576.0 8,576.0 
10,880.O 10,880.O 10,880.O 
46,592.0 46,720.O 46,592.0 

8,576.0 8,576.0 8,576.0 
10,880.O 10,880.O 10,880.O 
42,752.0 42,880.O 42,496.0 
70,016.O 7,552.0 70,016.O 
71,424.0 9,728.0 71,168.0 
88.576.0 42,496.0 88,576.0 
93.952.0 7,552.0 93,952.0 
94,848.0 9,472.0 94,720.o 

107,264.O 40,704.o 107.008.0 
69,376.0 7,680.O 69,376.0 
71,168.O 10,880.O 70.912.0 
99,328.0 67,328.0 99.200.0 
58,112.0 8,192.0 58,112.0 

60.416.0 11,520.O 60,288.O 
94,080.O 61,440.O 93,824.0 
58,112.0 8,192.0 58,112.0 
60,544.O 11,904.o 60,544.O 
96,768.0 65,152.0 96,512.0 
58,112.0 8.192.0 58,112.0 

59,136.0 9.984.0 59,136.0 
81,536.0 43,392.0 81.280.0 
57,728.0 7,552.0 57.728.0 
60.288.0 11,776.0 60,160.O 

96.896.0 66,944.0 96,640.O 
57,728.0 7,552.0 57,728.0 
60,416.O 11,776.0 60,288.O 
99,072.o 70,272.O 98,688.0 
57,728.0 7,552.0 57,728.0 

59,904.o 11,008.O 59,648.0 
95,360.O 66,048.O 94,976.0 
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does Y cause Z or Z cause Y? Despite some caution- 
ary remarks about the need for logitudinal studies 
“to more rigorously test the causal hypothesis” they 
clearly believe that “path models can provide evi- 
dence for the causal ordering of variables” [l, p. 2371, 
and can even “determine the causal ordering 
of [a] relationship” [l, p. 2361. 

Wright himself, writing in response to a critic of 
his 1621 paper, denied that this was appropriate or 
even possible. 

The writer [Wright] has never made the prepos- 
terous claim that the theory of path coefficients 
provides a general formula for the deduction of 
causal relations. He wishes to submit that the 
combination of knowledge of correlations with 
knowledge of causal relations, to obtain certain 
results, is a different thing from the deduction of 
causal relations from correlations implied by 
Nile’s statement. Prior knowledge of the causal 
relations is assumed as a prerequisite in the for- 
mer case.” [8, p. 240; italics in the original] 

Other authors over the years have echoed this 
fundamental principle. Herbert Simon, writing in 
19% without citing Wright, but also using arrow dia- 
grams to illustrate causal relationships, emphasized 
that causal inferences drawn from correlations re- 
quire “a priori assumptions that certain variables are 
not directly dependent on certain others” [6]. His 
approach has been elaborated to deal with models 
that explicitly include reciprocal direct causal 
dependencies. These, however, require a priori 
assumptions that sometimes assume heroic propor- 
tions. Difficulties with naive applications of the 
approach have been noted by Duncan [5], among 
others. 

The operational error that Baroudi, Olson, and 
Ives have made is to misapply statistical hypothesis 
testing techniques, quite apart from the philosophi- 
cal question of the determination of causal direction. 
This can be illustrated by focusing on the regression 
analysis done as part of the analysis of Model I. 
When variable Z was regressed on X and Y they 
found that the partial regression coefficient of Z on 
X, controlling for Y, was not statistically significant 
at the 65 level. Having failed to reject the null hy- 
pothesis that the partial is really zero, they proceed 
to adopt the null hypothesis. In doing so, of course, 
they run a substantial risk of making a Type II error. 

They then proceed to reject the so-called 
“trimmed” model (i.e., with the arrow from X to Z 

deleted) because “the difference between the origi- 
nal and reconstructed correlation” between X and Z 
is greater than .05 in magnitude. If they had stuck 
with their original strategy of using classical signifi- 
cance tests they would not have been able to reject 
the trimmed model: their calculated difference of .ll 

is not significantly greater than .05 at the 65 level of 
significance. Indeed it is not even significantly dif- 
ferent from ZERO at the .05 level! 

It is easy to demonstrate that this is true. The 
observed correlation is ~z. The reconstructed corre- 
lation is the product of 7x~ and TYZ. Their difference 
is significantly different from zero if and only if the 
partial correlation of X and Z, controlling for Y, is 
significantly different from zero. This partial correla- 
tion, in turn, is significantly different from zero if 
and only if the partial regression coefficient (or path 
coefficient) of Z on X, controlling for Y, is signifi- 
cantly different from zero. But the regression analy- 
sis reported by Baroudi, Olson, and Ives led them to 
conclude that this was not the case. 

In short, the application of two different and po- 
tentially inconsistent methodologies for rejecting a 
model have led Baroudi, Olson, and Ives to incor- 
rectly conclude that they had evidence that favored 
Model II over Model I. One methodology relied on 
statistical significance, the other on the raw magni- 
tude of a statistic without consideration of its sam- 
pling variability. A more careful reading of the 
causal analysis literature would have led them to be 
more skeptical of the possibility that such a method 
could, in fact, lead to determination of causal 
direction. 

Neil W. Henry 
Departments of Mathematical Sciences and 
Sociology and Anthropology 
Virginia Commonwealth University 
Richmond, Va. 23284-0001 

REFERENCES 
1. Baroudi, J.J., Olson. M.H., and Ives, B. An empirical study of the 

impact of user involvement on system usage and information 
satisfaction. Commun. ACM 29, 3 (Mar. 1966), 232-236. 

2. Blalock, H.M.. Ed., Causal Models in the Social Sciences. Aldine, 
Chicago, 1971. 

3. Blalock, H.M.. Ed., Causal Models in the Social Sciences, 2nd ed. 
Aldine, New York, 1965. 

4. Blalock, H.M., Ed., Causal Models in Panel and Experimental Designs. 
Aldine. New York, 1985. 

5. Duncan, O.D. Introduction to Structural Equation Models. Academic 
Press, New York, 1975. 

6. Simon, H.A. Spurious correlation: A causal interpretation. I. Amer. 
Statist. Assoc. 49 (1954). 467-479. (Reprinted in [Z, 31) 

7. Wright, S. Correlation and causation. J. Agric. Res. 20 (1921), 
557-585. 

6. Wright, S. The theory of path coefficients: a reply to Niles’s 
criticism. Genetics 8 (May 1923), 239-255. 

(continued on p. 266) 

March 1987 Volume 30 Number 3 Communications of the ACM 261 



Research Contributions 

REFERENCES 
1. Barlow, R.E., and Singpurwalla, N.D. Assessing the reliability of 

computer software aid networks: An opportunity for partnership 
with computer scientists. Am. Stat. 39, 2 (May 19851, 88-94. 

2. Fisher, R.A. The Design of Experiments. Oliver and Boyd, Edinburg 
and London, 1935. 

3. Jensen, D.R., and Good, I.J. Invariant distributions associated with 
matrix laws under structural symmetry. J. Royal Stat. Sot. Ser. B 
(Methodol.) 43, 3 (1981), 327-332. 

4. Jones, B. K-systems versus classical multivariate systems. Inf. J 
General Sysf. 12, 1 (1986). 1-6. 

5. Kernighan, B.W., and Lin, S. An efficient heuristic procedure for 
partitioning graphs. Bell Sysf. Tech. J. 49, 2 (Feb. 1970), 291-308. 

6. Kleinrock L. Communication Nefs Stochastic Message Flow and Delay. 
McGraw-Hill, New York, 1964. 

7. Kleinrock, L. Queuing Systems Volume II: Computer Applications. 
Wiley, New York, 1976. 

8. Lin, B.W., and Rardin, R.L. Controlled experimental design for 
statistical comparison of integer programming algrorithms. Manage. 
Sci. 25,lZ (Dec. 1979), 1258-1271. 

9. Lin, S. Heuristic programming as an aid to network design. Nefmrks 
5, 1 (Jan. 1975), 33-43. 

10. Lin, S.. and Kernighan, B.W. An effective heuristic algorithm for the 
traveling-salesman problem. Oper. Res. 21, 2 (Mar.-Apr. 1973), 
498-516. 

11. Maruyama, K., and Tang, D.T. Discrete link capacity assignment 
in communication networks. In Proceedings of the 3rd International 
Conference on Computer Communicnfion (Toronto, Aug. 3-6). Trans- 
Canada Telephone System, Ottawa, 1976, pp. 92-97. 

12. Miller. R.G., Jr. Simultaneous Sfafisfical Inference. Springer-Verlag, 
New York, 1981. 

13. Moose, R.L., Jr. Link capacity assignment in dynamic hierarchical 

networks for real-time applications. Masters thesis, Dept. of Com- 
puter Science, Virginia Polytechnic Institute and State University, 
Blacksburg, 1983. 

14. Nance. R.E., and Moose, R.L. Jr. Link capacity assignment in dy- 
namic hierarchical networks. Compuf. Networks. To be Ipublished. 

15. Sheffh, H. Analysis of Variance. Wiley, New York, 1959. 

CR Categories and Subject Descriptors: C.2.1 [Computer-Communi- 
cation Networks]: Network Architecture and Design-distributed nef- 
works: network topology; C.2.5 [Computer-Communication Networks]: 
Local Networks; G.3 [Probability and Statistics] 

General Terms: Design, Performance, Theory 
Additional Key Words and Phrases: Analysis of varianca, dynamic 

topology, link capacity assignment, statistical comparison 

Received 9/85; revised 7/86; accepted lo/86 

Authors’ Present Addresses: Richard E. Nance and Robert I,. Moose, Jr., 
Systems Research Center and Dept. of Computer Science, Virginia Poly- 
technic Institute and State University. Blacksburg, VA 24061; Robert V. 
Foutz, Dept. of Statistics, Virginia Polytechnic Institute and State 
University, Blacksburg. VA 24061. 

Permission to copy without fee all or part of this material is. granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish. requires a fee and/or specific permission. 

ACM SPECIAL INTEREST GROUPS 
ARE YOUR TECHNICAL 

INTERESTS HERE? 

The ACM Special Interest Groups futhef the ad- 
vancement of computer science and practice in 
many speciaked areas. Members of each SIG 
receiveasmoftheirbenefitsaperiodicalex- 
dusiveiy devoted to the special interest. The fd- 
lowing are the publications that are available- 
through membership or special subscription. 

SIGCOMM Computer Communication 
Review (Data Communication) 

SIGACT NEWS (Automata and 
Computability Theory) SIGCPR Newsletter (Computer Personnel 

Research) 
SIGAda Letters (Ada) 

SIGAPL Quote Quad (APL) 

SIGCSE Bulletin (Computer Science 
Education) 

SIGARCH Computer Architecture News SIGCUE Bulletin (Computer Uses in 

(Architecture of Computer Systems) Education) 

SIGART Newsletter (Artificial 
Intelligence) 

SIGDA Newsletter (Design Automation) 

SIGBDP DATABASE (Business Data 
Processing) 

SIGDOC Asterisk (Systems 
Documentation) 

SIGBIO Newsletter (Biomedical 
Computing) 

SIGGRAPH Computer Graphics 
(Computer Graphics) 

SIGIR Forum (Information Retrieval) 

SIGCAPH Newsletter (Computers and the 
Physically Handicapped) Print Edition 

SIGCAPH Newsletter. Cassette Edition 

SIGCAPH Newsletter, Print and Cassette 
Editions 

SIGCAS Newsletter (Computers and 
Society) 

SIGCHI Bulletin (Computer and Human 
Interaction) 

SIGMETRICS Performance Evaluation 
Review (Measurement and 
Evaluation) 

SIGMICRO Newsletter 
(Microprogramming) 

SIGMOD Record (Management of Data) 

SIGNUM Newsletter (Numerical 
Mathematics) 

SIGOIS Newsletter (Office 1nfor:mation 
Systems) 

SIGOPS Operating Systems Review 
(Operating Systems) 

SIGPLAN Notices (Programming 
Languages) 

SIGPLAN FORTRAN FORUM (FORTRAN) 

SIGSAC Newsletter (Security. Audit. 
and Control) 

SIGSAM Bulletin (Symbolic and .4lgebraic 
Manipulation) 

SIGSIM Simuletter (Simulation and 
Modeling) 

SIGSMALL/PC Newsletter (Small and 
Personal Computing Systems and 
Applications) 

SIGSOFT Software Engineering Notes 
(Software Engineering) 

SIGUCCS Newsletter (University and 
College Computing Services) 

442 Communications of fhe ACM May 1987 Volume 30’ Number 5 


