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Foraging ecology of three sympatric ungulate
species – Behavioural and resource maps indicate
differences between chamois, ibex and red deer
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Abstract

Background: The spatial distribution of forage resources is a major driver of animal movement patterns.
Understanding where animals forage is important for the conservation of multi-species communities, since interspecific
competition can emerge if different species use the same depletable resources. However, determining forage resources
in a spatially continuous fashion in alpine grasslands at high spatial resolution was challenging up to now, because
terrain heterogeneity causes vegetation characteristics to vary at small spatial scales, and methods for detection of
behavioural phases in animal movement patterns were not widely available. We delineated areas coupled to the
foraging behaviour of three sympatric ungulate species (chamois, ibex, red deer) using Time Local Convex Hull
(T-LoCoH), a non-parametric utilisation distribution method incorporating spatial and temporal autocorrelation
structure of GPS data. We used resource maps of plant biomass and plant nitrogen content derived from
high-resolution airborne imaging spectroscopy data, and multinomial logistic regression to compare the foraging
areas of the three ungulate species.

Results: We found significant differences in plant biomass and plant nitrogen content between the core foraging
areas of chamois, ibex and red deer. Core foraging areas of chamois were characterised by low plant biomass and
low to medium plant nitrogen content. Core foraging areas of ibex were, in contrast, characterised by high plant
nitrogen content, but varied in plant biomass, and core foraging areas of red deer had high plant biomass, but
varied in plant nitrogen content.

Conclusions: Previous studies carried out in the same study area found no difference in forage consumed by
chamois, ibex and red deer. Methodologically, those studies were based on micro-histological analysis of plant
fragments identifying them to plant family or functional type level. However, vegetation properties such as
productivity (biomass) or plant nutrient content can vary within vegetation communities, especially in highly
heterogeneous landscapes. Thus, the combination of high spatial resolution resource maps with a utilisation distribution
method allowing to generate behavioural maps (T-LoCoH) provides new insights into the foraging ecology of the three
sympatric species, important for their conservation and to monitor expected future changes.
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Background
How ecologically similar species coexist in a shared

habitat is a fundamental question in ecology [1]. Re-

source ecology provides the basis for understanding

multi-species assemblages as it deals with plant-nutrient

relationships, interactions between consumers and re-

sources and interactions among consumers [2]. Foraging

is the central process in resource ecology as it leads to

growth, survival and reproduction of the animal and

thus, ultimately influences its fitness [2]. Ungulates for-

age selectively [3] and are not only influenced by vegeta-

tion and landscape structure, but are themselves major

drivers of landscape heterogeneity [4-8]. Additionally,

ungulates affect the abundance and population dynamics

of other species, ranging from herbivores [9] to soil de-

composers [10] which in turn feed back to vegetation

composition and structure. These traits make the spatial

distribution and foraging ecology of ungulates an im-

portant issue in wildlife management, nature protection

and landscape conservation [11].

The diversity of ungulate communities is often ex-

plained by differences in their dietary niches [12]. Most

studies have investigated forage selection based on plant

family or functional type (e.g. graminoids, forbs, shrubs)

level and have used either direct observations [13,14],

fence experiments [13,15] or micro-histological analysis

of faecal pellets [16-20]. Thus, ungulates are traditionally

categorised according to their feeding types as grazers,

mixed feeders or browsers (concentrate selectors) [3,12].

Previous studies defined chamois (Rupicapra rupicapra L.),

ibex (Capra ibex L.) and red deer (Cervus elaphus L.) as

mixed feeders, with chamois being closer to browsers, ibex

closer to grazers and red deer in between [12,13,21]. Such

similarity of dietary niches would imply high potential for

competition among the three species, especially when

population numbers are high. In the Trupchun valley of

the Swiss National Park (SNP) population sizes of sympat-

ric chamois, ibex and red deer are amongst the highest in

central Europe. Previous studies in this area investigated

the forage composition of the three species using micro-

histological analysis of faecal pellets and found no signifi-

cant differences in the proportions of grasses, sedges, forbs

and woody species consumed during spring and summer

[22-24].

However, large variations in forage composition at the

plant species and plant family level were not only re-

ported between, but also within ungulate species (e.g. for

deer species see [3]) suggesting flexibility in their dietary

choices. Additionally, plant species within a vegetation

type can strongly differ in growth form and nutritious

value resulting from small scale heterogeneity of microcli-

mate and soil, which is especially pronounced in alpine

landscapes [25]. Thus, vegetation type classifications might

conceal the heterogeneity of forage resources [26]. High-

resolution remote sensing has demonstrated the potential

to detect environmental heterogeneity [27,28] at a spatial

scale fine enough to be relevant for foraging animals

[3,26,29]. Advanced observational approaches such as

imaging spectroscopy (IS [30,31]) make it possible to

detect changes in plant biochemical and biophysical

composition [28,32,33], and plant species distribution

[34]. Plant biomass and plant nitrogen (N) content are

vegetation characteristics important for forage resource

selection in ungulates [35-39] and have already been

mapped successfully using IS in heterogeneous grass-

land ecosystems [35,40-42].

The home range (HR) of an animal is the area tra-

versed by the individual during its normal activities of

food gathering, mating and caring for offspring [43]. Ad-

vances in global positioning system (GPS) technology

have made it possible to collect large amounts of loca-

tion data [44,45] and several HR estimators (polygon

methods) - from minimum convex polygons (MCP) to

alpha hulls [46], kernel density estimators (KDE) and

local convex hulls (LoCoH) [47] - have been proposed.

Traditional HR estimators have been criticised for

treating locations as spatially and temporally independ-

ent, an assumption that can only be fulfilled when data

are collected either at random [48] or at time intervals

long enough to allow an animal to move to any place

within its HR [49]. However, it has been argued that ef-

forts to handle spatial autocorrelation, which can be an

intrinsic data attribute [50], have drawn attention away

from more important questions in HR analysis [51]. In-

stead of removing spatial autocorrelation, which has

been shown to be of limited relevance for HR estimators

(e.g. KDE) it can be used as a source of biological infor-

mation and therefore be incorporated in models of ani-

mal movement and space use [52].

Similarly, polygon methods have been criticised for

giving only limited information about the species’ biol-

ogy when focussing on the perimeter (size and shape) of

an HR. Thus, additional insights into the species’ biology

might be gained (i.e. what the animal did and where) by

using spatial and temporal autocorrelation to delineate

areas coupled to the animal’s behaviour [48]. During the

last decade, models of space use incorporating temporal

autocorrelation of GPS data became more widely available,

including (dynamic) Brownian bridge movement models

(BBMM) [53,54], Levy flight movement models [55],

movement based kernel density estimators (MKDE) [56]

and time geography methods [57,58]. Similarly, behavioural

models (models of time-use) that take advantage of the

temporal autocorrelation of GPS data, such as cognitive

models [59] or state-space models [60] were developed.

One of the few methods that take both spatial and

temporal autocorrelation of GPS data into account is the

Time Local Convex Hull approach (T-LoCoH) [61]. T-
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LoCoH introduces time-scaled distance (TSD), which

measures the distance between two points in both space

(using the x/y coordinates) and time (using timestamps)

allowing to calculate time-use metrics, such as direction-

ality of movement, duration of stay or revisitation rate of

a specific area [61]. These metrics can be used to generate

behavioural maps serving as proxies to delineate migration

corridors, resting or foraging areas. Core foraging areas

have been defined as regions within an HR that are most

heavily used for foraging [62] and have been approximated

by taking the 10% to 50% isopleths of an animal’s utility

distribution (UD; see [63,64]). T-LoCoH’s ability to detect

behavioural phases using the temporal and spatial auto-

correlation structure of GPS data [61] fills an important

gap in HR [50] analyses.

Ungulates are mobile, have accurate spatial memory

[11], spend most of their time feeding [65] and allocate

their time according to the resources available [8,66].

Thus, areas frequently revisited by the animals can be

expected to contain important forage resources. Thanks

to the SNP’s long term monitoring and behavioural studies

[67,68] we know that ungulates in the SNP follow daily

movement patterns between foraging sites and are active

during most time of the day, likely caused by limited dis-

turbances (strong protection status, absence of predators).

Red deer are known to follow a bimodal diurnal rhythm

(peaks around sunrise and sunset) in areas strongly influ-

enced by human activities [69], while behaving polyphasal

(several activity peaks during day and night) when human

disturbance is low [70].

The goal of our study was to investigate the potential of

combining high-resolution remote sensing data with a HR

estimator incorporating the behavioural information con-

tained in GPS data for studying a classical issue in resource

ecology, resource partitioning between sympatric species.

We used GPS data and T-LoCoH's revisitation index to

delineate the core foraging areas of the three ungulate

species, chamois, ibex and red deer, co-occurring at high

population densities in the Trupchun valley of the SNP

and airborne IS data to map plant biomass (forage quan-

tity) and plant N content (forage quality) at 2 m × 2 m

spatial resolution. We compared vegetation characteristics

in the core foraging areas of the three ungulate species

with multinomial logistic regression and related our re-

sults to previous studies examining their diet composition.

Methods
Study area

Our study was carried out in the Trupchun valley

(46.6° N, 10.08° E) of the SNP, encompassing approxi-

mately 22 km2 close to the Italian border. Elevation in the

Trupchun valley ranges from 1775 to 3145 meter above

sea level (m a.s.l.), the average annual temperature in the

SNP is 0.9 ± 0.5°C (mean ± SD) and the mean precipitation

is 754 ± 164 mm (2004–2013, recorded at the park’s wea-

ther station at 1977 m a.s.l.) [71]. The plant’ growing sea-

son lasts from mid May until mid September. The

Trupchun valley is known for its high numbers of co-

occurring ungulates; population estimates between 9–10

chamois/km2, 10–11 ibex/km2 and 25–31 red deer/km2

were reported in 2010–2013 [64].

Vegetation data

We collected vegetation data allowing validation of IS

data based models in 51 (2010, 2011) to 100 plots (2012,

2013), covering the entire range of exposition, altitude,

productivity and plant species composition in the

Trupchun valley. These plots were 6 m × 6 m in size,

homogenous in vegetation cover and species compos-

ition and were grouped into five clusters to enable har-

vesting within a short time frame after the APEX

overflight (approximately four hours; see [41] for de-

tails). Georeferencing of the plots was performed using a

high-precision GNSS (Global Navigation Satellite

System) receiver (Leica 1200+, Leica Geosystems,

Heerbrugg, Switzerland) with measurement accuracy

< 1 cm. On the day of overflight, 1 m2 of vegetation was

clipped in the centre of each plot and immediately sealed

into plastic bags. We weighed the samples the same day to

determine fresh weight of plant biomass. Then the samples

were dried at 65°C and milled to pass a 0.5 mm screen

(Pulverisette 16, Fritsch, Idar-Oberstein, Germany). One

third of the vegetation samples were chemically analysed for

total plant N and plant NDF (neutral detergent fibre) content

using standard laboratory methods (TruSpec CN analyser

Leco Corp., St Joseph, MI, USA; Fibre Analyser 200, Ankom

Technology, NY, USA). Plant NDF content is a widely

used indicator of forage quality and important for ruminal

function in ungulates [72]. The reflectance spectra of the

vegetation samples were measured using a laboratory near-

infrared reflectance spectrometer (NIRS; Multi-purpose

near-infrared reflectance spectrometer (NIR-MPA),

Bruker Optics, Switzerland) and chemically analysed

samples were subsequently used to calibrate models for

predicting plant N content and plant NDF content of all

vegetation samples. NIRS models achieved predictive ac-

curacies of R2 = 0.93 for plant N and R2 = 0.81 for plant

NDF content. Since we found strong correlation between

plant N content and plant NDF content (R2 = − 0.61,

p < 0.001), we excluded plant NDF content from further

analysis. When comparing the vegetation characteristics

in the plots sampled in all four years (n = 25), using

Wilcoxon rank sum tests for pairwise comparisons, no

significant differences regarding plant biomass (all p ≥ 0.19)

and plant N content (all p ≥ 0.35) were found. This allowed

us to combine GPS data of the animals collected in differ-

ent years (but always within 43 days of the APEX flight)

with the corresponding IS data sets.
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Imaging spectroscopy data

Imaging spectroscopy (IS) data were collected on June

24, 2010, June 26, 2011, June 29, 2012 and July 12, 2013

using the airborne imaging spectrometer APEX [31,73],

mounted on a propeller aircraft (Dornier DO-228) oper-

ated by the German Aerospace Centre (DLR). APEX

covers the wavelength region between 380 nm and

2500 nm in 334 reconfigurable spectral bands. After re-

moving noisy bands, 285 (2010), 301 (2011), 299 (2012)

and 284 (2013) spectral bands remained for analysis.

Ground pixel size depended on flight altitude, but was

resampled to 2 m x 2 m. APEX IS data were geometric-

ally and atmospherically corrected using the software

packages PARGE [74] and ATCOR-4 [75], based on the

atmospheric radiative transfer code MODTRAN-5. Geo-

metric mis-registration of the orthorectified data was

evaluated using ground-based differential global posi-

tioning system (DGPS) measurements and was found to

be less than one pixel (± 2 m) in flat terrain [76] and up to

two pixels (± 4 m) on steep slopes (A. Damm, personal

communication). Generally, IS data collected at differ-

ent times are not comparable due to differences in sun

angle and atmospheric conditions resulting in varying

surface anisotropy. Therefore, we used APEX IS data

and ground reference vegetation data to model forage

quantity and quality for each year separately. Since refer-

ence plots measured 6 m × 6 m and APEX pixel size was

2 m × 2 m, a 3 × 3 pixel aggregation scheme was defined

to extract the reflectance values from the IS data per plot.

We calculated simple ratios indices (SRI = band i/band

j) for all possible band combinations based on the average

reflectance of the 9 aggregated pixels per plot and deter-

mined the correlation between plant biomass (g.m−2) and

plant N (%) content and the SRI using Pearson’s correl-

ation coefficient (R2). Next, we used the SRI’s with the 100

highest correlations (according to R2) as input to model

plant biomass and plant N content with linear, exponential

and second order polynomial functions and validated the

models using leave-one-out cross validation (see also

[41]). We selected the best model according to Akaike’s

Information Criterion (AIC) and evaluated model fit with

Theil’s uncertainty coefficient (Theil’s U). Compared to

Pearson correlation, Theil’s U has the advantage of taking

deviations of the slope from its ideal value of 1 and

deviations of the intercept from its ideal value of 0 into

account [77]. Theil’s U normalizes the sum of the squared

prediction errors between observed and predicted values

to a value between zero and one, with zero indicating

perfect agreement [77]. Generally, values of Theil’s U < 0.2

indicate high, values between 0.2 and 0.4 moderately high

predictive power. Due to their frequent use, we also added

R2 values in our text and graphs. Additionally, we

determined predictive accuracy by calculating the root

mean squared error of prediction (RMSE) and the

proportion of samples predicted within less than 20%

RMSE. Finally, we applied the best models to predict and

map plant biomass and plant N content in all 2 m × 2 m

raster cells of the grasslands in the Trupchun valley. Since

our models were designed to predict plant biomass and

plant N content only in grasslands, we used linear spectral

unmixing (LSU) and applied a 50% threshold to exclude

areas dominated by forest, rock, snow or water from

mapping [78]. IS data were prepared using ENVI (version

4.7, Exelis Visual Information Solutions, Boulder, CO, US).

All analyses were conducted in R [79]. For the map layout

we used ArcGIS (version 10.1, Environmental Systems

Research Institute, Redlands, CA, US).

GPS data collection

To match the temporal scale of IS data collection we

used GPS data from five chamois (two in 2011, one in

2012, two in 2013), seven ibex (four in 2010, three in

2013) and two red deer (both in 2013) recorded within

three weeks before and three weeks after the APEX IS

flights (total of 43 days per year). All animals were

caught and handled by SNP rangers experienced in the

procedures and regularly supervised by a veterinarian.

Chamois and female ibex were caught in box traps and

marked without narcosis. Red deer and male ibex were

darted and injected with 1 ml to 3 ml Hellabrunner

Mischung (125 mg Xylazin + 100 mg Ketamin per ml),

dependent on body weight. The animals were released

within 30 minutes after an injection of 1 ml to 3 ml

Antipamezol, an antagonistic drug. The animals were

equipped with GPS PLUS collars (Vectronic Aerospace

GmbH, Berlin, Germany). The fix rate was set to either

four or two hours, but was resampled to the common

interval of four hours during data preparation. We per-

formed a GPS accuracy test, placing two collars at six

georeferenced (Leica GNSS 1200+, see above) locations,

two in the main valley, two in the forest and two in the

grasslands of the Trupchun valley. We placed the collars

around wooden frames with heights ranging from

120 cm to 140 cm and rotated the collars between the

locations on a weekly basis. The location error of the

collars was 11.3 ± 4.7 m (mean ± SD; [= SQRT ((SD (x-

coordinate)^2) + (SD (y-coordinate)^2))] ). If the animal

was captured or recaptured during the 43 day time win-

dow around the APEX flights, the first and last days of

data collection were excluded from analysis. GPS data

were screened for unrealistic movement following the

method of Bjørneraas et al. [80], with limiting parame-

ters set to α = 1.5 km/h and cos θ = − 0.97 (velocity and

turning angle defining erroneous turnarounds, i.e. spikes

in the data), μ = 50 km (possible distance travelled within

20 h) and Δ = 200 km (distance impossible to travel

within 20 h; for details see [80]).
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Behavioural maps

We used the T-LoCoH package in R [81], a non-

parametric UD method to construct behavioural maps

[61] that serve as proxy to delineate the core foraging

areas of the three ungulate species. T-LoCoH models

space use by constructing local MCP’s or hulls around

each data point, which are then sorted and progressively

merged to form isopleths. Sorting of the hulls can be

based on different time-use metrics that serve as proxies

for the animals’ behaviour, such as duration of stay, dir-

ectionality of movement and revisitation rates. The

time-stamp of each location is incorporated in both, the

selection of nearest neighbours for local hull construc-

tion and the sorting of the hulls. For hull construction,

two points have to be close in time and in space to be

considered nearest neighbours. T-LoCoH introduces a

distance function that transforms a unit of time into a

unit of distance, called time-scaled distance (TSD). The

time and space components of TSD are weighted by set-

ting parameter “s”. To make comparisons between the

animals possible, we used the same process for all indi-

viduals and species and set “s” to a consistent proportion

of 60% time selected hulls [61,82].

The number of nearest neighbours can be defined by

selecting the “k” closest points in space and time (“k-

method”), the points within a defined time-scaled radius

“r” (“r-method”) or by identifying the nearest neighbours

up to a cumulative distance “a” in space and time (“a-

method”). We decided to use the “a-method” as this

method is better suited for studies where both, high and

low point densities of GPS locations can be expected

[47]. As before, we used the same process to define par-

ameter “a” for all individuals of all species. We set par-

ameter “a” to a cumulative distance that stabilised the

isopleths’ edge to area ratio [61,82] before creating a

jump in the isopleths’ area, thus balancing type I (includ-

ing area that is not used) and type II errors (omitting

area that is used) [83]. Since absolute values for the opti-

mal “a” across all individuals of a specific ungulate spe-

cies were very close, it was reasonable to use the same

value for “a” for all three species.

While there are guidelines available for selecting the

weight placed on the time-component (“s”-value) and

the threshold for nearest neighbour selection (“a”-value)

[61], the parameters for hull sorting and the isopleths’

threshold have to be based on the aim of the study and

the knowledge of the animals’ ecology. In our study area,

the three ungulate species show distinct diurnal move-

ment patterns. They are known to regularly return to

the same areas for foraging, ruminating and resting and

have multiple activity peaks per day [67,68].We therefore

calculated the revisitation rate for each hull based on an

inter-visit gap (IVG, time to pass for an observation to

count as a separate visit) of 12 hours, sorted the hulls

according to the mean number of separate visits normal-

ised (NNSV) and merged them until 30% of all points

were included (creating the 30% isopleths). While it is

likely crucial to limit type II errors (omitting areas import-

ant for a species) in conservation projects (e.g. the delinea-

tion of protected areas), studies of animal behaviour profit

from limiting type I errors (including area that is not used

by the species) to detect the patterns of interest. Thus we

decided to choose a tight threshold, i.e. the 30% isopleths,

to delineate the animals’ core foraging areas.

Species comparison

We fitted multinomial logistic regression models using

the three ungulate species as the response and plant bio-

mass and plant N content in the animals’ core foraging

areas as predictor variables. We rescaled plant biomass

to a level similar to plant N content by dividing all bio-

mass values by 100 (BiomRS = Biomass/100). As candi-

date models we chose i) the two models containing only

one predictor variable (plant biomass or plant N con-

tent), ii) the main effects model containing both terms

(plant biomass and plant N content), iii) the model in-

cluding both terms plus their interaction and iv) the

intercept-only model. We selected the best model based

on differences of AIC (Δ AIC) and confirmed our selec-

tion using the likelihood ratio test. To evaluate model fit

we calculated the Hosmer-Lemeshow goodness-of-fit

statistic and the area under curve (AUC) of the receiver-

operating characteristic (ROC) for each of the two logits

separately [84]. The ROC is obtained by plotting all sen-

sitivity values (true-positive fraction) on the y-axis

against their equivalent 1-specificity values (false-positive

fraction) for all thresholds on the x-axis. Thus, this

measure of overall accuracy is independent of any

threshold [85]. AUC values between 0.7 and 0.8 indicate

good, values between 0.8 and 0.9 excellent discriminative

ability [86]. We assessed the sensitivity of our results

with regard to the size of the animals’ core foraging areas

by re-running the analysis after adding and subtracting a

6 m buffer to the core foraging areas, respectively, and

tested the hypothesis of equality of the model coeffi-

cients. For analyses and graphs we used the packages

nnet [87], pROC [88] and effects [89] in R [79].

Results
The SRI models of grassland vegetation developed from

APEX IS data predicted plant biomass and plant N con-

tent with high to moderately high predictive power

(Table 1). Generally, the grasslands in the Trupchun val-

ley showed high heterogeneity regarding plant biomass

and plant N content (Table 2). The core foraging areas

of chamois, ibex and red deer delineated using T-LoCoH's

revisitation index (NNSV) were in agreement with the

areas where the three ungulate species are frequently
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observed (SNP, personal communication). Figure 1 shows

examples of spatially segregated core foraging areas in the

Trupchun valley. We found minor overlaps of the core

foraging areas both within and between species, however

they occurred at different times of our observation period.

The best multinomial logistic regression model in-

cluded plant biomass, plant N content and their inter-

action (df = 8, Table 3). When comparing the other

candidate models to this model (the interaction

model), the main effects model reached a Δ AIC of

38.6 (df = 6), the model including only plant N content a

Δ AIC of 668.0 (df = 4), the model including only plant

biomass a Δ AIC of 2013.1 (df = 4) and the intercept-only

model a Δ AIC of 2538.8 for (df = 2). According to likeli-

hood ratio tests, the interaction model performed clearly

better (all p < 0.001) than all other models. Therefore, we

chose the interaction model as our best model. The

Hosmer-Lemeshow goodness-of-fit statistic for each of

the two logits reached a value of p < 0.001 indicating very

good model fit. The best model’s AUC was 0.82 for logit 1,

indicating excellent ability to discriminate between cham-

ois and ibex coreforaging areas, and 0.75 for logit 2, indi-

cating good ability to discriminate between chamois and

red deer coreforaging areas. Sensitivity analysis revealed

no significant differences (all p > 0.25) between the best

model's coefficients for the two logits, neither after in-

creasing, nor after decreasing the animals’ core foraging

areas by a 6 m buffer (see Additional file 1).

The core foraging areas of chamois were characterised

by generally low plant biomass (< 200 g.m−2 fresh

weight, Figures 2 and 3), and a low but slightly increased

level of plant N content (around 2%, unimodal relation-

ship, Figures 3 and 4). In contrast, vegetation in the core

foraging areas of ibex was characterised by high plant N

content, but variable plant biomass (Figure 2, Figure 4),

while vegetation in the core foraging areas of red deer was

characterised by high levels of plant biomass, but variable

plant N content (Figure 2). Ibex showed a tendency to use

areas with the highest plant biomass and plant N content

(Figure 3). However, the core foraging areas with the

highest plant biomass and highest plant N content had an

almost 50:50 modelled chance of being used by either ibex

or red deer (Figure 2).

Discussion
Previous studies conducted in the Trupchun valley found

no difference in spring and summer forage composition be-

tween chamois, ibex and red deer when using micro-

histological analysis of plant fragments in faecal pellets

[22-24]. Likewise, a large overlap in the diet of chamois and

red deer was found when they co-occurred with roe deer

(Capreolus capreolus L.) in Southern Germany [90], with

mouflon (Ovis ammon musimon Pallas) in the Western

Alps [17] and with re-introduced red deer in the Italian

Apennine [20]. While overlap in resource use (of both habi-

tat and forage) is a prerequisite for competition [91], it

could also be a sign of coexistence between species with no

need of specialisation or segregation [92]. Similarly, low

overlap in diet and high specialisation may point towards

species living in coexistence [1], but could also be an effect

of active competition, with the species trying to relieve

competitive pressure [92]. This makes coexistence and

competition extremely difficult to demonstrate in the field

and without experimental manipulation [91,93,94], and

conclusion have to be drawn with care.

Table 1 Imaging spectroscopy models predicting fresh

weight of plant biomass and plant nitrogen content

Biomass (g.m−2) Nitrogen (%)

2010 Theil’s U 0.19 0.11

adj. R2 0.65 0.53

RMSE 174.37 0.53

< 20 % RMSE (%) 44.19 62.79

2011 Theil’s U 0.15 0.07

adj. R2 0.70 0.43

RSME 155.71 0.28

< 20 % RMSE (%) 53.57 88.80

2012 Theil’s U 0.23 0.07

adj. R2 0.49 0.39

RSME 174.35 0.26

< 20 % RMSE (%) 36.44 84.48

2013 Theil’s U 0.22 0.08

adj. R2 0.43 0.36

RSME 241.30 0.27

< 20 % RMSE (%) 36.93 81.67

Models were generated separately for each year using data from the imaging

spectrometer APEX and in situ vegetation data. Model performance is described

using Theil’s uncertainty coefficient (Theil’s U), adjusted Pearson’s correlation

coefficient (adj. R2), root mean squared error of prediction (RMSE) and % of

predicted values below 20 % RMSE (< 20 % RMSE (%)).

Table 2 Resources in the Trupchun valley and in core

foraging areas of chamois, ibex and red deer

Trupchun Chamois Ibex Red deer

Mean biomass (g.m−2) 295.26 192.28 242.63 276.79

SD biomass (g.m−2) 230.10 84.83 119.75 107.15

Biomass min (g.m−2) 0.10 32.48 0.10 83.84

Biomass max (g.m−2) 2799.10 667.61 680.30 986.63

Mean nitrogen (%) 2.11 1.84 2.37 1.78

SD nitrogen (%) 0.53 0.25 0.64 0.22

Nitrogen min (%) 0.01 1.29 0.97 1.04

Nitrogen max (%) 4.80 2.75 4.75 3.69

Biomass (g.m−2) = fresh weight of plant biomass (g.m−2), N (%) = plant nitrogen

content (%), SD = standard deviation, min =minimum, max =maximum.
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The studies mentioned above used micro-histological

analyses of faecal pellets and thus identified forage re-

mains at the level of plant functional groups or plant

families. However, the ratios of the two main forage

components, graminoids and forbs, varied considerably

within the ungulate species studied, which suggests that

the animals have some flexibility in their dietary choices.

Moreover, ungulates are assumed to partition forage re-

sources at levels below the scale of vegetation types [3],

and several studies confirm that plant biomass, plant nu-

trient and mineral content are major drivers for the

spatial distribution and forage resource selection in un-

gulates [35-39]. Therefore, studies investigating forage

resource selection in multi-species ungulate communi-

ties profit from including forage quantity and quality in

their analyses, especially in areas where these vegetation

characteristics are expected to vary.

Finding core foraging areas of chamois predominantly

where plant biomass was low, red deer core foraging

areas where plant biomass was high and ibex in between

is in line with traditional feeding type definitions [12].

Regarding body size, chamois as the smallest of our

three study species (body weight: 30 – 50 kg) is more

limited in terms of forage intake than ibex (body weight:

40 – 150 kg) and red deer (body weight: 60 – 200 kg).

However, the differences of plant N content in the core

foraging areas of the three species, with chamois for-

aging in areas with low, ibex in areas with high and red

deer in areas with variable plant N content warrant

some explanation. Chamois have smaller and less com-

plex rumens resulting in shorter retention time of

digesta. This makes them less able to digest fibre, which

could indicate that chamois depend on forage with

higher plant N content [12]. However, it was found that

Figure 1 Examples of core foraging areas of chamois, ibex and red deer, respectively. Core foraging areas represent the 30% isopleths of
T-LoCoH’s revisitation index. The map shows fresh weight of plant biomass (g.m−2) (left panel) and plant nitrogen content (%) (right panel). Grey
colours represent areas covered by forest, rock, snow or water, identified using linear spectral unmixing (LSU) and subsequently excluded
from analysis.

Table 3 Best multinomial logistic regression model

comparing chamois, ibex and red deer core foraging areas

Variable Coeff SE z p

Logit 1 Intercept −8.7218 0.5825 −14.9738 0.0000

Chamois vs. ibex BiomRS 1.0043 0.2658 3.7786 0.0002

N 3.6048 0.2898 12.4381 0.0000

BiomRS:N −0.1314 0.1369 −0.9602 0.3369

Logit 2

Chamois vs. deer Intercept 2.2434 0.6461 3.4722 0.0005

BiomRS −0.1548 0.2731 −0.5670 0.5707

N −2.4917 0.3538 −7.0432 0.0000

BiomRS:N 0.5535 0.1471 3.7640 0.0002

Logit 1 represents the logistic link function for chamois vs. ibex core foraging

areas, logit 2 the logistic link function for chamois vs. red deer core foraging

areas. Coefficients of the parameters (Coeff) for plant biomass rescaled

(BiomRS = fresh weight of plant biomass/100 (g.m−2)), plant nitrogen content

(N (%)) and their interaction (BiomRS:N), standard errors (SE), Wald Z-statistic

values (z) and corresponding p-values (p) are indicated.
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by comparison to red deer, chamois foraged on lower

quality vegetation consisting predominantly of grami-

noids in areas where food supply was limited [95]. Add-

itionally, chamois have been found to select high quality

forage in high quality habitats, while foraging in a more

generalist pattern in low quality habitats [14]. Indeed, as

mixed feeders [12] chamois can be expected to show

high plasticity in forage selection, which was supported

by our results.

In contrast to chamois, vegetation in the core foraging

areas of ibex was characterised by high plant N content

and variable plant biomass. Generally, we expected ibex

to forage in rocky terrain with little, but nutrient-rich

vegetation. While our results suggested that ibex did in-

deed forage in areas where plant biomass was low but of

high nutritious value (high plant N content), we also

found ibex core foraging areas in the highest quality

meadows of the Trupchun valley where both plant bio-

mass and plant N content were high. Generally, terrain

roughness and slope create a template of risk [96,97], in

which herbivores have to trade off between resource ac-

quisition (e.g. foraging in high quality habitats, finding

mates) and predator avoidance [98,99]. Ibex are very

good climbers that find protection from predators and

the possibility to overview large areas in predominantly

rocky terrain with steep slopes. Within the SNP preda-

tors are absent, hunting is prohibited and visitors are

obliged to stay on the marked paths. Thus, ibex might

have abandoned part of their anti-predator behaviour in

favour of maximising forage resource acquisition. Visual

observations (SNP, unpublished observations) confirm

that the rather flat, high quality meadows are regularly

visited by ibex, where they forage together with red deer

and occasionally also chamois.

The core foraging areas of red deer were always lo-

cated on the rather flat meadows where the animals are

expected to be able to cover their forage intake needs as

plant biomass is high. Red deer inhabit predominantly

open, flat terrain, have good running skills and thus

withdraw themselves from predator attacks by using

areas with high lateral cover, such as areas with forest or

tall-growing shrubs. Similar to ibex, red deer might have

abandoned part of their anti-predator behaviour as they

can be observed grazing, resting and ruminating on the

Figure 2 Probabilities for de facto use of core foraging areas by red deer, ibex and chamois. Predicted probabilities for chamois, ibex and
red deer using core foraging areas (CFA) depending on plant biomass (Biomass/100 (g.m−2), x-axis) at increasing levels of plant nitrogen content
(very low (<1%), low (< 2%), medium (< 2.5%), high (≥ 2.5%)) displayed in the panels from left to right. Probabilities were generated from the
model in Table 3.

Figure 3 Core foraging areas of red deer, ibex and chamois.

Core foraging areas of red deer, ibex and chamois regarding plant
biomass and plant nitrogen (N) content. Dots represent mean values
and the axes of the ellipses standard deviations (SD) in either direction.
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alpine meadows of the Trupchun valley during daytime

[67,68]. However, besides the absence of predators and

limited disturbance, finding ungulates foraging in open

areas with higher plant biomass could also be an effect

of high population densities [100]. When forage avail-

ability in habitats with more protection declines with

increasing population numbers, the animals might be

forced to use more open terrain for foraging. To assess

whether the animals choose the high-quality meadows

in the Trupchun valley voluntarily (in order to maximise

resource acquisition) or if they are forced to use these

areas (due to high population numbers) would require a

comparison of core foraging areas at variable population

densities or in the presence of predators. Wolf, lynx and

bear are expected to return to the SNP in the future

[101], which could have profound impacts on the abun-

dance, population dynamics and spatial distribution of

ungulates [102]. Thus, our results provide an important

basis against which to assess future changes.

Due to the fixed dates of the APEX IS data acquisition,

the results of our study represent the animals’ behaviour

during a specific time, i.e. during early summer. However,

forage quantity and quality are expected to influence ungu-

late movement patterns in our study area in particular dur-

ing this time of the year (peak of the plant growing

season), when females have to nourish their offspring, and

all individuals have to build up winter reserves. Naturally,

the quantity and quality of forage resources will change

during the course of the year and therefore also the ungu-

lates’ habitat use patterns can be expected to change

[103,104]. The habitat use patterns of ungulates are apart

from vegetation quantity and quality, also influenced by

physical landscape characteristics, such as elevation, aspect

and slope, as they can facilitate e.g. effective temperature

regulation [104-106], ease of movement and anti-predator

behaviour [98,99]. However, vegetation composition and

thus the quantity and quality of forage resources depend

on microclimate and soil, which are also influenced by ele-

vation, aspect and slope. Disentangling the effects of “pure”

physical landscape characteristics and “derived” vegetation

properties would be challenging but provide important in-

sights into trade-off mechanisms in habitat choice.

The distribution of vegetation quantity and quality influ-

ences the space use of herbivores on several spatial and

temporal scales [104,107]. Large ungulates show HR estab-

lishment at the regional or landscape scale, they choose

suitable feeding areas and vegetation communities at the

local scale, select vegetation communities of favourable

quantity and quality at the patch scale and certain plant

species or plant parts at the bite scale [41,107]. APEX data

gathered in this study represents vegetation quantity and

quality at the patch scale of 2 m x 2 m. It is therefore pos-

sible, that some of the ungulate species, especially the

smaller chamois, feed more selectively within these patches

[3,11,108]. However, visually observing and exactly locating

the animals, sampling browsed plants and determining

their nutrient content is difficult in an area where access is

limited due to challenging terrain and the high protection

status. As advances in GPS and remote sensing technology

continue, spatially accurate, high-temporal resolution GPS

data (e.g. at minute intervals) that allow following the exact

movement paths of animals will become more widely avail-

able. Combined with temporally flexible, very high spatial

resolution remote sensing instruments such as unmanned

aerial vehicles (UAV’s, drones; [109]), this would provide

opportunities to investigate forage quantity and quality at

the individual plant level. Further differentiation might

be achieved by not only assessing commonly observable

Figure 4 Probabilities for de facto use of core foraging areas by red deer, ibex and chamois. Predicted probabilities for chamois, ibex and red
deer using core foraging areas (CFA) depending on plant nitrogen content (x-axis) at increasing levels of plant biomass (very low (< 200 g.m−2), low
(< 350 g.m−2), medium (< 450 g.m−2), high (≥ 450 g.m−2)) displayed in the panels from left to right. Probabilities were generated from the model
in Table 3.
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vegetation traits by remote sensing [110], but also by

adding advanced retrievals of pigment composition [111].

Conclusions
We detected significant differences in plant biomass and

plant N content in the core foraging areas of sympatric

chamois, ibex and red deer when combining resource

maps developed from airborne imaging spectroscopy

data with behavioural maps developed using the T-

LoCoH algorithm: T-LoCoH enables to detect behavioural

phases in GPS data by making use of their temporal and

spatial autocorrelation. The combination of behavioural

and resource maps proved to be valuable for studying a

classical issue in resource ecology, resource partitioning

between sympatric species. For the future, we expect that

the development of remote sensing instruments with in-

creased spatial resolution and temporal flexibility together

with highly accurate and short interval GPS systems will

continue to deepen our understanding of the foraging

ecology of multi-species communities.
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parameters (Coeff) for plant biomass rescaled (BiomRS = fresh weight of
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