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Abstract

■ Recent work on the role of the ACC in cognition has focused on

choice difficulty, action value, risk avoidance, conflict resolution,

and the value of exerting control among other factors. A main un-

derlying question is what are the output signals of ACC, and relat-

edly, what is their effect on downstream cognitive processes? Here

wepropose amodel of howACC influences cognitive processing in

other brain regions that choose actions. The model builds on the

earlier Predicted Response Outcomemodel and suggests that ACC

learns to represent specifically the states in which the potential

costs or risks of an action are high, on both short and long time-

scales. It then uses those cost signals as a basis to bias decisions to

minimize losses whilemaximizing gains. Themodel simulates both

proactive and reactive control signals and accounts for a variety of

empirical findings regarding value-based decision-making. ■

INTRODUCTION

The ACC and surrounding medial pFC (mPFC) regions

have been the subject of interest and debate, given that

they are active in many tasks and also key to a number of

clinical disorders (Alexander & Brown, 2011). ACC has

been shown to be active in response to errors, conflict,

and the likelihood of an error among other effects

(Brown & Braver, 2005; Carter et al., 1998; Gehring,

Goss, Coles, Meyer, & Donchin, 1993; Gemba, Sasaki,

& Brooks, 1986). The role of ACC in decision-making

has more recently been a focus in the literature. The ear-

liest neuropsychological studies of ACC noted akinetic

mutism as a result of ACC damage (reviewed in Devinsky,

Morrell, & Vogt, 1995). Subjects typically lacked sensitiv-

ity to noxious stimuli and did not initiate movements or

speech. Damage to ACC in animals leads to a lack of will-

ingness to exert more effort to obtain a larger reward

(Walton et al., 2009), and in humans, damage to areas

including ACC can lead to failures of internally guided ac-

tion (Amiez, Sophie, Charles, Procyk, & Petrides, 2015).

Obsessive compulsive disorder prominently entails over-

activity of ACC (Fitzgerald et al., 2005). Patients with ob-

sessive compulsive disorder typically perceive risks and

dangers as disproportionately large, so that they take un-

necessarily effortful precautions to avoid perceived dan-

gers. A recent neurosurgery study provides a fascinating

insight to the role of ACC as providing the “will to perse-

vere.” Patients undergoing electrical stimulation around

dorsal ACC (Area 24) described a resulting sensation as

“a positive thing like…push harder, push harder, push

harder to try to get through this” (Parvizi, Rangarajan,

Shirer, Desai, & Greicius, 2013).

In humans, ACC activity has been associated with an in-

clination to search for better rewards (Kolling, Behrens,

Mars, & Rushworth, 2012), to avoid risk (Fukunaga, Brown,

& Bogg, 2012; Krawitz, Fukunaga, & Brown, 2010; Brown &

Braver, 2007, 2008), and to make more normative deci-

sions (Paulus & Frank, 2006). These findings collectively

suggest that ACC provides a motivational signal, controlling

decisions to pursue more rewarding options and avoid

losses, even when more effort is required (Shenhav,

Botvinick, & Cohen, 2013; Croxson, Walton, O’Reilly,

Behrens, & Rushworth, 2009; Walton et al., 2009). This im-

petus provided to effortful behavior may act at the level of

energizing particular overall strategies rather than individ-

ual actions (Holroyd &Mcclure, 2015). Still, debate has per-

sisted over what information is actually represented in

ACC, with various proposals of conflict (Botvinick, Braver,

Barch, Carter, & Cohen, 2001), error likelihood (Brown &

Braver, 2005; Holroyd, Yeung, Coles, & Cohen, 2005),

surprise (Ferdinand, Mecklinger, Kray, & Gehring, 2012;

Wessel, Danielmeier, Morton, & Ullsperger, 2012;

Alexander & Brown, 2011), difficulty (Shenhav, Straccia,

Cohen, & Botvinick, 2014; Shenhav et al., 2013), and the

value of decision options (Shenhav et al., 2014; Kolling

et al., 2012; Rushworth, Kolling, Sallet, & Mars, 2012;

Hayden, Pearson, & Platt, 2011; Kennerley, Behrens, &

Wallis, 2011; Walton et al., 2009; Rudebeck et al., 2008)

and decision costs (Skvortsova, Palminteri, & Pessiglione,

2014). Despite a multiplication of empirical findings, the

mechanisms by which ACC controls decision-making1Indiana University, 2Ghent University
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Figure 1. The PRO-control

model. (A) Overview of

PRO-control model, showing

proactive and reactive

pathways. (B) Detailed view

of new model. It consists of

the PRO model (Alexander &

Brown, 2011) but with three

modifications highlighted as

purple, orange, and red

pathways. First, the Controller

R-O conjunctions (blue box)

are trained to respond to

stimuli in proportion θ

(purple arrow) to how much

the value of the current event

falls below the expected value.

In the original model, the R-O

conjunctions were trained to

reflect the probability of the

corresponding outcome.

Second, the proactive control

signal from the Controller

(blue box) to the response

units (green box) now include

learned but weak excitatory

signals (orange arrows), in

addition to the learned

inhibitory control signals as

in the original PRO model.

The excitatory signals allow

the controller to weakly

activate specific responses.

Third, the negative surprise

signals ωN now provide a reactive

control signal (red arrows) that

rapidly and temporarily inhibits a

response that leads to an

undesirable outcome. These

three modifications preserve the

ability of the PRO model to

simulate a wide range of ACC

effects as shown previously

(Alexander & Brown, 2011) and

now add the ability to simulate

the role of ACC in value-based

decision making. (C) Graphical

depiction of a representative

time course of activities and

synaptic strengths in the new

mechanisms. For predicting

bad outcomes (left column),

greater θ representing

stronger avoidance learning

leads to corresponding

stronger increases in outcome

predictions O by strengthening

the weights WS. For proactively

driving actions (middle column),

stimuli S excite or inhibit

responses C. For reactively

suppressing actions (right

column), specific negative

surprise representations ωN

learn to generate a short

acting specific activation

(or suppression) Wω when they

precede a rewarding (or aversive) outcome.
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remain unclear, in part because there is presently no single

computational model that can account for already ob-

served effects. Without such a comprehensive model, addi-

tional empirical results may be less likely to resolve the

issue efficiently (Brown, 2014).

In this article, we propose a computational neural

model, the PRO-control model (Figure 1), aimed at uni-

fying a body of empirical findings about how ACC influ-

ences decisions. Although there are many existing

computational models (Alexander & Brown, 2010, 2011;

Brown & Braver, 2005; Botvinick et al., 2001), we begin

with the Predicted Response Outcome (PRO) model. The

PRO model has been shown to account for a wide range

of effects found within ACC, from fMRI, ERP, and monkey

neurophysiology (Alexander & Brown, 2011). In particu-

lar, the PRO model can simulate effects of conflict

(Botvinick et al., 2001), error likelihood (Brown & Braver,

2005; Holroyd et al., 2005), surprise (Garofalo, Maier, &

di Pellegrino, 2014; Ferdinand et al., 2012; Wessel et al.,

2012; Alexander & Brown, 2011; Jessup, Busemeyer, &

Brown, 2010; Oliveira, McDonald, & Goodman, 2007),

ERP effects ( Yeung & Nieuwenhuis, 2009; Holroyd

et al., 2005; Holroyd & Coles, 2002), and individual differ-

ences in risk sensitivity (Brown & Braver, 2007). Recent

extensions to the PRO model suggest a more general role

for ACC in predicting salient events (Alexander & Brown,

2014) as well as how ACC may interact with regions out-

side the cingulate involved in cognitive control such as

dorsolateral pFC (Alexander & Brown, 2015). Table 1 pro-

vides a nonexhaustive summary of effects simulated by

the PRO model.

Nevertheless, the PRO model as published did not ad-

dress in as much depth the question of how ACC activity

influences decision-making, beyond providing learned in-

hibitory control over actions and modulating the learning

rate of such control. In what follows, we present a mod-

ified version of the PRO model, which we call the PRO-

control model. The new model retains the PRO model’s

ability to simulate a wide range of effects within ACC, and

it now adds the ability to simulate a number of key effects

Table 1. Empirical Effects Simulated by the PRO Model

Effect Reference Method Mechanism

Informative vs. uninformative cues Aarts et al., 2008 fMRI Negative surprise

Reward salience in substance use Alexander et al., 2015 fMRI Outcome prediction

Reward prediction Amador et al., 2000 Single-unit monkey Outcome prediction

Monitoring others’ outcomes Apps et al., 2012 fMRI Negative surprise

Environmental volatility Behrens et al., 2007 fMRI Negative surprise

Global vs. local conflict Blais & Bunge, 2010 fMRI Outcome prediction

Conflict Botvinick et al., 2001 fMRI Outcome prediction

Error likelihood Brown & Braver, 2005 fMRI Outcome prediction

Unexpected error Brown & Braver, 2005 fMRI Negative surprise

Multiple responses Brown, 2009 fMRI Negative surprise

Attention signaling Bryden et al., 2011 Single-unit rat Negative surprise

Trial frequency Carter et al., 2000 fMRI Outcome prediction

Mismatch negativity Crottaz-Herbette & Menon, 2006 EEG/fMRI Negative surprise

Feedback delay Forster & Brown, 2011 fMRI Negative surprise

Surprising absence of pain Garofalo et al., 2014 EEG Negative surprise

Error effect Gehring et al., 1993 EEG Negative surprise

Time on task Grinband et al., 2011 EEG Negative surprise

Bayesian surprise Ide et al., 2013 fMRI Negative surprise

Multiple outcome predictions Jahn et al., 2014 fMRI Outcome prediction

Unexpected correct Jessup et al., 2010 fMRI Negative surprise

Stimulus prediction Koyama et al., 2001 Single-unit monkey Outcome prediction

Changes in predicted reward Sallet et al., 2007 Single-unit monkey Negative surprise

Speed–accuracy tradeoff Yeung & Nieuwenhuis, 2009 EEG Outcome prediction
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by which ACC activity influences value-based decision-

making. The ability to simulate a wider range of data

derives from two key mechanisms of the new model,

namely one for proactive control and one for reactive

control (Figure 1A).

The first new mechanism of the PRO-control model af-

fords a proactive control signal (Braver, Gray, & Burgess,

2007). The proactive component begins with ACC learn-

ing to signal situations in which the responses and out-

comes are likely to be aversive, which entails lower

overall value (Figure 1A). This occurs in various situations

involving a probability of risk, costs, loss, or effort ex-

pended (Fukunaga et al., 2012; Brown & Braver, 2005,

2007). As these representations are learned, a sub-

sequent pathway provides a way for these aversive pre-

dictions to influence decisions, guiding responses to

minimize the possibility of an aversive outcome while

maximizing rewards.

The second principle of the PRO-control model is that

ACC provides reactive control. Specifically, prediction er-

rors indicate a surprising outcome, and these in turn pro-

vide a basis for driving corrective actions by suppressing

the action that led to the prediction error. This is not to

say that prediction errors always mean that something

bad has happened. Rather, only a subset of prediction er-

rors indicate that something worse than expected has oc-

curred or, more subtly, that some desirable outcome has

failed to occur. The subsets of both “bad” and “good” sur-

prise signals form the basis for reactively suppressing the

actions that just led to the undesirable outcome while re-

actively increasing the probability of actions that recently

led to rewarding outcomes. These signals act on a time-

scale of a few trials, considerably shorter than some

longer-lasting reinforcement learning effects (Schultz,

Dayan, & Montague, 1997; Barto, Sutton, & Anderson,

1983). Collectively, these proactive and reactive control

signals provide both rapid and lasting control over deci-

sions, so that decisions maximize reward while minimiz-

ing unacceptable levels of aversive outcomes. In what

follows, we describe how these mechanisms work in

greater detail.

METHODS

The Original PRO Model

The PRO-control model builds on the earlier PRO model

(Alexander & Brown, 2011), which consisted of several

components—an Actor, a Critic, and a Controller

(Figure 1B). The Actor implements stimulus response

(S-R) mapping. The Controller learns to predict conjunc-

tions of responses and outcomes (hence, the model

name PRO for predictions of responses and outcomes)

on the basis of incoming stimuli. These predicted R-O

conjunctions form the basis for a control signal, which

is trained to inhibit responses that lead to undesirable

outcomes. The Critic resembles a temporal difference

model, but with some important differences as described

previously (Alexander & Brown, 2011). The Critic’s Pre-

diction layer forms timed predictions of R-O conjunc-

tions, and the Critic’s Prediction Error layer compares

the predicted outcomes against the actual outcomes.

The prediction errors are then split into two compo-

nents: The ωP component is the positive rectified predic-

tion error: It is greater than zero when an outcome was

not predicted to occur, but it occurred anyway. The ωP

signal is referred to as positive surprise. Actual outcomes

with a lower prior probability of occurrence yield greater

ω
P. The ωN component is the negative rectified predic-

tion error: It is greater than zero when an outcome was

predicted to occur, but it failed to occur. Outcomes with

a larger prior probability of occurrence (and which nev-

ertheless fail to occur) yield a larger ωN signal. It is impor-

tant to note that positive surprise ωP refers to a surprising

occurrence, whereas negative surprise ωN refers to sur-

prise by omission. Thus positive and negative surprises

are independent of valence—each can be either affectively

good or bad. The ω
N (or negative surprise) signal is

crucial—in the PRO model simulations, it simulated the

vast majority of empirical effects found in ACC (Alexander

& Brown, 2011). In addition, negative surprise provides a

useful signal—it is relatively easy to detect a surprising

occurrence, but it is harder to detect a surprising non-

occurrence, for example, an expected payment that fails

to arrive.

The New PRO-control Model

The new model consists of the PRO model but with three

changes, highlighted as red pathways in Figure 1B. A de-

scription of the original PRO model is found in Alexander

and Brown (2011). All simulation parameters used here

are the same as in the original PRO model.

Predicting Bad Outcomes

First, the Controller R-O representations are now trained

to represent the predicted R-O conjunction in proportion

to how bad such an outcome would be, as in the error

likelihood model (Brown & Braver, 2005). Here bad re-

fers to a value below the expected value of outcomes

over a longer term (Kolling et al., 2012; Charnov,

1976). In the original PRO model, the Controller R-O con-

junction activities simply represented the probability of

the R-O conjunction occurring. Now, the Controller R-O

conjunction activity reflects approximately the product of

how likely an R-O conjunction occurrence is and how bad

such an occurrence would be (in terms of lost resources,

cost, effort, etc.) relative to a baseline, for example, the

average reward. This in turn means that the Controller

R-O representations will be active in situations in which

bad outcomes are likely to occur. With such a basis, it is

possible to detect situations with potentially costly or
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undesirable outcomes. The next change to the PRO

model leverages this representation.

The modification is implemented (Figure 1C, left) by

changing Equation 4 of Alexander and Brown (2011) to

insert the value θ as a modulator on the learning law:

W S
ij; tþ1 ¼ W S

ij;t þ Ai; t θOi; t − Si; t
� �

GtDj (1)

where θ is a parameter that represents how subjectively

bad a given outcome is, either because of individual dif-

ferences in sensitivity to punishment (Brown & Braver,

2007, 2008; see Simulation 2), or because the outcome

has a more negative value relative to the expected value

(see Simulation 1), or some combination of those factors.

The variable O represents the active R-O representation

to be learned by the controller, and the weights W S repre-

sent the weights from the Stimuli to the Controller R-O

conjunctions. The remaining terms of Equation 1 are de-

scribed in Equation 4 of the original PROmodel (Alexander

& Brown, 2011).

Proactively Driving Good Actions

In the original PRO model, the Controller R-O conjunc-

tions could be trained to inhibit responses that would

lead to undesirable outcomes. This can simulate avoid-

ance behavior and is consistent with the known anatomy

of ACC to lateral pFC connections, which are mostly but

not exclusively inhibitory (Medalla & Barbas, 2009). In

the PRO-control model, the projections from the Con-

troller R-O conjunction units to the responses can now

include excitatory connections as well. This means that

representations of costly or undesirable outcomes now

can specifically activate more appropriate actions, not

just suppress inappropriate ones. This captures the spirit

of the patient report that ACC stimulation led to a “pos-

itive” feeling of “push[ing] harder to try to get through

this” (Parvizi et al., 2013). In the PRO-control model,

the change is implemented as follows. In the original

PRO model, in Equation 16 of Alexander and Brown

(2011), the inhibitory weights W F were constrained to

be not less than zero. In the new model, the inhibitory

weights are allowed to be less than zero, which can lead

to net excitation of the response units (Figure 1C,

middle). Any net excitation is added to Equation 11 of

Alexander and Brown (2011), where it is scaled along

with excitatory S-R inputs, so that the original Equation

12 becomes:

Ei; t ¼ ρ
X

j
DjW

C
ij þ

X

k
−SkW

F
ik

� �þ
þ

X

j
−Wω

ij; t

h i

þ
� �

(2)

where the WF term provides proactive control and the

Wω term provides reactive control (described below).

The [x]+ notation rectifies the argument to max(0, x).

Equation 13 of Alexander and Brown (2011) is likewise

modified to rectify the proactive inhibitory control input

and reactive control signals Wω, described in Equation 4

below:

Ii;t ¼ ψ
X

j
CjW

I
ij

� 	

þ Φ
X

k
SkW

F
ik

� �þ

þ

X

j
Wω

ij;t

h i

þ
� �

(3)

where all of the terms are described in Equation 13 of

Alexander and Brown (2011). Also, the weights W F are

normalized such that the sum of the absolute values of

the weights W F does not exceed the number of R-O con-

junctions represented. The control signals from the neg-

ative surprise units to the response units via weights W ω

(described below) are assumed to be driven by an activa-

tion of unity, which persists briefly, that is, as long as the

short-term weights W ω are greater than zero. This is a

simplifying assumption for computational convenience,

though it is realistic, provided that the negative surprise

unit activities do not decay too quickly. There is evidence

of sustained activity in monkey single units that may rep-

resent negative surprise (Shima & Tanji, 1998).

Reactively Suppressing Bad Actions

In the original PRO model, the negative surprise ω
N had

only a small and indirect influence on behavior—it mod-

ulated the Controller R-O learning rate. Although this al-

lowed the model to capture variable learning rate effects

(Behrens, Woolrich, Walton, & Rushworth, 2007), it left

unanswered the question of why such a rich representa-

tion of specific negative surprise exists if only to be con-

densed into a scalar that modulates the learning rate. In

the PRO-control model, there is a new and richer projec-

tion from the negative surprise signals to the response

units. When a bad outcome occurs, these projections

are specifically and rapidly strengthened to inhibit the of-

fending response (Figure 1C, right). The inhibitory

weights (and the active ω
N signal) both decay relatively

quickly over the course of the next few trials, but in

the meantime, they rapidly and powerfully suppress the

offending action. Specifically, the new connection

weights W ω from negative surprise signal j to action rep-

resentation i are

W ω
ij; tþ1 ¼ 0:25W ω

ij; t þ YtTi; tω
N
j; t (4)

where T is 1 if action i was executed and 0 otherwise, and

Y is a valence signal corresponding to correct or error

outcomes, as described in Equation 14 of Alexander

and Brown (2011). Individual elements of the weights

W ω are constrained to the range [−1, 1].

The importance of these three changes is illustrated in

the following simulations.
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Simulation 1. ACC and Foraging Value

A recent article proposed that ACC signals the value of

abandoning a current known resource to forage for a

potentially more valuable resource (Kolling et al.,

2012). In that article, the authors showed that, as the

value of foraging for new resources increased, ACC be-

came more active, and it was more active when subjects

chose to actually forage instead of engaging with and ex-

ploiting the current known resources, similar to Donoso,

Collins, and Koechlin (2014).

A more recent article (Shenhav et al., 2014) showed

that as the value of foraging increases beyond the indif-

ference point, so that foraging is an obviously better de-

cision, then the activity of ACC decreases. This finding

suggests that ACC is not simply signaling the value of for-

aging, but rather ACC activity is greatest when the deci-

sion is most difficult, in the sense that the subject is

closest to their indifference point. In support of this,

the authors also found that the RTs were greatest near

the indifference point. Thus, the authors argue that

ACC signals the difficulty of the choice or perhaps the val-

ue of exerting cognitive control over the choice, although

the authors do not exclude other models that may

account for their effects (Shenhav et al., 2014).

To investigate this, we simulated the foraging task of

Kolling et al. (2012) and Shenhav et al. (2014). Briefly,

the model was presented with a choice between engag-

ing with two possible tokens of known value (one of

which will subsequently be won) versus foraging for a

new set of two possible tokens from among a set of six

existing tokens. The choice to engage will lead to an im-

mediate payoff, whereas the choice to forage will lead to

a potentially better set of options but no immediate pay-

off. Furthermore, there is a small value cost associated

with foraging.

The PRO-control model carries out the task as follows.

First, the average value of the engage options is calcu-

lated. Next, the average value of the forage options is cal-

culated. Finally, the relative value of foraging is calculated

as the degree by which the foraging value exceeds the

engage value, less any associated cost of foraging. The

foraging value may be negative if the average value of

the engage options exceeds the average value of the for-

age options. There are 10 stimulus input representations

to the PRO-control model for this simulation. The relative

foraging value on a given trial is binned into 1 of 10 equally

spaced bins, and a stimulus input corresponding to the

currently binned trial is activated as input to the model.

The S-R weights are fixed to favor the engage option re-

gardless of the stimulus bin, so that, by default, the model

will choose to engage rather than forage for most trials.

The model is given a set of trials such that the distribution

of relative foraging values is uniform across the ten bins.

As the model performs the task, a choice to engage is

deemed correct if the relative value of foraging is less

than zero, but a choice to engage is deemed an error

otherwise. Likewise, a choice to forage is deemed correct

if the average of the newly acquired engage values is

greater than the current engage values (less the foraging

cost), and otherwise the choice to forage is deemed an

error.

Errors have the main effect of strengthening the

weights from stimuli to Controller R-O conjunctions (Fig-

ure 1), in proportion to how bad the choice was, that is,

how far below (or above) zero was the relative value of

foraging. This could be accounted for as a dopamine

pause (Ljungberg, Apicella, & Schultz, 1992), which

might lead to stronger weights by modulating D2 recep-

tors. Indeed, both D2 receptor blockade and ACC lesions

lead to reduced willingness to expend effort to achieve a

greater reward (Walton et al., 2009). In the end, more

obviously poor choices lead to stronger weights by which

the current stimuli activate the Controller R-O conjunc-

tions. In this way, the Controller learns to represent pre-

dicted R-O conjunctions in proportion to how likely they

are to coincide with poor outcomes and also with how

poor those outcomes would be (Brown & Braver, 2005,

2007).

The learned Controller R-O conjunctions in turn

formed a basis for proactive control signals. When an er-

ror occurred, the activated Controller R-O conjunctions

were trained to inhibit the just activated response unit,

so that, in the future, the erroneous response would be

less likely to be repeated under similar circumstances.

Conversely, when a correct outcome occurred, the Con-

troller R-O conjunctions were trained to weakly excite the

just activated response unit. Thus, the controller exerts a

“push–pull” effect on the response representations, inhi-

biting the wrong responses and weakly exciting the

correct responses. The key is that the controller repre-

sentations are only active in situations in which errors

are likely to occur. (There is also a short-term, reactive

control mechanism in this simulation, but its function is

minimal here, and a fuller exposition of the reactive

control mechanism is provided in Simulation 3.)

Simulation 1 Results—Behavior

The results of the simulation are shown in Figure 2, jux-

taposed with earlier results (Kolling, Behrens, Wittmann,

& Rushworth, 2016; Shenhav, Straccia, Botvinick, &

Cohen, 2016; Shenhav et al., 2014; Kolling et al., 2012).

Behaviorally, the model showed a preponderance of

choices with negative relative foraging value, despite

sampling the initial relative foraging values from a uni-

form distribution. This is consistent with the earlier em-

pirical results and is due to the fact that high relative

foraging value trials tended to lead to more foraging,

which produced another round of relative foraging

values; this continues until a trial occurs with a negative

relative foraging value. Also, the model showed a bias

toward engaging (Figure 2A), consistent with animal be-

havior following ACC lesions (Walton, Bannerman, &
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Rushworth, 2002). This was implemented in the model

by setting the S-R weights to be uniformly biased towards

engaging, and so a certain number of incorrect “engage”

choices had to be made to kick-start the learning of R-O

conjunctions in the controller. The choice of a uniform

bias toward engaging is a simplifying assumption here

and does not address possible reinforcement learning

mechanisms elsewhere that might counteract the engage

bias (Walton et al., 2009). We then carried out a logistic

regression of the forage versus engage choice probability

as a function of average engage value, average forage

value, and forage costs. As with the human data (Kolling

Figure 2. PRO-control model simulations of foraging behavior. The PRO-control model was simulated on Experiment 2 of Shenhav et al. (2014). All

PRO model parameters are taken from the flanker task simulation of Alexander and Brown (2011). Relative foraging values were discretized into

10 stimulus bins, one of which was active on any given trial. Foraging costs were included in the total relative foraging value. Stimulus–response

weights were fixed at 0.6 for input to the foraging response and 1.0 for input to the engage response, which biased the model toward engage

responses. The model had two response units, one indicating a forage response and the other indicating an engage response. The second stage of

the decision, that is, between the two engage options, was not modeled. Feedback regarding the actual response was given to the PRO model

immediately following a response. The results shown reflect 1000 simulated trials of the PRO model. (A) The PRO model simulates the choice

probability with fits comparable to the drift-diffusion model. Of note, the model shows a bias toward engaging. (B) The PRO model shows RT as

greatest near the indifference point, due to maximal competition between forage and engage responses which slows RT. (C) In agreement with

human behavioral data, the model is more likely to choose foraging when the relative value of foraging is higher. It is less likely to choose to forage

when the value of engaging is higher or the costs of foraging are higher.
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et al., 2012), the model was more likely to forage when

the average forage value was higher, but less likely to for-

age when the average engage value was higher or when

the cost of foraging was higher (Figure 2C).

Simulation 1 Results—Neural Activity

Figure 3 shows the simulated neural activity in the model

as a function of relative foraging value. It is essential to

note that there are two parts of the PRO-control model

shown here. Figure 3A shows the negative surprise

(summed ωN) generated by the model. This signal is max-

imal near the indifference point, that is, when foraging

and engaging are equiprobable. The activity is greatest

near the indifference point because whenever one option

is chosen, the other option was expected with 50% prob-

ability, but it failed to occur, leading to a negative sur-

prise signal. In contrast, when one option is more

likely, it is in fact chosen more often. Furthermore, the

choice is less surprising, all of which leads to a lower

Figure 3. PRO-control model simulations of foraging-related ACC activity. (A) Negative surprise (measured as the sum of ωN in the 2 sec following a

response) is maximal near the indifference point, in agreement with fMRI results from Shenhav et al. (2014). (B) The model ACC Controller

unit shows activity that correlates strongly and positively with the relative value of foraging. Of note, control activity decreases at the highest relative

foraging values, there are fewer surprising engage choices to drive learning of the control signal. (C) This correlation occurs whether the

ultimate choice is foraging or engaging, in agreement with Kolling et al. (2012). (D) The model activation (summed across proactive controller

and negative surprise activity) correlates with relative foraging value early in the trial, but it correlates with difficulty later in the trial.
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average negative surprise signal. The net result is an in-

verted-U function of activity versus relative foraging

value, as observed by Shenhav et al. (2014). This simula-

tion result suggests that ACC activity observed by Shenhav

et al. (2014) may reflect negative surprise regarding the

choice as a function of relative foraging value.

Kolling et al. (2012) suggest that ACC activity signals

the relative value of foraging, such that greater relative

foraging value will correlate with greater ACC activity.

Shenhav et al. (2014, 2016) find only the inverted-U pat-

tern of ACC activity (Figure 3A) and argue against an in-

terpretation in terms of foraging value. We propose here

that both the inverted U (i.e., negative surprise) and rel-

ative foraging value signals (i.e., proactive control) may

coexist as distinct signals within ACC. Figure 3B shows

the model Controller R-O conjunction activity as a func-

tion of relative foraging value. Of note, the activity shows

a strong positive correlation with foraging value. This is

because choices to engage are increasingly “bad” as the

relative value of foraging is higher. This leads to greater

learned activation of the Controller R-O conjunctions at

higher relative foraging values. In turn, the higher Con-

troller activity leads to a proportionally increased proba-

bility of foraging, as seen in Figure 2A. Thus, the model

Controller signals the relative value of foraging, and the

model Critic signals the negative surprise associated with

the choice.

It is notable also that, in Figure 3B, the Controller R-O

conjunction activity shows a slight drop-off of activity at

the highest relative foraging value conditions, despite the

overall positive correlation of activity and foraging value.

This inverted-U shape results from the learning law

(Equation 1), which is a product of both the magnitude

of the error and the probability of the error. This trains

proactive control representations more strongly for

larger errors (e.g., choosing to engage despite a larger

relative foraging value), but the learning effect is weaker

overall at the highest relative foraging values, because

then the model rarely makes an error. Additional simula-

tions show that this inverted-U effect remains even when

RTs are held artificially uniform in the model, so it is not

due to correlations with RT as in Figure 2B (Grinband

et al., 2011), nor is it due to differences in trial frequency,

because the relative foraging values are uniformly distrib-

uted across new trials. It is also not due to changes in the

learning rate as a function of surprise (Equation 5 of

Alexander & Brown, 2011). This drop-off effect may partly

account for why it has been difficult to disentangle the

relative foraging value correlate from the difficulty corre-

late in some studies (Shenhav et al., 2014, 2016).

The model also predicts that relative foraging value

and difficulty signals will be seen at different times in a

given trial. Figure 3D begins with the model activation

summed across the model Controller R-O conjunction ac-

tivity and the negative surprise activity at each time point

in a trial. This summed activity is regressed against rela-

tive foraging value and difficulty (and also RT as a

nuisance regressor). Figure 3D shows that the model

activity correlates with relative foraging value early in

the trial, as the controller generates proactive control sig-

nals. Later in the trial, the correlation with difficulty in-

creases, as the model generates a response and signals

negative surprise. In this way, signals that correlate with

relative foraging value and difficulty can be dissociated in

time by the model. This agrees with recent findings in

Figure 2A and B of an imaging study of essentially the

same task (Kolling et al., 2016).

Simulation 1 Results—Lesions

To explore the role of the Controller on decisions, we

virtually lesioned the Controller R-O conjunction units

by setting their activities to always be zero. The result

was that subjects chose to forage only about 10% of

the time, regardless of the relative value of foraging. This

is in agreement with the reduced motivation to expend

effort to obtain larger rewards, as observed in rats

(Walton et al., 2002, 2009).

Simulation 2. ACC and Risk Avoidance

In Simulation 1, the model Controller is shown to learn

and signal when potentially undesirable outcomes are

likely to occur, in proportion to both how likely the

bad outcome is and how bad it would be. In turn, these

representations provide a basis for a control signal that

effectively biases against choices that would lead to such

bad outcomes. This constitutes a kind of risk avoidance

circuit. ACC has been suggested as a region that drives

risk avoidance (Fukunaga et al., 2012; Krawitz et al.,

2010; Brown & Braver, 2005, 2007, 2008) as a comple-

mentary function to vmPFC (Shenhav et al., 2016;

Fukunaga et al., 2012), but it has until now been unclear

how the mechanisms of ACC might drive risk avoidance.

To explore how the new model might drive risk avoid-

ance, we simulated a simple task in which a single stim-

ulus can drive two responses. One response, the “safe”

response, has smaller S-R weights and thus a lower de-

fault probability of being chosen. Still, it yields a correct

outcome 100% of the time. The other response, the “risky”

response, is more likely to be chosen by default, but it

yields a correct outcome only 50% of the time. The

maximum possible weight from stimuli to Controller R-O

conjunctions is defined by the “Aversive R-O amplification”

parameter (θ). Larger values of θ lead to larger activations of

Controller R-O conjunctions that are associated with errors.

We parametrically manipulated θ and evaluated the model

for each value.

Simulation 2 Results

The results are shown in Figure 4. As expected, Figure 4A

shows that greater values of θ are associated with a reduced

probability of choosing the risky option, although there is
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little to no effect on RT (Figure 4B). When θ is larger, each
error leads to stronger learning signals in the controller
(Equation 1), which leads to stronger inhibition of the risk-
ier response that led to an error (Figure 4A). Figure 4C

shows that, as θ increases, the negative surprise associated
with choosing the safe option decreases, because the safe
option is chosen more frequently. The net result is that
with higher risk avoidance, the model negative surprise

Figure 4. Simulations of risk avoidance. The PRO-control model was simulated on a 2AFC task with a “risky” option that provided a win outcome

only 50% of the time and a “safe” option that provided a win 100% of the time. There was one stimulus, a cue to make a response. The S-R

weights were adjusted so that in the absence of a control signal, the model would choose the risky option most of the time. The maximum possible

weights from the stimulus to the Controller R-O conjunctions (ρ) were manipulated parametrically. (A) Greater values of ρ led to stronger

learned control signals as choosing the risky option led to poor outcomes, which in turn trained the Controller to become more active and suppress

the “risky” response associated with the poor outcomes. (B) RT was little changed by changes in risk avoidance. (C) Greater learning of poor

outcomes led to a greater difference in negative surprise response to risky versus safe choices. Essentially, the choice of the risky option became less

frequent and therefore more surprising when it did happen. (D) The sum of the negative surprise and the Controller activity was stronger as

ρ increased, and it was slightly stronger when the risky option was chosen. (E) Greater model ACC risk sensitivity correlates with reduced probability

of choosing the riskier option. Each data point represents a unique value of θ, corresponding to varying individual differences in risk

avoidance. Activation is derived as the difference of the Risk minus Safe control signal in D, and the probability of risky choice is derived from A.

(F) Empirical results consistent with model properties in E. Shown is a neuroimaging signal derived from the dorsal ACC in humans (adapted

with permission from Brown & Braver, 2007). Each data point represents a subject. The horizontal axis represents increasing risk taking, and the

vertical axis represents the dorsal ACC fMRI bold contrast of higher minus lower error likelihood.

Brown and Alexander 1665



signal shows a stronger activity contrast of risky minus safe.
This agrees with a number of findings from neuroimaging

(Fukunaga et al., 2012; Krawitz et al., 2010; Brown &

Braver, 2005, 2007, 2008), in which risky option choices

entail greater ACC activity, especially in those subjects

who are more risk averse.

Simulation 3. ACC and Reactive Control

ACC has been cast as implementing reactive control

(Braver et al., 2007). The distinction between proactive

and reactive control is that proactive control implements

control over decision-making before an error occurs (in

anticipation that more control is needed to avoid an

error). On the other hand, reactive control implements

control after an error has been made to prevent further

errors.

The PRO-control model builds on the PRO model by

adding a direct reactive control signal from the negative

surprise units to the response layer (Figure 1). Thus,

when a rewarding outcome does not occur, the negative

surprise signal indicates the omission of the expected

outcome. In turn, the inhibitory connection from the ac-

tive negative surprise unit to the active response unit is

strengthened and provides a short-term inhibition of the

response that persists over the next few trials. This

causes the model to rapidly switch away from responses

that lead to poor outcomes. To investigate this function,

we used a simple 2AFC task in which the correct,

rewarded response stays the same for between 5 and

10 trials. Then without warning, the correct response

changes (with probability p = .3 per trial after five trials),

and the previously correct response now yields reward.

The model must detect the changed contingency from

the absence of expected reward and then switch tasks ac-

cordingly. This is substantially similar to a task that has

been shown to elicit ACC activity in monkeys (Kennerley,

Walton, Behrens, Buckley, & Rushworth, 2006; Shima &

Tanji, 1998) and humans (Bush et al., 2002).

Simulation 3 Results

The model was able to perform the task with well over

chance accuracy, switching rapidly and maintaining the

new response set until another switch occurred (Fig-

ure 5). Still, it is possible that the Controller R-O conjunc-

tions were rapidly learning to suppress the inappropriate

response, so that the reactive control signal from negative

surprise would be unnecessary. To test whether the

reactive control pathway was necessary for performing

Figure 5. Simulation of how reduced reward leads to switching. In this 2AFC task, the rewarded response is the same for at least five trials, and then

it switches with p = .3. Once a switch occurs, another five trials must elapse before another switch can occur. Left: In the model, reduced

reward leads to a negative surprise signal, indicating that an expected reward did not occur. This in turn rapidly suppresses the just-executed

response and maintains the suppression for the next few trials. When the reactive control signal from the negative surprise unit is lesioned, then the

model is unable to adapt rapidly to changing contingencies, and the performance is closer to chance. Right: Behavioral data from monkeys

showing impaired switching following ACC sulcus lesions. Adapted with permission from Kennerley et al. (2006).
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the task, we virtually lesioned the reactive control path-

way by setting all of the weights in this pathway to zero.

Figure 5 shows that, in the lesioned case, the model per-

forms poorly compared with the intact model, with weak-

er maintenance of the new task over several trials. Overall,

this demonstrates that negative surprise is in principle

sufficient to drive reactive control, such that once nega-

tive surprise exceeds a certain level of activity, the model

switches away from its current set. This is consistent with

findings from monkey neurophysiology showing that

animals switch their strategy when certain ACC cell ac-

tivities exceed a fixed threshold (Hayden et al., 2011).

Simulation 4: Hot-hand Bias and

Post-correct Speeding

In the context of value-based decision-making, it is gen-

erally assumed that a behaving animal will select behav-

iors that maximize the frequency and magnitude of

reward while minimizing aversive outcomes. Given this,

it is ambiguous whether ACC signals related to reactive

control (i.e., those generated following feedback) during

value-based decision-making are due to the behavioral

import of feedback or due to its surprising nature. In

the PRO model, ACC activity is interpreted as being affec-

tively neutral, and this interpretation is maintained in the

PRO-control model. In the previous simulation, it was

demonstrated that aversive feedback coupled with nega-

tive surprise signals generated by ACC could drive rapid

adjustments in behavioral strategies to avoid future error.

As a corollary to this, it may be expected that rewarding

feedback coupled with reactive ACC signals could serve

to increase the probability of repeating a rewarded

behavior—the so-called hot-hand bias. The hot-hand bias

refers to the tendency to perceive positive serial autocor-

relations in independent sequential events and has been

demonstrated in monkeys (Blanchard & Hayden, 2014;

Blanchard, Wilke, & Hayden, 2014). In particular, the

hot-hand bias is evidenced by a win-stay strategy despite

the independence of a sequence of events.

Similarly, reactive control is thought to contribute to

post-error slowing—the tendency of subjects to respond

less rapidly following behavioral error (Soshi et al., 2015;

Narayanan, Cavanagh, Frank, & Laubach, 2013; Cavanagh,

Gründler, Frank, & Allen, 2010). Recent evidence has

suggested a corollary effect—post-correct speeding—in

which responses following correct trials are more rapid.

To investigate the model’s ability to capture these effects,

we simulated the model on a version of the Correlated

Outcomes Task (Blanchard & Hayden, 2014). In our im-

plementation, the model repeatedly selected between

two options. On each trial, one of the options was

rewarded with a probability of 1. However, the identity

of the rewarded option could change with a fixed,

condition-dependent probability following each trial. A

total of nine conditions were simulated in which the prob-

ability of a change occurring was manipulated (from .1 to

.9). Two versions of the model were simulated as in

Simulation 3, with reactive control weights either intact

or artificially lesioned. The Correlated Outcomes Task

was previously used to identify behavioral correlates of a

hot-hand bias—the tendency to overestimate the likeli-

hood that a successful trial will be followed by another

successful trial for the same behavioral response—in

rhesus monkeys.

Simulation 4 Results

In our simulations (Figure 6), the hot-hand bias emerges

from the transient allocation of reactive control following

the unexpected omission of an aversive outcome. Follow-

ing a rewarded trial, both proactive control weights

(Equation 14 of Alexander & Brown, 2011) and reactive

control weights (Equation 4) are updated to reflect

long-term S-RO contingencies as well as immediate con-

trol demands, respectively. The bias in favor of repeating

a previously rewarded response arises due to the combi-

nation of negative surprise with the affective import of

the unexpected omission of an aversive outcome: The

behavior that contributed to the rewarded outcome is

actively promoted by reactive control.

The model further suggests that reactive control may

contribute both to post-error slowing as well as post-

correct speeding. Relative to a model in which reactive

control weights have been lesioned, the intact PRO-

control model exhibits increased RTs following error

and decreased RTs following correct responses. Interest-

ingly, this pattern is dependent on the probability that

the same response will be required on the subsequent

trial; when the identity of the correct response changes

frequently (probability of a stay trial < .4), reactive con-

trol appears to have a stronger influence on post-error

slowing, whereas RTs for the post-win trial are identical

for the lesioned and nonlesioned simulations. However,

when the identity of the correct response is likely to re-

main the same (probability of a stay trial > .6), RTs fol-

lowing error trials are the same for the lesioned and

nonlesioned simulations, whereas RTs decreased for

the nonlesioned model relative to the lesioned model

following correct trials.

Backward Compatibility with Original PRO Model

The new model’s ability to capture new effects above

raises the question of whether the required modifications

break the simulations of the original PRO model. In par-

ticular, the new reactive control mechanism driven by

negative surprise allows rapid switching when contingen-

cies change. In a probabilistic environment in which the

correct option is not always rewarded, might this lead to

erratic lose-shift behavior that would render the model

unable to maintain correct performance? To address this

question, we reran the Behrens et al. task simulation

(Behrens et al., 2007) on the new model using the same
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task design as in the original PRO model simulation

(Alexander & Brown, 2011). In this two alternative

forced-choice task, correct trials were rewarded only 80%

of the time. In the simulation, there was an initial non-

volatile period of 120 trials, followed by a volatile period

of 280 trials in which the contingencies changed every

40 trials, followed by a nonvolatile period in which the con-

tingencies were unchanged for 180 trials. We found that

the intact model was able to perform the task above chance

( p = .0002, Fisher exact, two-tailed), with 60.9% reward

rate (chance = 50%, max possible performance = 80%).

This demonstrates that the model could learn the task

even with periodic reward omission. Furthermore, the

performance was only above chance during the nonvolatile

periods (67.7%, p < .0001, Fisher exact, two-tailed),

whereas it was reduced during the volatile period (54.6%,

p = .31, Fisher exact, two-tailed). At the neural level, we

found that, as in the original PRO model simulation and

consistent with empirical findings (Behrens et al., 2007),

the average negative surprise signals were greater during

the volatile periods than during the nonvolatile periods

(t(578) = 8.38, p < .001). This demonstrates that the

Figure 6. Hot-hand bias and

post-correct speeding. In

our implementation of the

Correlated Outcomes Task,

the probability of a previously

rewarded response remaining

the same on a subsequent trial

is manipulated. (A) Reactive

control in the model

contributes to a bias to repeated

previously rewarded behaviors,

whereas lesions of control

weights Wω eliminate this bias.

(B) Behavioral results from

monkeys performing the

Correlated Outcome Task also

reveal a hot-hand bias (adapted

with permission from Blanchard

et al., 2014). (C) Reactive

control-dependent differences

in RT are influenced by global

environmental contingencies;

in environments for which the

identity of the rewarded

response is likely to change

frequently, the nonlesioned

model responds more slowly

than the lesioned model,

whereas in environments for

which the rewarded response is

likely to remain the same,

reactive control contributes to

speeded RTs.
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additions to the model do not substantially change the

results relative to the original PRO model simulations.

DISCUSSION

The above four simulations collectively suggest how ACC

may control value-based decision-making. The PRO-

control model casts ACC as learning both proactive and

reactive control signals (Braver et al., 2007), which oper-

ate on longer and shorter timescales, respectively. This is

consistent with the range of timescales reported in ACC

(Wittmann et al., 2016; Bernacchia, Seo, Lee, & Wang,

2011). The control signals act directly on action represen-

tations rather than stimulus representations, consistent

with a role in representing action values rather than stim-

ulus values (Rudebeck et al., 2008).

In Simulation 1, the proactive control signals provide

a representation that simulates the foraging value sig-

nals reported in a foraging task (Kolling et al., 2012),

whereas the negative surprise representations simulate

the inverted-U activation as a function of relative foraging

value, as reported for a similar foraging task (Shenhav

et al., 2014). The results suggest that both signals may

coexist and provide distinct functions within ACC. Con-

sistent with an ACC role in effortful behavior, the proba-

bility of foraging is significantly lower in the simulation if

the proactive control signals that represent foraging value

are lesioned.

Simulation 2 provides a mechanistic account of how

ACC may drive risk avoidance, as a consequence of pro-

active control. When costs or losses occur, the net effect

is to train proactive control signals to represent the situ-

ation in which such losses may occur. This idea has been

proposed earlier (Brown & Braver, 2005; Holroyd et al.,

2005). What has not been shown until now is how the

same proactive control signals may both drive effortful

behavior, as in the foraging decisions of Simulation 1,

and also drive risk avoidance, as in Simulation 2. This ap-

proach is consistent with a recent proposal that ACC en-

ergizes overall strategy choices (Holroyd & Mcclure,

2015), biasing behavior against default but lower payoff

options and instead toward larger gains that require in-

creased effort to obtain.

Simulation 3 illustrates a dissociation between the

longer-term proactive control signals and the shorter-

term reactive control signals. In Simulation 3, rapid

switching and updating due to reduced reward and chan-

ged contingencies was heavily dependent on negative

surprise, such that the omission of an expected reward

signaled the need to switch. Lesions of the reactive con-

trol pathway led to severe deficits in rapid switching so

that behavior was near chance. Such lesions of the reac-

tive control pathways had no substantial impact on the

foraging and risky decision tasks of Simulations 1 and

2. This is consistent with earlier reports suggesting that

ACC provides inhibition (Medalla & Barbas, 2009), which

may lead to disengagement from less adaptive behavioral

sets (Donoso et al., 2014; Hochman, Vaidya, & Fellows,

2014), especially in the absence of clear external cues in-

dicating the correct action (Kennerley, 2003; Shima &

Tanji, 1998).

Finally, Simulation 4 demonstrates the dual role of

reactive control in avoiding behavioral error as well as ex-

ploiting global environmental contingencies. The hot-

hand bias—the tendency to repeat responses that have

been rewarded in the immediate past—is observed to

be a consequence of transient application of reactive con-

trol. In the model, reactive control is a product of nega-

tive surprise, the unexpected nonoccurrence of a

predicted outcome. In Simulation 4, the unexpected non-

occurrence of an aversive outcome following a rewarded

behavior contributes to the model’s increased likelihood

to select that behavior on subsequent trials. Moreover,

effects related to RT such as post-error slowing and

post-correct speeding are observed to depend on global

environment contingencies: For conditions in which the

identity of a rewarded response is likely to change fre-

quently, reactive control is deployed to slow responses,

whereas in stable conditions reactive control promotes

more rapid responses. The PRO-control model thus pro-

vides an account of how ACC may be involved in mediat-

ing the tradeoff between deliberative control of behavior

and enhanced response vigor.

Energizing Behavior/Expected Value of Control

The PRO-control model offers a novel perspective rela-

tive to existing theories of ACC function. A recent pro-

posal argues that ACC has a role in “energizing” or

otherwise driving motivated behavior by maintaining

high-level representations of behavior directed toward

specific longer-term goals (Holroyd & Yeung, 2012). Ac-

cording to this theory, ACC is not concerned with the mi-

nutiae of task implementation, which is instead handled

in the lateral pFC and BG. Rather, dopaminergic rein-

forcement signals train ACC to represent “option values”

that exert control to activate certain behaviors. Our sim-

ulations accord well with these notions. Specifically,

pauses in the dopamine signal may serve to train both

the proactive and reactive control signals to exert control

over tasks. In the absence of such control signals, our

model defaults to taking the immediately available re-

ward (Walton et al., 2009) rather than exerting the effort

required to obtain a potentially larger reward, and the influ-

ence of previous reward history is attenuated (Kennerley

et al., 2006; Figure 5).

Subregions of mPFC

There has been substantial recent controversy over the

function of distinct subregions of the mPFC. In a recent

response to the ongoing controversy over foraging value

and difficulty effects in mPFC, Kolling et al. suggested

that difficulty effects may be found more dorsally in the
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mPFC, toward the pre-SMA, whereas foraging value effects

may be found more ventrally (Kolling et al., 2016). If so,

that would account for how both effects may exist simulta-

neously. Shenhav et al. have countered that, in a sub-

sequent replication study, they find no evidence for

foraging value effects (Shenhav et al., 2016). Our simula-

tion results (Figure 3B) show that even in the regions that

correlate with relative foraging value, the highest relative

foraging values lead to somewhat weaker activation, lead-

ing the activity to look more like a difficulty signal (cf.

Figure 3A). This may account for why positive correlations

with relative foraging value have not always been found

(Kolling et al., 2016; Shenhav et al., 2014, 2016), despite

the existence of distinct signals that correlate with relative

foraging value and difficulty effects in our model (Figure 3).

Another recent controversy has begun over whether

ACC signals primarily pain (Lieberman & Eisenberger,

2015) or also other cognitive functions (Wager et al.,

2016). Lieberman and Eisenberger argue that pain is rep-

resented more ventrally, whereas cognitive effects are

found more dorsally. This accords well with the proposal

by Kolling et al. (2016), and it suggests a mapping of the

present PRO-control model components such that

learned predictions and representations of negative affect

(underlying proactive control) may be represented more

ventrally in the dorsal ACC, whereas prediction errors

(underlying reactive control) may be represented more

dorsally, toward the pre-SMA. To help resolve this contro-

versy, Jahn et al. (2016) directly compared pain, conflict,

and prediction error in a full factorial fMRI design. They

found that prediction error effects are represented more

dorsally in mPFC, straddling ACC, and the pre-SMA, con-

sistent with our account of difficulty effects as reflecting

prediction error. Likewise, pain effects are more ventral,

which could reflect a specific kind of negative affect, and

this negative affect in the context of a current set of

options might also drive foraging decisions.

Proactive versus Reactive Mechanisms of Control

The PRO-control model provides a new degree of mech-

anistic clarity to the notions of proactive and reactive

control signals, which have been explored both theoret-

ically (Aron, 2011; Braver et al., 2007; De Pisapia &

Braver, 2006) and empirically (Marini, Demeter, Roberts,

Chelazzi, & Woldorff, 2016; Kawai, Yamada, Sato, Takada,

& Matsumoto, 2015). Although we have cast proactive

control as one of several functions of ACC (Kawai et al.,

2015), we do not claim that proactive control is solely

driven by ACC, as indeed there is evidence that proactive

control can be exerted by a network of other regions

(Marini et al., 2016; MacDonald, Cohen, Stenger, &

Carter, 2000). Perhaps the closest computational model

to the PRO-control model is a recent model of dual con-

trol processes (Ziegler et al., 2014). That model casts ACC

as representing proactive and reactive control signals de-

tected as conflict and surprise, respectively, but is posits

cholinergic and noradrenergic brainstem mechanisms,

with abstract conflict and error computations, instead

of the cortical mechanisms proposed here.

We do not claim that the proactive and reactive control

signals simulated here are the only outputs generated by

the mPFC. There is evidence that ACC modulates learn-

ing rates (Behrens et al., 2007), as we simulated in the

original PRO model (Alexander & Brown, 2011). Also,

prediction error signals may be useful to training working

memory representations in lateral pFC (Alexander &

Brown, 2015), which implies a role in learning, beyond

the control signals simulated here. ACC may also modu-

late brainstem neuromodulator activity as in the locus

coeruleus (Aston-Jones & Cohen, 2005). Also, ACC is

one of a small set of regions that projects to the strio-

somes of the striatum, which may serve as a basis to drive

prediction error signals in dopamine cells (Eblen &

Graybiel, 1995). Overall, it appears that prediction and

prediction error signals generated by ACC may serve

multiple roles simultaneously.

Relation to ERP Effects

The PRO-control model suggests how aversive outcomes

may train proactive control signals, whereas unvalenced

prediction error signals (especially negative surprise,

ω
N) may be trained by reinforcement to drive reactive

control (Braver et al., 2007; Ridderinkhof, Ullsperger,

Crone, & Nieuwenhuis, 2004; Schall, Stuphorn, & Brown,

2002). This accords well with prior work arguing for a

role of dopamine signal pauses on ACC activity, although

there remains some question about whether ACC signals

aversive signals, or unsigned prediction errors, or both.

Some have argued that phasic pauses of the midbrain do-

pamine signals lead to disinhibition of ACC (Baker &

Holroyd, 2011; Brown & Braver, 2005; Holroyd & Coles,

2002), which could account for greater ACC activity fol-

lowing an error such as in the feedback error-related neg-

ativity (Holroyd & Coles, 2002). Separately, the N200 has

been interpreted as a conflict signal (Baker & Holroyd,

2011), although more generally, the N200 is increased

in response to improbable events (Hajihosseini &

Holroyd, 2013). This observation is consistent with the

N200 reflecting at least in part the surprise signals gener-

ated in the PRO-control model as the negative surprise

(ωN) signal. Even the feedback error-related negativity

may reflect at least in part a surprise signal rather than

a reinforcement signal (Talmi, Atkinson, & El-Deredy,

2013), consistent with other reports that frontocentral

negativities signal surprise rather than aversive outcomes

(Garofalo et al., 2014; Ferdinand et al., 2012; Jessup et al.,

2010; Oliveira et al., 2007).

Clinical Implications

Our results provide newmechanistic perspective on some

clinical and developmental issues involving proactive
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and reactive control. For example, schizophrenia patients

appear to have a deficit specifically in proactive control, as

they fail to show increased activation in a proactive con-

trol task, but not in a reactive control task (Lesh et al.,

2013). Proactive control seems to develop later than reac-

tive control mechanisms in children (Chatham, Frank, &

Munakata, 2009). This highlights the importance of proac-

tive control, which has been emphasized elsewhere in

general (Aron, 2011) and with regard to specific clinical

disorders such as social anxiety (Schmid, Kleiman, &

Amodio, 2015). Proactive control may also reduce gam-

bling behavior ( Verbruggen, Adams, & Chambers,

2012). Our simulations above suggest how such control

mechanisms might be implemented at the neural level.
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