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Abstract26

Understanding the structural complexity and the main drivers of an-27

imal search behaviour is pivotal to foraging ecology. Yet, the role of28

uncertainty as a generative mechanism of movement patterns is poorly29

understood. Novel insights from search theory suggest that organisms30

should collect and assess new information from the environment by pro-31

ducing complex exploratory strategies. Based on an extension of the first32

passage time theory, and using simple equations and simulations, we unveil33

the elementary heuristics behind search behaviour. In particular, we show34

that normal diffusion is not enough for determining optimal exploratory35

behaviour but anomalous diffusion is required. Searching organisms go36

through two critical sequential phases (approach and detection) and expe-37

rience fundamental search tradeoffs that may limit their encounter rates.38

Using experimental data, we show that biological search includes elements39

not fully considered in contemporary physical search theory. In particu-40

lar, the need to consider search movement as a non-stationary process41

that brings the organism from one informational state to another. For42

example, the transition from staying in to leaving out an area may occur43

through an exploratory state where cognitive search is challenged. There-44

fore, a more comprehensive view of foraging ecology requires including45

current perspectives about movement under uncertainty.46

Keywords: search behaviour, foraging ecology, animal movement, ran-47

dom walks, Lévy walks, composite correlated random walks.48
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1 Search behaviour and foraging ecology49

The current paradigm of foraging behaviour assumes that animal movement is50

mostly informed and that motor control is essentially reactive to environmental51

cues (Turchin, 1998; Dusenbery, 1992; Stephens, 2007). For example, movement52

within resource patches is mostly guided by sensory information (e.g. taxis,53

kinesis), whereas movement between patches is assumed to be driven by memory54

or large-scale navigation (Turchin, 1998; Schick et al., 2008; Benhamou, 2014).55

Nevertheless, movement behaviour should also respond to active sampling of56

the environment, typically when information is lacking and patches need to be57

found or when some information exists but biological constraints associated to58

perception or learning pervade (Bell, 1991; Lima & Zollner, 1996; Stephens,59

2007; Lihoreau et al., 2012; Higginson & Ruxton, 2015).60

Organisms can incorporate, store, and use relevant information to form in-61

ternal models about the outside world (McNamara, 1982; Olsson & Brown,62

2006; Pearce-Duvet et al., 2011). These internal models may serve to dynam-63

ically couple expectations with planned movement. In this sense, sampling64

behaviour is connected with information processing. Concordantly, a Bayesian65

forager (Oaten, 1977; Krakauer & Rodriguez-Gironés, 1995; Olsson & Brown,66

2006; McNamara et al., 2006; van Gils, 2010), always has a prior expectation67

about some aspect of the environment, for example, it may have had a recent68

successful encounter or an expectation of the availability of resources. Bayesian69

updating and entropy maximization have been suggested as the fundamental70

building mechanisms of such internal models (Calhoun et al., 2014; Hein &71

McKinley, 2012; Hills et al., 2015); however, it is not yet clear how animals72

acquire and dynamically maintain or adjust such prior expectations (Olsson &73

Brown, 2006; McNamara et al., 2006). How reliable or robust are such pri-74

ors? How do animals change their mind about priors? Can search behaviour75

reduce the negative effects of environmental noise, error perpetuation, or the76

acquisition of biased expectations (Lihoreau et al., 2012; Hills et al., 2015)?77
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Foraging animals experience different “informational contexts” that lead to78

different motivational states and motor output (Morales et al., 2010). Active79

search behaviour (i.e. strategic sampling) is one such motivational state. More80

broadly, from a behavioural perspective, it is important to understand how81

animals transition back and forth from informed to relatively uninformed be-82

havioural states. In other words, how do animals prioritize and use prior infor-83

mation when searching, so it can capitalize on either exploitative or exploratory84

movement strategies, respectively (Vergassola et al., 2007; Hein & McKinley,85

2012). As suggested in McNamara et al. (2006) the optimal weight would de-86

pend on the specificity of the prior information and the quality of the current87

observations. However, from an evolutionary perspective, it is important to88

acknowledge that distinct selection pressures on search movement traits exist89

and depend on the informational context. Animals may adapt their search90

behaviour differently depending on whether the need is to unfold explorative91

strategies (e.g. fundamental information gathering, low information availability)92

or exploitative strategies (e.g. chemotaxis, area restricted search, or purposeful93

relocation movements to abandon a given area).94

1.1 Search tradeoffs and information use95

One might assert that there is a clear contradiction between the idea of random96

search (as probabilistic, uninformed movement) and the fact that organisms97

have evolved sensory and cognitive skills to exploit the environment. Never-98

theless, biological details make this contradiction less apparent. Sensory and99

cognitive capacities are limited and thus any organism face situations of un-100

certainty when foraging. Random search theory can help us understanding the101

fundamental tradeoffs in these low-information situations and to identify the102

rules that lead to successful sampling.103

In a random search process, three main elements govern encounter success:104

(i) speed, (ii) turning patterns, and (iii) perception (Méndez et al., 2014a). Here,105

we hypothesize that the combination of speed, turning and perception define two106
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key compromises of random search (Figure 1): (i) the speed-perception tradeoff107

where high speeds improve the spreading capacity but reduce perceptual capa-108

bilities (Dusenbery, 1992; Campos et al., 2013), and (ii) the intensive-extensive109

tradeoff, which is the fundamental compromise between being able to encounter110

nearby targets (intensive search mode) and at the same time find faraway tar-111

gets (extensive search mode), in areas that might be more profitable (Raposo112

et al., 2011; Bartumeus et al., 2013, 2014; Méndez et al., 2014b).113

Both, the speed-perception and the intensive-extensive tradeoff define a bi-114

dimensional space where limiting cases can be identified (Figure 1). In realistic115

biological scenarios, the two tradeoffs are not independent because they both116

depend on the organisms’ speed: as speed increases, both perception and turn-117

ing decrease. Therefore, for the case of biological searches, only a subset of the118

potential space depicted in Figure 1 is accessible. In such a domain different119

informational contexts may coexist (represented as an information-availability120

landscape in Figure 1). Indeed, the combination of two fundamental tradeoffs121

and the presence of informational gradients is believed to frame any search pro-122

cess, defining three fundamental search states: exploitation, exploration, and123

relocation (Figure 1). Two of them (exploitation and relocation) are aligned124

with informed decision-making, for example, either staying in an area (lead-125

ing to an area-restricted type of motion) or leaving out the area (leading to126

straight-lined or ballistic motion). These two states involve two limiting be-127

haviours represented in the lower-left and the upper-right corners of the search128

tradeoff space, where maximal information usability is also depicted (Figure 1).129

Our working hypothesis is based in the principled guess that the transition be-130

tween the stay-leave decisions (exploitation vs. relocation) often requires a third131

state (exploration) that leads to complex movement patterns aimed at gathering132

more information. Many behavioural transitions may exist between stay-leave133

states (i.e. paths transiting from the lower-left to the upper-right corner in Fig-134

ure 1), but only paths around the diagonal adequately balance the two tradeoff135

conditions, unfolding the most effective sampling movement possible. Paths136
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crossing the upper-left and the lower-right corners (Figure 1) involve either too137

blind or too slow exploratory behaviours, respectively, suggesting suboptimal138

and less biologically plausible stay-leave transitions.139

Figure 1 redefines search as a ternary (i.e. exploitation-exploration-relocation)140

instead of a binary (i.e. exploitation-exploration) process (Hills et al., 2015).141

Indeed, we suggest that the exploration and the relocation states are erroneously142

unified and that the understanding of the transition dynamics between the three143

states identified here is fundamental for the comprehensive inclusion of search144

behaviour in foraging ecology. In particular some questions are: (i) how are145

search states associated with movement behavioural modes?, (ii) does the ex-146

ploration state represent a short or a long transient between the two more in-147

formed states?, (iii) what are the elementary constraints and optimization rules148

governing the exploration state?, (iv) which motion patterns emerge during the149

exploratory state?150

Guided by these ideas (Figure 1), we place current random search theory into151

an eco-evolutionary perspective. First, we identify key spatiotemporal scales of152

the search process that need to be considered to understand the search be-153

haviour of the organism. Second, we show that not only the total amount of154

area covered but also how the area is filled (i.e. space use) is crucial to optimize155

a random search strategy. Third, we evaluate the key role of speed and diffusion156

in the speed-perception and the intensive-extensive tradeoffs by running simula-157

tions covering a wide range of the key parameters. Fourth, we analyze empirical158

trajectories of C.elegans in a specific search context, showing why biological de-159

tails (i.e. information-processing, internal states, and motor constraints) are160

important for the understanding of search behaviour in the context of forag-161

ing ecology. Finally, we suggest further experiments to explore the usefulness162

and validity of the proposed new search paradigm in general foraging-ecology163

research.164
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2 Factoring the time to find a target165

Different measures can be employed to calculate search efficiency (e.g. Preston166

et al., 2010; Chupeau et al., 2015; Kagan & Ben-Gal, 2015; Campos et al.,167

2015a), and their suitability basically depends on the target density (resource168

concentration in a foraging context). Encounter rates, for instance, are useful169

measures of efficiency for high target densities in which time between consec-170

utive encounters is small compared to other relevant biological scales such as171

the directional persistence and foraging trip duration (Berg & Purcell, 1977;172

Gerritsen & Strickler, 1977; Dusenbery, 1992; Kiorboe, 2008). Situations with173

low target densities (i.e. relatively long times between encounters) are typi-174

cally described through the Mean First Passage Time (MFPT) (Redner, 2001;175

Shlesinger, 2007; Méndez et al., 2014a), defined as the average time 〈T 〉 for176

the searcher to hit a target, given some initial condition. The latter is a more177

appropriate measure to account for the dynamics of exploratory strategies as178

those described in Figure 2, in which successful encounters are well separated in179

time because they occur only after a large number of movement events. How-180

ever, by definition the MFPT assumes perfect detection and thus captures only181

the statistics of first-passages. Consequently, this measure cannot address the182

aforementioned speed-perception tradeoff, since it does not consider the possi-183

bility that a target may be missed and that multiple passages may occur before184

detection (Bartumeus & Levin, 2008; Reynolds & Bartumeus, 2009). For this185

reason a more general concept, the Mean-First Detection Time (MFDT) has186

been formally introduced in recent works (Campos et al., 2012, 2013) and will187

be considered here.188

To calculate MFDTs one must consider (see also Box 1), (i) the movement189

parameters: speed v, angular correlation α, and “flight time” distributions ϕ(t),190

where t represents jump or displacement durations. These parameters ulti-191

mately define a diffusion constant D(v, α, ϕ(t)), (ii) detection parameters: a192

probability of detection as a function of speed p(v), and (iii) boundary con-193
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ditions: a typical domain size (characterized by the average mean free path194

between targets L), which also determines the density of targets, a generic per-195

ceptual scale defined here as the sum of the searcher perceptual scale and the196

target size R = rs+rt, where R << L, and an initial distance x0 of the searcher197

to the closest target, which represents the minimal distance required to leave198

the empty area within the search domain.199

The expression for the MFDT in statistical mechanics in the context of200

search can be generalized as (Campos et al., 2013):201

〈T 〉 = T1 + T2 (1)

where T1 = f1(x0, D, L,R) and T2 = f2(v, p(v), L,R). In this way, the search202

process is divided into two temporal phases: (1) the mean time needed to leave203

the empty area defined by the distance to the closest target, during which the204

probability of detecting a target is zero or negligible on average, i.e. T1, and205

(2) the mean time needed to detect a target, once the searcher probability of206

detection is non-negligible on average, i.e. T2.207

During the approaching phase (i.e. T1), the average detection is zero and the208

distance from the initial position to the closest target x0, and the type of dif-209

fusive process D are the limiting factors determining the probability to reach a210

target. The probability to detect targets in the T2 phase, depends mostly on the211

speed v and the perception ability as a function of speed p(v). Motion in T2 may212

include subsequent back-and-forth movements away and towards the targets so213

it might appear puzzling that T2 does not depend explicitly on D. The explana-214

tion for this is that when directional persistence has a single (or predominant)215

characteristic scale it plays an ambivalent role that neutralizes the effects of the216

diffusion coefficient D in the term T2. Whenever the searcher moves towards217

the target, an increase in directional persistence (or characteristic flight time)218

facilitates encounters with targets. However, if it is in the wrong direction, the219

same increase may impair encounters with relatively close targets. The general220
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result is that whenever D is governed by one single characteristic flight time221

the effect of D on T2 is cancelled out (for further details see the Supporting222

Information). Nonetheless, the introduction of multiple persistence scales (or223

flight times), either due to the effect of heavy tails or multimodal distributions224

solves this limitation and introduces the possibility of further search optimiza-225

tion (Bartumeus et al., 2014; Campos et al., 2015b). Other mechanisms not226

explored here can also lead to non-monotonic effects of directional persistence227

in first-passage times (Tejedor et al., 2012).228

Motion (i.e. diffusion) and detection capabilities operate simultaneously229

throughout the search process. The two processes cannot be readily factorized230

when considering a single trajectory. Instead, the factorization emerges at a231

statistical level. T1 and T2 are average times corresponding to the statistical232

expectation for a single searcher to find a target at a given time (MFDT).233

Such statistical expectation is generated by an ensemble of trajectories that234

represent the set of potential trajectories unfold by an individual searcher. The235

factorization in Eq. 1 highlights the fact that this expectation is built from two236

distinct components. A first component in which the searcher needs to cover237

a distance (x0) or area such that whatever the path taken the probability to238

detect a target is necessarily zero (i.e., it is impossible for the searcher reaching239

any target within T1). A second component that starts from a set of potential240

positions achieved at the end of T1, such that whatever the path taken from241

there onwards there will always be a finite probability to detect a target. In242

other words, once the search starts and a minimal distance or area is covered243

(i.e. T1), the potential set of unfolded trajectories have spread out sufficiently244

for the T2 period to be initiated (Figure 2).245

If one extends the random search problem to systems with an arbitrary246

number of dimensions d, the computation of the MFDT needs an additional247

characteristic scale, the target size (also interpreted as an effective detection248

distance in Méndez et al. (2014a)). This is essentially defined as the charac-249

teristic distance between the target and the searcher so that on average target250
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detection becomes significant. Note that in one-dimensional systems the target251

can be considered as a point (zero effective size) since the random walker will252

pass sooner or later through that point with probability 1. The latter is not true253

in higher dimensional systems. For a random walk with persistence modelled254

as a Correlated Random-Walk (CRW) starting at an arbitrary position x0 of255

a d-dimensional spatial domain with a mean-free path between targets L, the256

equation for the MFDT can be written as (Campos et al., 2013):257

〈T 〉 =

T1

︷ ︸︸ ︷

L2

2D
gd(x0/L)+

T2

︷ ︸︸ ︷

Ld

Rd 〈vp(v)〉
(2)

Here, gd(x0/L) is a function, which implements the effect of the initial condi-258

tions, and Rd presents the effective detection surface/volume of the target; in259

two dimensions this can correspond either to the actual area of the target or260

its cross section, depending on the ratio between the characteristic scales in the261

problem (see Campos et al. (2013) for further details). This function’s exact262

form depends on the specific dimension of the system. The one-dimensional263

case leads to the simple expression (Campos et al., 2012):264

〈T 〉 =

T1

︷ ︸︸ ︷

L2(x0/L)(1− x0/L)

2D
+

T2

︷ ︸︸ ︷

L

Rvp(v)
(3)

Note that both Eq. 3 and Eq. 2 preserve the scaling and interpretation265

made in Figure 2 for T1 and T2, such that (i) the size of the target, which is266

essentially related to the detection probability, only appears in T2 but not in267

the approaching time T1, (ii) the diffusion coefficient D is present in T1 but not268

in T2 (see Supporting Information for further insights), and (iii) the time T1269

always fulfils the diffusive scaling ∼ L2 while the detection time T2 scales as Ld,270

since the time to detect the target in a stationary situation is proportional to271

the empty volume of the system (or target density).272

In accordance to our discussion above, the first term T1 captures through273

the diffusion constant D the effect on the MFDT of both the speed and the274
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turning behaviour, which determines to a great extent the intensive-extensive275

tradeoff. The second term includes the speed-perception tradeoff in the form276

vp(v), which can be interpreted as a perception-weighted speed. We note that277

for the case of particles with perfect detection abilities (i.e. p(v) = 1, so the278

MFDT reduces to the MFPT), Eq. 3 simplifies to the classical result for CRWs279

derived by George Weiss three decades ago (Weiss, 1984). The relative weight of280

T1 and T2 (and the associated tradeoffs) on 〈T 〉 depends on whether targets are281

near (T1 ≤ T2) or distant (T1 ≫ T2). In addition, the optimal modulation of the282

intensive-extensive tradeoff through changes in speed and reorientation patterns283

also depends on whether targets are nearby or faraway. If targets are both284

nearby and faraway, the optimal diffusivity (speed and turning patterns) must285

balance out the probability of leaving a nearby target (to look for a new one)286

with the probability of staying near the undetected target (Raposo et al., 2011;287

Bartumeus et al., 2014; Méndez et al., 2014b). If targets tend to be faraway, the288

general solution is to maximize the probability of leaving the current position289

in order to approach new targets. If targets tend to be nearby then the solution290

is to remain close by and meander around until detection.291

These simple models (Eqs. 3 and 2) emphasize that in a search process,292

the spacing and distribution of resources are relative to searcher position and293

perceptual scales (i.e. x0/L, R) and matter to the extent they modify the294

searcher encounter statistics (average and variation of the encounter time inter-295

vals). Nonetheless, an organism-centred view of the resource spacing is notori-296

ously difficult to capture in a single meaningful metric (Lima & Zollner, 1996).297

The key temporal and spatial scales identified in the search model are linked to298

the organisms perceptual scales in a complex way. The connection is not only299

dependent on the densities and distribution of resources and consumers, but300

also on cue-related spatial gradients, physical topography, forager motivation,301

history of experience or age, and social processes. Clearly, the framework pre-302

sented here is limited in the sense of compacting all these relevant aspects into303

one single metric, the searcher-to-target nearest distances.304

11



3 Diffusion and space use305

In principle, it may seem that the ultimate goal of search is to explore more306

territory in less time. However, search efficiency measures success in finding307

targets, not in covering space; therefore, despite the fact that the maximization308

of space coverage is important, and in many occasions correlates positively with309

search efficiency, it is not always the best strategy. If near and farawar targets310

are to be found, then the intensive-extensive tradeoff emerges, and one finds311

that the search efficiency does not depend strictly on the amount of territory312

explored per unit time (i.e. D) but on how this territory is explored to find313

the target. In particular, persistent motion alone is not enough to efficiently314

optimize both close and distant target encounters (Bartumeus et al., 2005).315

The impact of the diffusion coefficient D on search efficiency through the bal-316

ance of the intensive-extensive tradeoff, can be clearly shown by Monte Carlo317

simulations in one-dimensional systems. In Figure 3, we show how the search ef-318

ficiency, measured as a MFPT (perfect detection), varies as we change diffusion319

for different flight time distributions (i.e. ϕ(t)), and for the two limiting search320

regimes, asymmetric (the nearest targets can be either very close or far away321

from the searcher) and symmetric (the nearest targets are at a similar distance322

from the searcher). Whether a landscape is homogeneous or heterogeneous is a323

property defined by the spatial distribution of the targets, whereas the notion324

of asymmetric/symmetric search regimes is featured by the starting position of325

the searchers, hence, a local property. In principle, homogeneously distributed326

target fields promote symmetric search regimes, whereas patchy or heteroge-327

neously distributed targets promote asymmetric search regimes. However, it328

must be noted that the average relationship between local and global landscape329

properties take a time to converge, the convergence rate depending on both the330

landscape structure and the searcher movement. Hence, in a search process, the331

amount of patchiness and the amount of local variation in the nearest searcher-332

to-target distances are expected to be correlated but are not exactly the same333
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thing.334

In our example (Figure 3), the increase in D along the x-axis is achieved335

by keeping the velocity constant and only changing the parameters that af-336

fect the flight time distribution. Note that for a given spreading capacity337

(i.e. D) the MFPT changes depending on whether the microscopic movement338

leads to normal or anomalous diffusion (Seuront & Stanley, 2014; Benhamou,339

2014; Bartumeus, 2015). Different mechanisms leading to anomalous superdif-340

fusion have been suggested, either through enhanced (Denh) or composite dif-341

fusion (Dcomp) (Bartumeus et al., 2005; Benhamou, 2007; Raposo et al., 2011;342

Reynolds, 2012; Bartumeus et al., 2014) (see also Box 1). Importantly, both343

types of non-Brownian diffusivity decrease the MFPT (i.e. T1 of Eq. 1) at inter-344

mediate D’s. Also, the search efficiency improves compared to a simple diffusive345

process, driven by an exponential distribution of flight times (Eq. 5) and also346

to straight-lined motion. Both Denh and Dcomp may result in a similar search347

efficiency and may be better than Dcorr, where single-scaled persistence or char-348

acteristic flight times is incorporated. Hence, Figure 3 confirms that the optimal349

balance between intensive-extensive search cannot be unequivocally determined350

by D but depends on the microscopic details of the turning patterns, in par-351

ticular the inter-turn time or flight time distribution ϕ(t). Turning patterns352

balance out the capacity of the searcher to move away and come back from/to353

the target. Such a balance requires multi-scaled (and far from Gaussian) move-354

ment patterns (Bartumeus et al., 2014; Méndez et al., 2014b). The latter can355

be achieved either by generating a mixture of D’s with different Gaussian pa-356

rameters for speed and flight times (Dcomp), or by incorporating heavy-tailed357

speed and flight time distributions (with a slower decay than Gaussian but fi-358

nite moments) within one single D (Denh). Currently, defining the generative359

mechanisms leading to anomalous dynamics (departures from normal diffusion)360

is an active field of research (Benhamou, 2007; Heisenberg, 2009; Brembs, 2011;361

Bazazi et al., 2012; Campos et al., 2014; Salvador et al., 2014; de Jager et al.,362

2014; Wearmouth et al., 2014; Reynolds, 2015).363
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In the Supporting Information, we show the derivation of Dcomp and Denh,364

and its relationship with flight time distributions. We also show how velocity365

(i.e. speed) alone may modulate the capacity to detect nearby targets, modifying366

the optimal values of the speed-perception tradeoff. A summary of the main367

results is found in Box 1.368

4 Search optimization369

While the discussion in the previous section illustrates the crucial scales and370

tradeoffs influencing search processes, they may give the false impression that371

the two fundamental search tradeoffs (i.e. intensive-extensive, speed-perception)372

can be optimized independently. This is not true since both perception and the373

diffusion constant D are affected by the searcher speed. Hence, a unique global374

optimum that minimizes the search time can be determined, but requires a com-375

plete parameterization of the problem that includes search behaviour (movement376

and perception) and the landscape properties.377

Here we perform a comprehensive, quantitative analysis. The searcher moves378

within a domain which is large enough so boundary effects are negligible (large L379

with periodic boundary conditions), and fights are at constant speed separated380

by turning events (uniformly random direction). Target density is represented381

by 1/Ld, where d is the spatial dimension. We analyzed two qualitatively dif-382

ferent search regimes. In the symmetric regime, the searcher starts moving383

from any point in the whole domain drawn from a uniform distribution. This384

scenario reflects an average distance towards the closest target of the order of385

the domain size, representing an homogeneous landscape from the perspective386

of the searcher. In the asymmetric regime, the searcher starts from any point387

drawn from a Gaussian distribution with variance σ = 2R2 centred at a given388

target position, where R = rt + rs is the sum of the detection scales or radius389

of the target rt and the searcher rs. As R ≪ L the typical scales of the dis-390

tance to the close-by (2R2) and faraway (L) targets are different, representing391
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a heterogeneous landscape from the searcher perspective.392

The whole spectrum of possible search strategies depicted in Figure 1 has393

to be explored in order to look for global optimal compromises based on these394

tradeoffs. We characterized the intensive-extensive tradeoff through the diffu-395

sion coefficient D, computed from the microscopic parameters (see Box 1), and396

the speed-perception tradeoff using the speed v along with the speed-dependent397

factor e−γv, which determines the probability of detecting the target after pass-398

ing over it (γ > 0). In these simulations we consider that perception occurs399

once per flight, instead of considering a continuous process. While alternative400

choices of parameters would be possible, the choice of D and v is appropriate as401

it encompasses the whole decision-making set of possibilities that the searcher402

has available to improve its strategy. Figure 4 compares the MFDT obtained403

as a function of the diffusion coefficient (i.e. varying ϕ(t) and keeping speed404

as a constant), and speed for: (i) exponential and truncated-Lévy flight time405

distributions (a paradigmatic heavy tail distribution, common in empirical ob-406

servations, and easy to handle when computing the effect of heavy-tailed flight407

times), and (ii) different detection parameter values γ = 0, 0.1, 0.2, 0.5 (in or-408

der to determine the effect of perceptual capabilities, the larger the detection409

parameter γ the smaller the probability of detection), and (iii) two types of410

initial conditions, leading to two different search regimes (Raposo et al., 2011;411

Bartumeus et al., 2013, 2014). In our simulations we are not considering any412

energetic cost related to speed (e.g. speed as a function of energy cost or speed413

limits) which could have additional effects on search efficiency beyond the effects414

of the speed-perception tradeoff explored here.415

For the exponential flight time distribution (Figure 4, upper panel) and416

for easy detection conditions (γ = 0, 0.1), the global optimum strategy (low417

MFDTs) lies in the region of a large diffusion constant (D) and high speed (v).418

The result is qualitatively similar for both search regimes (symmetric or asym-419

metric). Concordantly with Reynolds & Bartumeus (2009), as perception error420

increases and target detection becomes less probable the global optimum is dis-421
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placed towards smaller values of speed (the slow, scanning limit) and smaller422

values of D (intensive search limit) compared to the case with perfect detec-423

tion. Noticeably, the confinement of the optimal solution (low MFDT values) at424

small values of D is stronger in the asymmetric than in the symmetric regime.425

So, searchers strongly constrained by perception will benefit from using mod-426

erate speeds and intensive strategies in order to revisit places several times to427

balance possible detection failures. This solution is more relevant when nearby428

targets exist, and importantly, we have checked numerically that this tendency429

is independent of the details of the detection process (e.g. using other func-430

tions p(v) or introducing more complicated movement patterns which include431

pauses). So the necessity for slowing down and enhancing revisits (intensive432

search) when perception is impaired seems to be a rather general and robust433

conclusion and may only depend quantitatively from certain details on how the434

perception process is implemented.435

For the truncated Lévy flight distribution (Figure 4, lower panel) the most436

conspicuous effect on the global optima is the shift from high to low speed, as the437

probability of detection decreases (i.e. γ increases). Note that when detection438

is close to perfect (γ = 0, 0.1), the negative impact of small D values on search439

efficiency is much less important in the Lévy than in the exponential case.440

This is because the truncated Lévy distribution can generate a non-negligible441

proportion of large ballistic displacements (due to the heavy-tail) that allows442

for improved search efficiency (low MFDT) even at low D values. Also different443

from the exponential case is that when detection probability becomes small (γ =444

0.2, 0.5) large diffusion values are still able to produce low MFDT values. This is445

because large diffusion coefficients based on heavy-tailed microscopic movement446

can still hold an adequate balance between intensive and extensive search modes.447

The right balance should allow for revisiting areas with a frequency that is short448

enough to decrease detection failures but large enough to avoid oversampling.449
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5 Search beyond physics: an experiment with450

nematodes451

Discerning among potentially different search states and characterising specific452

movement modes associated to them (Figure 1) is a challenging task. Often,453

it results controversial whether organisms perform active sampling or they are454

merely reacting to local environmental cues. Nonetheless, by displacing an455

organism from a rich- to a poor-resource environment, so that both the quan-456

tity and the quality of available information changes abruptly, one can inves-457

tigate how organisms adjust their search behaviour to low information condi-458

tions (Bazazi et al., 2012; Salvador et al., 2014; Seuront & Stanley, 2014). In459

resource-rich environments, organisms are well-fed and surrounded by resources460

but when displaced to a resource-poor and cue-less environment animals start461

to experience a radically different situation. In such cases, one would expect462

organisms to actively try to gather information near their initial position before463

deciding to leave. A crucial aspect is whether the transition between exploita-464

tion (i.e. staying in an area) and relocation (i.e. leaving the area) is determined465

by exploratory movements, governed by the fundamental tradeoffs and the op-466

timization mechanisms explained in the above Sections, or alternatively, it is a467

fast transition governed by relatively informed movement. To address this ques-468

tion we performed this type of experiment with the nematode Caenorhabditis469

elegans.470

We placed one at a time, 39 C.elegans individuals (well-fed on a bacteria471

lawn for several days) onto a bare agar plate (zero food) of 24.5×24.5 cm at a ho-472

mogeneous temperature of 21◦C, and tracked their movement at high-resolution473

(32 Hz) for about 90 minutes. In this experimental setup the environment of474

the worm was carefully controlled, so its movements are mainly determined by475

the animal’s internal state (e.g. starvation level or memory of the previous476

conditions) and not to any environmental cues (e.g. temperature or chemical477

gradients).478
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5.1 Search is a non-stationary behavioural process479

Our working hypothesis is that foraging organisms are confronted with different480

motivational states and information-availability contexts that modulate move-481

ment behaviour (Figure 1). Despite our dataset covers a wide range of scales,482

one must always be cautious when inferring motivational states and true be-483

havioural processes from movement data.484

We characterize C.elegans movement on the basis of 3 variables including:485

straightness index (S), net displacement D (or effective velocity, V ), and mean486

travel velocity (T ) (see Supporting Information). We use t-Stochastic Neigh-487

bouring Embedding (t-SNE) (Berman et al., 2014) and classic Hidden Markov488

Modelling to segment these trajectories into different movement modes (see489

Supporting Information). Our analysis reveals a complex behavioural land-490

scape delimited by three statistically significant domains or regions (Figure 5a).491

Each domain is characterized by a dominant (and differentiated) movement492

mode among a hierarchical set. The emergence of three large domains in the493

behavioural landscape suggests the presence of three motivational search states,494

namely, exploitation, exploration and relocation, which in turn, are character-495

ized by three dominant movement modes: area-restricted search, sampling, and496

ballistic-like motion, respectively (Figure 5a). Based on these empirical results497

we hypothesize that search behaviour is governed by three motivational states498

that modulate the propensity by the organism of being in one or another move-499

ment mode. To interpret better the behavioural landscape (i.e., the main do-500

mains and movement modes) we depict the values of each of the input variables501

(see Supporting Information) on the landscape (Figure 5b,c,d). In particular502

S and V can be considered rough surrogates of the intensive-extensive and the503

speed-perception tradeoffs. Its marked gradation (Figure 5b and c) ensures that504

the three dominant movement modes represent different tradeoff compromises.505

Compared to S and V , the mean travel velocity T is more heterogeneously506

distributed across the landscape. The smallest T ’s are strongly associated to507

area-restricted search behaviour, but small and large T ’s can locally co-occur508
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elsewhere in the behavioural landscape.509

Finally, we use the results obtained from the t-SNE segmentation procedure510

to feed a 3-state Markov-chain to model the transitions and the overall tempo-511

ral dynamics of the three search states. We find that the exploitation and the512

relocation states do never occur consecutively in time but they are rather linked513

through a differentiated exploratory state (Figure 6b). In addition, the state’s514

prevalence dynamics shows a gradual shift from exploitation to relocation, with515

an intermediate phase (around minute 70 of the experiment) governed by ex-516

ploration (Figure 6c). These results are also confirmed when directly modelling517

the data with 3-state Hidden Markov Models (see Supporting Information).518

As in Salvador et al. (2014), in this experiment the memory of the previ-519

ous environment (culture plentiful of bacteria) seem to anchor the animal for520

about 30 minutes around its initial position. Therefore, in this case, the area-521

restricted search (ARS) is not directly driven by chemotaxis. The exploitation522

state must be the result of the memory (sensu latu) of past resource availability,523

which may progressively relax due to cumulative failures in sensing resources.524

In C.elegans ARS is maintained mainly using a special type of turn known as525

pirouettes (Pierce-Shimomura et al., 1999; Ohkubo et al., 2010; Salvador et al.,526

2014). Once the resource memory or expectation has dropped, the worm is en-527

gaged in an exploratory process aimed at effectively expanding the search area.528

At this stage, it combines pirouettes with straight-lined crawls, and multi-scale529

looping behaviour, drifting away from the initial area. Finally, after about 30530

minutes in the exploratory mode, the worm performs sustained straight-line531

motion, to the extent that its steering control allows it, suggesting an aim to532

relocate or leave the area (Figure 6d). All in all, in well-fed C.elegans individuals533

transiting between stay-leave decisions involves switching from ARS to ballistic-534

like movement modes and can take about one hour (Figure 6c). These type of535

transitions are species specific, e.g. well-fed locusts changed from intensive to536

extensive search much more progressively, in the course of 6 hours (Bazazi et al.,537

2012). Ballistic and fast motion is the optimal strategy for an organism moving538
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in a bare arena, when all targets are faraway (Bartumeus et al., 2005, 2014), but539

organisms need a time and perform specific motion to figure out this situation.540

If the transition from an explotation to a relocation state is optimally in-541

formed, and hence purely reactive, we would expect the movement behavioural542

switch to occur in a short time and without intermediate states. However, the543

existence of a transitional state exploring near and far due to uncertainty may544

prevent against leaving an area too soon, as ballistic motion strongly under-545

mines the probability to detect nearby targets, or too late, as ARS does not546

allow extending the range of search to a neighbouring area. Importantly, the547

behaviour observed in our experiment is largely suboptimal, that is, in a bare548

arena, ballistic motion would clearly be the best solution. Therefore, the long549

and complex behavioural response of C.elegans must have evolved as a response550

to fluctuations in their natural environments.551

The results revealed that C.elegans produces complex locomotory patterns552

that are not directly related to environmental fluctuations or resource den-553

sity (Avgar et al., 2011; de Jager et al., 2014). Our data confirms the results554

in Salvador et al. (2014) and Calhoun et al. (2014): the transition from area-555

restricted search to ballistic-like motion in C.elegans is not fast nor simple but556

it entails a long and complex transient period. Therefore this search can be557

described as a non-stationary behavioural process that drives the worm from558

the decision of staying in the area to the decision of leaving the area, through a559

relatively long intermediate stage.560

5.2 Behavioural details govern search diffusion561

Diffusion is a relevant metric to understand biological search capacity (see Sec-562

tion 3) but often organisms’ movement depart from the idealized microscopic de-563

scriptions of diffusion (Méndez et al., 2014b). In this sense, the search movement564

of C.elegans is not only non-stationary but it clearly departs from the simple565

run-and-tumble random-walk model (Stephens et al., 2010). Indeed, C.elegans566

performs many different types of turns, each producing different changes in an-567
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gular direction, and its runs are not simple straight paths but rather curvilinear568

trajectories (Izquierdo & Beer, 2015), with a broad distribution of curvatures.569

In empirical data, diffusive properties are often evaluated by computing570

the scaling exponent α of the mean square displacement (MSD) over time571

(MSD≈ tα), at the population level. In Stephens et al. (2010); Salvador et al.572

(2014), for example, it is shown that C.elegans movement departs from normal573

diffusion for a wide range of scales. Here, we show that the key feature governing574

the diffusive properties of search is the time-dependent steering control that the575

worm carries out along the search process (Figure 7 and Supporting Informa-576

tion). In particular, the three search states previously identified (Figure 5 and577

Figure 6) can be associated with different diffusivities (Figure 7a) and looping578

patterns (Figure 7b). The three search states have the same short-ranged MSD579

(superdiffusive) but for each of them the large-scale curvature of the trajecto-580

ries shows different characteristic times, reflected in different MSD slopes and581

large-scale behaviour. The fluctuations observed in the MSD curves (Figure 7b582

inset) are due to the complex looping behaviour of the worm, clearly departing583

from standard diffusion and random walk models (Figure 7b inset).584

The exploitation, exploration, and relocation states clearly reveal distinct585

space use, based on different looping motifs and diffusivities. At the begin-586

ning of the experiment, the exploitation phase entails tight loops that slowly587

drift and overlap each other (Figure 7b, inset). This looping behaviour leads588

to a strong subdiffusive regime (α < 1, see Figure 7a) and to a complex MSD589

curve that plateaus for a range of scales and then subsequently increases show-590

ing strong fluctuations at the end (Figure 7b). During exploration, the total591

area covered is similar to that of the exploitation state but the coverage occurs592

about four times faster due to marginally superdiffusive behaviour (α ≥ 1, Fig-593

ure 7a). In this state, loops are loose and combined with straight-lined segments594

(Figure 7b, inset). When relocation is taking place the worm generates wide595

loops (Figure 7b (inset), also called open arcs in Salvador et al. (2014)), which596

generate superdiffusive behaviour (α > 1, Figure 7a). In general, the steering597
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control of C.elegans cannot avoid systematic orientational biases (Izquierdo &598

Beer, 2015), impairing ballistic motion in the long-run. In the three states the599

long-term MSD behaviour converges to (sub)normal diffusion (Figure 7a). A600

more detailed picture of the MSD behaviour (Figure 7b) reveals that the MSD601

fluctuations systematically increase through time due to the long-return times602

to previously visited areas.603

These results reveal that C.elegans shows diffusive variation which cannot604

be directly associated to environmental fluctuations and resource density (Av-605

gar et al., 2011; de Jager et al., 2014). In addition, diffusion constants and606

scaling exponents (MSD slopes) are important and informative parameters, but607

biological details cannot be forgotten in order to understand search behaviour608

and efficiency. The study of how sensorimotor constraints and the steering con-609

trol abilities of C.elegans impact on search efficiency through both its effects610

on diffusion and on small-scale patterns (e.g. looping motifs) needs further611

investigation.612

6 Towards a comprehensive view of foraging613

One of the greatest challenges of movement ecology (Nathan, 2008; Schick et al.,614

2008; Smouse et al., 2010; Fronhofer et al., 2013; Benhamou, 2014) is to disen-615

tangle behavioural processes from movement patterns. Random search theory616

can provide a background rationale for testing hypotheses about effective for-617

aging behaviour and help distinguishing active exploration from more informed618

and reactive types of behaviour in empirical data.619

Here we have made an explicit connection between classic macroscopic pa-620

rameters (e.g. diffusion, average speed), mesoscopic movement properties (e.g.621

directional persistence, flight distributions), target density and distribution (e.g.622

domain size, symmetric/asymmetric regimes), and search efficiency. We have623

used both analytical and numerical methods to investigate how movement pro-624

cesses operating at different scales affect search efficiency. The theoretical results625
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suggest that (i) the organism’s exploratory behaviour may involve two critical626

temporal phases (i.e. approach and detection), mostly associated with two ba-627

sic search tradeoffs (i.e. intensive-extensive, speed-perception) and that the (ii)628

organisms search behaviour should be inherently multi-scaled to balance out the629

intensive-extensive and the speed-perception tradeoff. Random search theory,630

however, should be considered just the basic groundwork for understanding bi-631

ological search phenomena. Other layers need to be added such as the effects632

of learning, memory, as well as biological details related to motor and cognitive633

constraints in organisms.634

We propose to consider foraging behaviour as a three-state, non-stationary635

process that drive foraging organisms from one state of certainty to another636

across a bridging state of uncertainty. Foraging uncertainties are about whether637

to stay (exploit) or to leave (relocate) a given area. Reduced uncertainty can638

only be achieved through active sampling behaviour, a transient motivational639

state aimed at gathering information and subject to elementary search trade-640

offs. Sensory errors and cognitive doubts (i.e. variation in the levels of con-641

fidence on prior expectations) also justify exploratory states transitioning be-642

tween relatively more informed states. Ideally, these transients should be brief643

but Bayesian updating (Olsson & Brown, 2006; van Gils, 2010; Calhoun et al.,644

2014; Hills et al., 2015) is also limited by the computing ability, the motor645

constraints, and the sampling strategies of the organisms.646

It has been hypothesized that information processing, modulated by some647

internal state (hunger, fear, etc), triggers behavioural modes and the transitions648

among them (Morales et al., 2010). In the most parsimonious (classic) view,649

foraging involves only two basic motivational states: (i) exploiting the regions650

with available target information, and (ii) relocating (leaving) to new exploitable651

areas. However, the combination of these two states can lead to multi-scale652

(complex) movement behaviour only if the landscape itself or the cues followed653

by the animal have multi-scale properties (Benhamou, 2007; Schick et al., 2008;654

Benhamou, 2014). If perfectly informed, such motivational states would gen-655
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erate movement modes closely matching the landscape or its associated cues656

(Figure 8). Clearly, this classic paradigm is not enough to explain the grad-657

ual behavioural transition from exploitation to relocation often observed and658

sometimes involving complex behaviour. We argue that there is the need to659

consider at least one more motivational state (and movement mode) between660

the informed states, which will be related to exploration under uncertainty.661

In this new paradigm, a richer behavioural repertoire of foraging movements662

would emerge from the transitions between three rather than two motivational663

states (Figure 8), corresponding to the exploitation, relocation, and exploration664

states. In the classic model, positive and negative target cues trigger the ex-665

ploitation and relocation states, respectively. Here we suggest that ambiguous666

or unreliable information can trigger active sampling and exploratory behaviour.667

Following the previous sections such an exploratory state would have evolved668

to deal with the elementary search tradeoffs, and would have resulted in multi-669

scale motion patterns that do not necessarily match any landscape feature (Fig-670

ure 8 and Kölzsch et al. (2015)). Figure 8 also illustrates the fact that one671

could observe multi-scale movement independently of the resource distribution672

(e.g., multi-scale interpatch motion) and without specifically following landscape673

cues or memory. In this regard, the question of how exploratory movement be-674

haviour may help organisms to gather key information about the environment675

and change prior expectations requires further research.676

6.1 Future perspectives677

The wide range of theoretical generative mechanisms of search (Reynolds, 2015)678

makes discovering the true underlying biological mechanisms difficult (Bar-679

tumeus, 2015). Moreover, the exact biological mechanisms may differ among680

organism according to their evolutionary history. In our view, the solution to681

better linking process to pattern in the study of foraging movement, and in par-682

ticular, understanding how foraging organisms decide whether to capitalize on683

exploratory or exploitative movement strategies (Vergassola et al., 2007; Hein684
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& McKinley, 2012) is twofold. From an empirical perspective, the field needs to685

move from trajectory data collection to hypothesis-driven experiments and com-686

parative analysis to evaluate search tradeoffs and important variations of scale687

across ecological contexts and species. From a modelling perspective, the field688

needs to move from statistical curve fitting and model selection (Colding et al.,689

2008; Smouse et al., 2010; Jansen et al., 2012; Reynolds, 2012, 2014) to exploring690

the underlying universality among apparently different models (Frank, 2014).691

Neither movement modelling discussions (Benhamou, 2007, 2014; Humphries692

& Sims, 2014) nor high-throughput movement data (Humphries et al., 2012;693

Raichlen et al., 2014) will be enough to disentangle pattern from process in an-694

imal foraging. Hypothesis-driven and large-scale manipulative experiments are695

required (Bartumeus, 2015).696

Experiments do not need to be sophisticated. The perceptual scales, the697

physiology, and the cognitive memory of an organism are not easy to control698

but they can be manipulated or quantified to some extent in the laboratory.699

Simple experimental setups with model organisms, for example, have been able700

to show multi-scale properties both in bare and resourced landscapes (de Jager701

et al., 2011; Bazazi et al., 2012; Salvador et al., 2014; de Jager et al., 2014;702

Kölzsch et al., 2015). In the future, the use of knock-out strains (e.g. C.elegans703

mutants) and better empirical designs to exploit classic comparative approaches704

of behavioural ecology (e.g. looking for gradients of information, motivational705

states, or search regimes) will help producing a more comprehensive view of706

foraging ecology, one including a behavioural response to uncertainty, which is707

needed to transition between informed states.708
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Box 1: Generalized Diffusion.1002

Diffusion can be intuitively described as the tendency for a group of particles1003

(driven by the random, irregular, and isotropic motion) to spread out in time,1004

and gradually occupy a larger area around their initial position (Okubo & Levin,1005

2001; Colding et al., 2008). For the case of CRWs, a model largely discussed in1006

the ecological and the animal movement literature (Turchin, 1998; Colding et al.,1007

2008; Okubo & Levin, 2001; Viswanathan et al., 2011; Méndez et al., 2014b), it1008

is possible to obtain D as a function of speed and turning behaviour in isotropic1009

conditions, that is, equiprobable orientation of the spreading particles (Patlak,1010

1953; Lovely & Dahlquist, 1975; Dusenbery, 2009):1011

D(v, α, ϕ(t)) =
v2

〈
t2
〉 [

1 +
(

2〈t〉2

〈t2〉 − 1
)

α
]

2d 〈t〉 (1− α)
(4)

where d is the space dimension, ϕ(t) represents the distribution of flight times,1012

so 〈t〉 and
〈
t2
〉
are the first two moments of that distribution and represent a1013

measure of the directional persistence time (average time between turns). The1014

parameter α = 〈cos θ〉 is the average angular correlation of an arbitrary distribu-1015

tion of turning angles θ; then α = 0 corresponds to the uniform distribution of1016

turning angles between 0 and 2π (see Supporting Information for a generalised1017

form of Eq. 4).1018

For the case in which consecutive flights show no directional correlations1019

(α = 0) and the persistence time is drawn from an exponential flight time dis-1020

tribution ϕcorr(t) = 〈t〉−1e−t/〈t〉 (so 〈t2〉 = 2〈t〉2 is satisfied) D in the expression1021

above simplifies to1022

Dcorr = D(v, 0, ϕcorr(t)) =
v2 〈t〉

d
. (5)

Since D has dimensions of an area over time, one can intuitively interpret it1023

as the area explored by the particle (that is, the searcher) per unit time. Rigor-1024

ous random-walk calculations show that indeed the area covered by a random1025

walker in two dimensions is proportional to D ∗ t, where t is the time (Yuste &1026

38



Acedo, 1999).1027

In the following we provide microscopic derivations of anomalous diffusion1028

coefficients involving two limiting cases discussed in the literature (Reynolds,1029

2012; Méndez et al., 2014b, e.g.) movement with two charactersitic scales or with1030

Lévy type of behaviour. For the simplest movement with only two characteristic1031

scales 〈t1〉 and 〈t2〉 whose corresponding weights are w and 1 − w one has1032

then ϕcomp(t) =
w

〈t1〉
e−t/〈t1〉 + (1−w)

〈t2〉
e−t/〈t2〉. The composite diffusion coefficient1033

computed from Eq. 4 has the form1034

Dcomp = D(v, 0, ϕcomp(t)) =
v2

(
w〈t1〉

2 + (1− w)〈t2〉
2
)

d (w〈t1〉+ (1 − w)〈t2〉)
. (6)

For a truncated Lévy flight characterised by a flight time distribution1035

ϕenh(t) =
µ

t−µ
mmin − t−µ

max

t−1−µ,

with µ positive. The enhanced diffusion coefficient reads (including all possible1036

values of µ):1037

Denh =







v2

2d

(
1−µ
2−µ

t2−µ
max−t2−µ

min

t1−µ
max−t1−µ

min

+ 2α
1−α

−µ
1−µ

t1−µ
max−t1−µ

min

t−µ
max−t−µ

min

)

µ 6= 1, µ 6= 2

v2

2d

(
1−µ
2−µ

t2−µ
max−t2−µ

min

t1−µ
max−t1−µ

min

+ 2αµ
1−α log tmax

tmin

)

µ = 1

v2

2d

[

(1− µ) log tmax

tmin
+ 2α

1−α
−µ
1−µ

t1−µ
max−t1−µ

min

t−µ
max−t−µ

min

]

µ = 2.

(7)
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Figure 1: Diagram showing elementary tradeoffs delimiting a search state and
informational space. The speed-perception tradeoff arises from the fact that
high speed relocations improve the spreading capacity but reduce perceptual
capabilities. The intensive-extensive tradeoff entails speed and turning and is
related with the key tension between encountering nearby targets (intensive
search mode) or being able to search more distant, and perhaps more prof-
itable, areas (extensive search mode). While searching, different informational
contexts force the decision-making on whether to stay (exploitative strategy) or
leave (relocative strategy), leading to area-restricted search (ARS) and ballis-
tic motion strategies respectively. Importantly, we suggest that changing from
exploitation to relocation may often require a long behavioural transient, rep-
resenting a much less informed exploratory state, where search tradeoffs govern
the movement strategy. In this search behavioural space, the path across the
diagonal (solid-line) looks more realistic and balanced in nature (both physi-
cally and biologically) than the paths crossing through the upper-left and the
lower-right corner (dashed-lines).
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Figure 2: Depiction of key temporal and spatial scales involved in the computa-
tion of mean-first detection times. Grey filled circles represent targets and the
smaller brown, filled circle represents the searcher. rt and rs are the size of the
target and the perceptual scale of the searcher, respectively. L here represents
the average distance between targets which can be associated to L in Eq. 3
and 2. We depict one single realization of the whole set of potential trajecto-
ries unfold by the searcher, and we show two relevant temporal phases, T1 and
T2, that can be associated to the different expectations of a searcher to get a
target. T1 is the mean time necessary to leave an empty area and approach
a target. T1 is a function of the spatial scale x0, which delimits the distance
(grey dashed-circle area in two dimensions) that the searchers need to cross to
reach the closest target, that is, the minimal distance required to initially spread
out from an empty area. T2 is the mean time needed to detect a target once
the searcher trajectories are arbitrarily close to any target such that an average
detection is possible.
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Figure 3: Mean First-Passage Time (MFPT) as a function of the diffusion co-
efficient for (a) asymmetric and (b) symmetric search conditions. Note that
depending on the microscopic type of movement (exponential, double exponen-
tial, or truncated Lévy) the same macroscopic diffusion coefficient results in
different MFPTs. For the asymmetric case, both enhanced (Denh) and compos-
ite (Denh) diffusion coefficients strongly decrease the MFPTs for some optimized
range of values. In the asymmetric case, in general, the larger the number of
movement scales involved in the diffusion coefficient the smaller the MFPT.
Nonetheless, a well-parameterized double exponential (i.e. model doubexp-2)
can mimic a truncated Lévy diffusion coefficient. For the symmetric case, the
larger the diffusion coefficient the smaller the MFPT. In this scenario, incorpo-
rating multiple-scales (e.g. Denh, Denh) is not beneficial at all.
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Figure 4: Mean First-Detection Time (MFDT) obtained as a function of the
diffusion coefficient (D) and speed for exponential (upper panel) and truncated-
Lévy (lower panel) distributions (in order to compute the effect of heavy-tailed
relocations). For each distribution we also look for: (i) asymmetric and sym-
metric initial search conditions (in the first case the searcher can start moving
from any point of the domain at random, while in the latter the searcher always
start from any point within a distance 2R to a target, where R = rt + rs is the
sum of the detection scales or radius of the target rt and the searcher rs, (ii)
different detection parameter values γ = 0, 0.1, 0.2, 0.5. The larger the γ the
smaller the probability of detection.
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Figure 5: Quantitative analysis of the worm Caenorhabditis elegans long-term
(90 minutes) search movement in a bare arena. Computation of the be-
havioural landscape based on a t-Stochastic Neighbouring Embedding (t-SNE)
analysis (see Supporting Information).(a) Heat map of t-SNE landscape show-
ing the emergence of three main domains (see Supporting Information) that
can be associated to three search states (E=exploitation, e=exploration, and
R=relocation). We also depict the dominant movement modes that charac-
terize each of the search states: area-restricted search, sampling, and ballistic,
respectively. Note, however, the complexity of the landscape and the presence
of a hierarchical set of modes in each of the three large domains identified.
(b,c,d) Heat maps of t-SNE space showing the values of the trajectory variables
used as input features in the analysis: (b) the straightness index S, (c) the net
displacement or effective velocity V , and (d) the mean travel velocity T .
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Figure 6: Quantitative analysis of the worm Caenorhabditis elegans long-term
(90 minutes) search movement in a bare arena. Computation of the transi-
tion probabilities and temporal dynamics of the 3 search states (i.e. exploita-
tion, exploration, and relocation). (a) The t-SNE landscape fully partitioned
and highlighting the three statistically significant large domains identified, i.e.
exploitation, exploration, and relocation (see Supporting Information). (b)
Markov model and transition probabilities among the three emerging states
(E=exploitation, e=exploration, and R=relocation) found in (a). (c) States’
prevalences (probability of being in a given state) through time. (d) Example
trajectories with the three states differentiated.
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Figure 7: Mean square displacement (MSD) behaviour of the three search states
found for C.elegans (see Figure 6). (a) Coarse-grained (logarithmic binning) be-
haviour of the MSD with time. Note the distinct long-term diffusive properties
for each state, scaling exponents ranging from subdiffusion (< 1) to superdiffu-
sion (> 1). (b) Highly-resolved behaviour of the MSD with time. Note the clear
departures from pure diffusive behaviour, in particular, the presence of plateaus
and small-to-large vertical fluctuations through time. Inset: Illustrative exam-
ples of trajectory segments showing the distinct looping behaviour observed in
each of the three states. The steering control of C.elegans explains both the
scaling exponents (a) and the strong departures from pure diffusion (b).
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Figure 8: Depiction of the classic and the new foraging paradigm discussed, with
two or three elementary motivational states (leading to three different movement
modes) respectively. A general cognitive system establishes information fluxes
and feedback with the external environment. The system measures information
through its sensors, stores, processes, and interprets the information (with some
internal modulation) to generate a positive, negative, or ambiguous reinforce-
ment, which in turn trigger different behavioural attitudes or modes, each of
them associated with a motor response. In the classic paradigm, the implicit
assumption is that reactive behaviour governs. As a consequence, we should
expect a perfect mapping between the movement of animals and the landscape
structure. In the new paradigm, the implicit assumption is that animals are
required to actively (and strategically) sample the environment, impairing a
perfect mapping between movement patterns and landscape features.
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