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1 Introduction

Attempts to explain the presence and abundance of dark matter (DM) in the Universe

often involve making various assumptions about the history of the very early Universe.

The simplest and most natural one is to assume that, at high enough temperatures a

DM particle is in thermal equilibrium with the plasma of Standard Model (SM) particles,

which ensures that its density is given by Maxwell-Boltzman statistics. At some point in

the expansion and cooling down of the Universe, DM undergoes a well-known freeze-out

mechanism, which determines its subsequent population in the Universe. The freeze-out

mechanism has been particularly popular because it requires a minimum amount of rather

natural assumptions and, for reasonable values of parameters of specific particle candidates

in the class of weakly-interacting massive particles (WIMPs), it is often able to produce

the observed abundance of DM in the Universe. Furthermore, it does so in a manner that

is insensitive to the condition of the Universe after inflation, thus effectively separating the

high temperature regime from the one responsible for dark matter production.

However, it has long been known that, in addition to freeze-out, some other DM pro-

duction mechanisms exist and can in fact play a dominant role in achieving the observed

relic density. One particularly well-motivated example involves sub-eV axions that, due to

their tiny interactions, are mainly produced not thermally but via the well-known misalign-

ment mechanism; for recent reviews see, e.g., [1, 2]. This mechanism was later extended to

the case of ultra-light vector boson in [3, 4].

Furthermore, extremely weakly interacting massive particles (usually referred to as

E-WIMPs or super-WIMPs) are often predicted by many well-motivated extensions of
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the SM, for instance a gravitino in scenarios based on local supersymmetry (SUSY) or

an axino in SUSY models of axions; see e.g., [1] for a recent review. If stable, they are

potential candidates for dark matter in the Universe. However, due to their exceedingly

feeble interactions, their population after inflation is negligible — assuming that their

decoupling temperature is higher than the reheating temperature TR — since they never

reach thermal equilibrium with the SM plasma, and the freeze-out mechanism is ineffective.

Instead, they can be generated through so-called freeze-in [5] from scatterings and decays

of some other particles.

A key feature of such “frozen-in” dark matter scenarios is that, while all SM particles

remain in thermal equilibrium since the Universe reheats after inflation, the DM particle

χ is absent in the early Universe and never reaches equilibrium with the SM plasma. Its

production is mediated by some particles that typically remain in equilibrium with the

plasma. Once the temperature drops below the mediator mass, DM production essentially

stops and its relic density freezes-in.

In freeze-in scenarios, specific features and the final relic abundance of DM often de-

pend on the details of a specific beyond-the-SM (BSM) model. In models with either

the gravitino or axino as DM, their freeze-in production is typically dominated by non-

renormalizable interactions at high temperatures in the case of scattering or at low ones

in the case of decays [6, 7]. On the other hand, in models where DM production in-

volves for instance a light mediator, the low-temperature production dominates over the

high-temperature one, thus separating again the physics of inflation from the one of dark

matter [5, 8, 9].

In this article, we will consider a previously neglected case that some mediator field

S — that could be a scalar, vector boson or a fermion — is not only in equilibrium with

the thermal bath, but also develops a substantial thermal mass. That is, at sufficiently

high temperatures the mass mS,T of the mediator deviates significantly from its “vacuum”

one mS , i.e., the mass is dominated by thermal effects. Such an effect has recently been

studied for instance while considering thermal photon decays [10]. The population of DM

particles χ is assumed to be initially absent when the Universe reheats after inflation, but

is generated by the decays of S. If at high enough temperatures the thermal mass of the

mediator becomes sufficiently large, the possibility opens up that, when mS,T > 2mχ the

decay S → χ̄χ becomes allowed, while at T = 0 it was kinematically forbidden. As we

will show, this opens up a new regime for DM production which we will call “forbidden

frozen-in dark matter”.

This kind of effect we believe was first identified for gravitino [11] and subsequently

axino production [12]. The production rate of singlet fermions from the decay of scalar

fields in a plasma including thermal corrections was calculated in [13] and applied to the

case of right-handed neutrino DM. More recently it was also described in a more generic

context in [14, 15].

In this paper, we take a closer look at the “forbidden freeze-in” regime and identify

its main phenomenological features. We further show that the equilibrium assumption

of the mediator can be relaxed as long as S obtains a sizeable thermal correction to its

mass, e.g., when it is chemically decoupled from the SM plasma, but remains in kinetic
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equilibrium with itself via self-scatterings. Interestingly, albeit perhaps as expected, the

ensuing phenomenology is found to depend strongly on the dimension of the operator

controlling the mediator decay into DM pair. For dimension-four operators, the production

is dominated at low-temperature regime and peaks at mS,T ∼ 2mχ. Additionally, a striking

feature is that, in this regime the relic abundance is ultimately almost insensitive of the

DM mass, while the coupling responsible for DM production typically takes significantly

larger values than in the standard freeze-in case. For mediator decays through higher-

dimensional operators, on the other hand, the production is dominant at high temperatures

and therefore depends on the reheating temperature. Furthermore, we argue that, since the

forbidden freeze-in regime is a generic property, it might be worth exploring it in models

of the freeze-in mechanism of DM production, e.g. [16–27].

As a specific realisation of the case presented above, we examine an explicit Higgs portal

scenario, where the dark Higgs boson, kept in equilibrium with the SM fields through a

quartic mixing term with the SM Higgs, can decay to a light (GeV-scale) Dirac fermion

dark matter at a strongly suppressed rate. The thermal mass is predominantly generated

by the dark Higgs self-coupling, enabling it to easily reach a thermal-mass dominated

regime. Since Higgs portal scenarios are typically constrained by a variety of limits, we

briefly review them and apply them to the considered model provide in order to identify

new regions that are allowed by forbidden freeze-in. We will assume the dark Higgs boson

is originally in equilibrium with the SM thermal bath. If the quartic mixing is low enough,

it may also be produced through freeze-in, see e.g., [28] for more details on this setup. This

scenario is similar to case III of [14], which closely resembles our model as the particle

content is similar. The main difference, however, is the vacuum expectation value (VEV)

structure. In our model the portal particle has a zero VEV (〈S〉 = 0) throughout the early

Universe, and develops one only through its mixing with the Higgs boson after electroweak

phase transition. This allows us to isolate the pure forbidden freeze-in regime without the

impact of the SM Higgs VEV, thus simplifying the analysis and exploring the forbidden

freeze-in independently. We additionally explore a different mass region than [14], which

leads to a distinct phenomenology for the portal particle.

The paper has the following structure. In section 2 we briefly review the calculation

of thermal mass of a scalar boson and proceed to describe in detail the mechanism of

“forbidden freeze-in” through thermal mass effects. In section 3 we consider as an example

an explicit Higgs-portal model in which the scenario can natually be realised, and briefly

examine various criteria to ensure its consistent implemention. We then proceed to a full

numerical study of the predicted relic density and describe various aspects of our scans and

results, as well as the effect of applying relevant astrophysical and collider constraints.

2 Freeze-in with a thermally induced mass

2.1 Thermal mass in the early Universe

As mentioned above, in this article we study the freeze-in production of DM via some

mediator decays that are energetically allowed solely in a thermal bath. We expect this

to occur in general, since frozen-in DM is usually assumed to be produced by particle
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Figure 1. One-loop self-energy for the scalar induced by its self-interaction.

species which are in thermal equilibrium with the SM plasma, and which should therefore

develop a thermal mass correction [29–31] in the early Universe, similarly to the SM par-

ticles [32]. Moreover, it is this effective mass that allows “forbidden” decays to occur, as

is the case for instance for plasmons (thermally-dressed photons in a medium) that can

decay to neutrinos [33].

Generally, at high temperatures applicable to the early Universe the thermal mass of

a particle is proportional to the temperature. As this effect will be critical in realizing our

forbidden freeze-in scenario, below we briefly review the case of a scalar mediator field S.

In general, a scalar field features a self-interaction term, which implies that it does not

need to interact very strongly with the rest of the plasma in order to develop a sizeable

thermal mass. In the following we assume a self interaction term for S of the form

LS = −λS

4!
S4 . (2.1)

The self-energy diagram, shown in figure 1, can then be readily evaluated at a finite tem-

perature T , leading to the self-energy term

ΠS =
λS

2β

∞
∑

n=−∞

∫

d3~k

(2π)3
1

ω2
n − ω2

k

,

where ΠS corresponds to the corrected mass of S, i.e., mS,T
2 = mS

2 + ΠS , and we have

denoted β = T−1, ωn = 2nπβ−1, and ω2
k = ~k2 +mS

2.

The sum over n is evaluated by a standard procedure:1 by transforming it to an integral

over a complex quantity ω while introducing a function which has poles corresponding to

ωn and unit residue. One obtains

ΠS = i
λ

2

∫

d4k

(2π)4
1

k2 −mS
2 + iǫ

+
λ

2

∫

d3~k

(2π)3
fB(ωk)

ωk
,

where we identify the first term as the T = 0 one-loop correction to mS , and the second one

(denoted Π
(T )
S henceforth) as the correction due to the finite temperature of the medium

with fB ≡
(

eωkβ − 1
)−1

the Bose-Einstein phase-space distribution. The appearance of the

phase-space distribution function regulates this otherwise quadratically divergent integral

since it introduces a natural “cut-off” energy proportional to the temperature. The final

1Details can be found in the literature, e.g., [29–31].
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result scales quadratically with temperature: Π
(T )
S ∼ T 2. In the high temperature limit,

we can therefore neglect the mS contribution to ωk and arrive at

Π
(T )
S =

λ

24
T 2 . (2.2)

In this limit, since the vacuum one-loop contribution is expected to be small compared to

the tree-level one, we can neglect all T = 0 contributions and obtain an estimated form of

the mass of S,

mS,T
2 ≈ Π

(T )
S =

λS

24
T 2 . (2.3)

It is well known, though, that naive perturbation theory does not work well when finite

temperature effects are included (for examples see [29–31]). This can be seen by calculat-

ing the thermal correction using m2
S → λ

24
T 2, i.e., by re-summing the so-called “daisy”

diagrams, where one would expect to get a correction of order at least O(λ2). However,

this is not the case in finite temperature calculations, since such diagrams induce correc-

tion O(λ3/2), which may be important especially for larger values of the self-interaction

coupling. We have explicitly checked that for λ . 1 this re-summation leads to at most

a 20% variation in the thermal mass. We will thus use the approximate result eq. (2.3)

throughout this paper.

2.2 Freeze-in and mediator decay

We are interested in estimating the final relic density of a DM particle χ interacting ex-

tremely feebly with the Standard Model particles. The key assumption is that χ was never

in thermal contact with the SM sector during the thermal history of the Universe, nor was

it ever produced through some other means in the post-inflationary period, e.g., during re-

heating. Our assumed dominant dark matter production mechanism will be a suppressed

decay of a bath particle S into a dark matter pair. More precisely, following the standard

lore, we will assume the presence of a strongly suppressed decay channel

S → χ̄χ , (2.4)

with a small decay rate Γχ (i.e., such as to unable one to overproduce or thermalised the χs).

Assuming a boson mediator and neglecting Pauli blocking/Bose-Einstein enhancement fac-

tors, the Boltzmann equation governing the density of dark matter particle in an expanding

universe is then (see, e.g., [34] for a complete recent treatment) given by

ṅχ + 3Hnχ =

∫

dΠSdΠχdΠχ̄ × 1

eES/T − 1
× (2π)4δ4(PS − Pχ − Pχ̄)

∑

idof′s

|M|2 , (2.5)

where M is the amplitude (summed over all internal degrees of freedom “idof”) for the

decay process (2.4), and the integration is over the standard phase space factors dΠS ≡
d3pS

(2π)32ES
, and similarly for dΠχ and dΠχ̄. Without loss of generality regarding the oper-

ator generating the decay S → χ̄χ, we can rewrite the squared amplitude from the decay
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rate Γχ as

∑

idof′s

|M|2 = (2JS + 1)
8πm3

S
√

λ(m2
S ,m

2
χ,m

2
χ)

Γχ , (2.6)

where λ is the usual Källén/triangle function and JS is the spin of the mediator. It can

then be shown (see, e.g., [34]) that under some general assumptions (i.e., a negligible initial

number of DM particles, entropy conservation, and Maxwell-Boltzmann distributions for

the plasma), the evolution of the DM yield (YDM =
nχ+nχ̄

s ) is given by

−HsT δ−1
h

dYDM

dT
=

(2JS + 1)Γχ

π2
K1(mS/T ) m

2
S T , (2.7)

with

s ≡ 2π2

45
h(T )T 3 , (2.8)

δh ≡ 1 +
1

3

d log(h)

d log(T )
, (2.9)

H =

√

4π3

45m2
P

g(T ) T 2 , (2.10)

where h (g) are the relativistic degrees of freedom associated with the entropy (energy)

density,2 and K1(x) the modified Bessel function of the first kind. Defining x ≡ mS

T
and

focusing for simplicity on JS = 0, the evolution of the yield becomes

dYDM

dx
=

(

Γχ(mS ,mχ)

5.93× 10−19GeV

)(

1 GeV

mS

)2 K1(x)x
3

√
gh

δh . (2.11)

An important comment at this point is that, while in the standard freeze-in case Γχ

can be considered to be a number which factors out of the x dependence, this is not the case

for forbidden freeze-in where the presence of a thermal mass mS(T ) needs to be accounted

for. Let us first review in the rest of this section the standard freeze-in case where the

thermal dependence of the mass can be neglected.

Assuming that mS > 2mχ and slowly varying relativistic degrees of freedom (which is

the case for T & 1 GeV), we can calculate the yield today (YDM,0), by integrating from

the reheating temperature (TR ≫ mS , x → 0) down until today (T0 ≪ mS , x → ∞).3 We

then obtain the relic abundance in the form

Ωh2 ≈ 2.8× 108
mχ

GeV
YDM,0 ≈

(

Γχ(mS ,mχ)

4.5× 10−28GeV

)(

1 GeV

mS

)2

mχ

(

1√
g h

)

∣

∣

∣

x=〈x〉
, (2.12)

where we evaluate g and h at the “mean” value of x during the DM production.4 In

2To obtain our numerical results we use the ones provided in [35].
3If DM is produced mainly at temperatures at which the assumptions are violated, YDM,0 can obtained

numerically from eq. (2.11).
4This value is defined as

〈x〉 ≡

∫

∞

0
dx x3K1(x)× x

∫

∞

0
dx x3K1(x)

≈ 3.4 .
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Figure 2. Typical evolution of YDM/YDM,0 during the production of DM. (a) The evolution as a

function of x ≡ mS/T for mS = 0.1, 1, 10 GeV, and mχ = 0 (i.e., standard freeze-in). The gray

area denotes where the freeze-in occurs. (b) The evolution as a function of z ≡ 2mχ/mS,T for

mχ = 10−3, 10−2, 1 GeV, and mS = 0 (i.e., forbidden freeze-in). In both figures, green lines show

YDM/YDM,0 = 1.

figure 2a we show YDM/YDM,0 as a function of x for various values of mS , where we see

that the production of DM essentially stops at the freeze-in temperature TFI ∼ mS
7 , as can

be seen from the figure. That is, since typically S decouples at temperature TFO ≈ 20mS

(i.e., freeze-out), the calculation holds. However, if S decouples earlier than expected, the

relic abundance of χ can be considerably smaller (if S decays rapidly to SM particles) or

larger (if S decays predominantly to DM particles). In both cases the coupled system of

Boltzmann equations describing the evolution of both S and χ has to be solved.

A different behavior is expected, however, when DM particles are produced via non-

renormalizable operators, since the corresponding production rate increases with the tem-

perature [5, 36]. As an example, consider DM production via a 2 → 2 process which occurs

due to a dimension-d operator. At high temperatures, all masses should be irrelevant, so

the matrix element squared for the process can be written as function of the center-of-mass

energy
√
ŝ as

|M|2 ≈ γd

(√
ŝ

Λ

)2n

,

with n = d− 4. The corresponding Boltzmann equation is

dYDM

dx
≈ 1

512π5

δh
H sx

mS

x

∫ ∞

0
dŝ

ŝn+1/2

Λ2n
K1

(√
ŝ

T
x

)

,

which (assuming constant g and h) can be integrated from xR = mS/TR to today (x0).

The result is

YDM,0 ≈
x1−2n
R − x1−2n

0

2n− 1

(

4n n! (n+ 1)! γd
2.34× 10−15

)

(mS

Λ

)2n
(

1 GeV

mS

)(

1√
g h

)

∣

∣

∣

x∼xR

, (2.13)
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where it is apparent that the high-temperature contributions dominate for n > 0 (i.e.,

d > 4). In the case of d ≤ 4, we expect DM production to be dominated at low temperatures

(around mS , as denoted previously). Thus, these features should be treated in a case-by-

case way, since the masses of the particles play an important role, and so the actual

structure of the matrix element is needed.

2.3 Large thermal mass and forbidden freeze-in

Let us now turn to the case with a large thermal mass. In order to determine its effect

on the freeze-in mechanism we shall assume for concretness that the scalar mediator mass

takes the form5

mS,T
2 ≈ mS

2 + α2 T 2 . (2.14)

An important consequence of eq. (2.14) is that the decay S → χ̄χ can become kinematically

allowed at large temperatures even if mS < 2mχ. This feature will determine the forbidden

freeze-in regime.

Before discussing this regime it is worthwhile to note that in some models dark matter

production at early times is dominated not by decays but by the 2 ↔ 2 processes.6 In such

cases the thermal effects typically introduce only a correction, the significance of which is

very model-dependent.7 We will explicitly address the role of 2 ↔ 2 production processes

for the Higgs portal model in section 3, while for the following general discussion we restrict

ourselves to the cases when they are subdominant.

As an example, let us consider the case mS = 0, i.e., when mS,T = αT . Assuming that

the temperature is large enough so that at some early time mS,T > 2mχ is satisfied, our

aim is to solve in this case the Boltzmann equation (2.11). Defining z as

z ≡ 2mχ

αT
, (2.15)

we obtain
dYDM

dz
=

(

Γχ(mS ,mχ)

5.93× 10−19GeV

)(

1 GeV

2mχ

)2 α4 K1(α)√
g h

δh z . (2.16)

We observe two very different types of behavior depending on the dimension d of the

operator that mediates the decay of S. In the case when d > 4, the right-hand side of

eq. (2.16) increases with temperature and is therefore dominant at high temperatures close

to the reheating temperature TR. Thermal effects in this case only provide a modification

to the standard freeze-in through higher-dimensional operators, as is the case for gravitino

or axino DM produced in scatterings of particles in the thermal plasma [37]. On the other

hand, when d ≤ 4 most of the production takes place at temperatures around the dark

5In the case where S gets its thermal mass due to the self interactions (2.1), α2 =
λS

24
(for λS < 1).

6This is the case, e.g., for gravitino or axino dark matter at high TR; for a review see, e.g. [1] and

references therein.
7Indeed, the dominant 2 ↔ 2 process should involve the coupling between the mediator and the thermal

bath, since it is assumed that it is in equilibrium contrary to the dark matter. A proper estimation of

this effect can thus be done only on a model-dependent basis, as studied later in section 3 for the Higgs

portal case.
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matter mass. Indeed, DM production in this case increases at low temperature but stops

when the decay becomes kinematically forbidden at αT = 2mχ. The production is thus

dominated by temperatures close to mχ (or higher for small α).

In the following we will study in more details both cases to obtain a closed approximate

form for the final dark matter aboundance when possible.

Higher-dimensional case. Let us first assume that d > 4 in which case at high tem-

peratures the thermal mass of S dominates and we can write its decay rate in the form

Γχ ∼ γSχ
16π

mS

(mS

Λ

)2n
=

γSχ
16π

α2n+1

(

T

Λ

)2n

T , (2.17)

where again n = d− 4, and γSχ a dimensionless factor that depends on the nature of this

operator. In the high-temperature regime where the approximation (2.17) is justified, the

abundance equation becomes

dYDM

dz
=

(

γSχ
2.96× 10−17

)(

2mχ

Λ

)2n(1 GeV

2mχ

)

α4 K1(α)√
g h

δh z−2n . (2.18)

Since the production is dominated by the high temperature contribution, it is straightfor-

ward to integrate this equation, between z = 1 (the decays are kinematically not allowed

for z ≥ 1) and z = zR ≡ 2mχ

αTR
to obtain

YDM,0 =
z1−2n
R − 1

2n− 1

(

α4 K1(α) γSχ
2.96× 10−17

)(

2mχ

Λ

)2n(1 GeV

2mχ

)(

1√
g h

)

∣

∣

∣

z∼zR
. (2.19)

It is clear that, for d > 4 the dominant contribution comes from the regime of high temper-

atures (zR → 0). An important consequence of the thermal effects included here is the fact

that two-body decays can significantly alter the predictions of the scenario mentioned be-

fore (which was akin to the so-called ultraviolet freeze-in scenario advocated, e.g., in [36]).

That is, even if the decays S → χ̄χ are allowed in the vacuum, the appearance of the

thermal mass of S still plays a dominant role at high enough reheating temperature since

in this case DM production is most efficient at high temperatures. Furthermore, comparing

eq. (2.13) with eq. (2.19), we can see that since α < 1, the later tends to be generally less

efficient.8 Therefore, we conclude that the DM production via the forbidden freeze-in, in

general, requires larger couplings in order to reproduce the observed relic abundance.

Four- or three-dimensional case. In the four (or three) dimensional case, most of the

production is expected to take place at low temperatures, as can be seen from eq. (2.19)

where the contribution from z = zR drops out (unless α is so small that the production

happens close to the reheating temperature). More precisely, it takes place at around the

time when the decay S → χ̄χ stops. Thus, we expect the production to be dominated at

time scale corresponding to the temperature at which mS,T ∼ 2mχ. This actually implies

8Usually 2 → 2 processes involve higher powers of couplings, and they are often subdominant to decays.

For higher dimensional operators, however, both 1 → 2 and 2 → 2 processes can involve similar powers of

the couplings. This is the case where this argument is applicable.
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that up to an order one function, the decay rate satisfies Γχ ∝ mχ. While it is therefore not

possible to fully simplify the decay rate without specifying the details of the interaction,

we can straightforwardly observe from eq. (2.18) that the abundance will be proportional

to 1/mχ, thus implying that, up to order one corrections, the final relic density will be

independent of the dark matter mass, as mentioned before.

As an example and in order to obtain a closed form for the final relic density, let us

assume that: S is a scalar field, the dark matter candidate χ is a Dirac fermion and the

Lagrangian contains an Yukawa interaction between S and χ,

Lint = − yχ χ̄χ S . (2.20)

The bath particle S decay width to dark matter is then given by

ΓS→χ̄χ =
y2χ
8π

(

m2
S − 4m2

χ

)3/2

m2
S

. (2.21)

The evolution of the yield is then given by

dYDM

dz
=

(

α2 yχ
3.86× 10−9

)2(
1 GeV

2mχ

)

K1(α)

(

1− z2
)3/2

√
g h

δh . (2.22)

In figure 2b we show the evolution YDM/YDM,0 of the number of DM particles as a function

of z for the thermal mass case. It is similar to the standard case, apart from the point

when the production stops, i.e., at mS,T = 2mχ.

Assuming that the relativistic degrees of freedom do not vary rapidly during the pro-

duction of the χs, we can integrate eq. (2.22) to obtain

YDM,0 =

(

α2 yχ
5× 10−9

)2(
1 GeV

2mχ

)

K1(α)

(

1√
g h

)

z=〈z〉

, (2.23)

where again g and h are evaluated at 〈z〉.9 As we pointed out earlier, the relic abundance

of χ becomes (mostly) independent of its mass, with any mχ dependence coming from 〈z〉.
This, and the suppression due to the α4, will result in relaxed constraints for the Yukawa

coupling, with respect to the standard freeze-in, where Ωh2 scales predominantly linearly

with the DM mass. Notice furthermore that in the case where the temperature correction

never dominates (i.e. αT < mS), the relic abundance is given by eq. (2.12) with the decay

width (2.21), which is the standard freeze-in case, as expected.

Finally, let us conclude this section by presenting some numerical results in the case

where both mS and mS,T play an important role as the temperature varies. In this case

one has to calculate YDM,0 by including both mass terms. That is, the evolution of YDM as

in eq. (2.7) needs to be solved, with mS,T given by eq. (2.14), numerically.

9In this case, 〈z〉 is defined as

〈z〉 ≡

∫

1

0
dz

(

1− z2
)3/2

× z
∫

1

0
dz (1− z2)3/2

≈ 0.34 .
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Figure 3. (a) The relic abundance for mS = 1 GeV, α = 0.1, and yχ = 5×10−11. The exact result

is shown in gray, while the other lines correspond to the limits of dominant (blue) and vanishing

(orange) mS . (b) The area in the plane α − yχ, where the observed relic can be obtained for

10 MeV ≤ mS ,mχ ≤ 1 TeV. The two shaded regions correspond to the forbidden freeze-in region

mS < 2mχ (orange) and the standard one mS > 2mχ (blue).

An example of typical dependence of Ωh2 on mχ for the production of DM due to the

decay of S, is shown in figure 3a. The two extreme cases of α = 0 (standard freeze-in) and

mS = 0 (dominance of the thermal corrections to the mass) are shown by dashed blue and

orange lines, respectively, while the exact numerical result is shown in solid grey. Notice

that the transition between the two limits happens suddenly at mχ ≈ mS/2 which is where

the blue line terminates since S → χ̄χ becomes forbidden in the vacuum.

In figure 3b we present the Yukawa coupling yχ as a function of α that give the observed

Ωh2 for the scanned range of masses 10 MeV ≤ mS ,mχ ≤ 1 TeV, hence overlapping regions

between the two regimes may correspond to completely different values of the masses. We

observe two distinct regimes: the region of standard freeze-in where mS > 2mχ is marked

in blue, while the forbidden freeze-in region of mS < 2mχ is marked in orange. The shape

of the forbidden freeze-in band in figure 3b is a simple consequence of the α2yχ dependence

of YDM,0 in eq. (2.23). As already noted in the d > 4 case, in the forbidden freeze-in

regime one requires either larger self-interaction α of the mediator to generate a larger

thermal mass, or a stronger interaction coupling between DM and the mediator, since the

DM production is not as efficient as the standard case (as also shown in figure 3a). An

important comment is that the transition between the two regimes, which happens for

mS ∼ 2mχ occurs typically in a mass range of order (2mχ −mS) ∼ αmS , which become

very narrow for small α.10

10This corresponds to the case where the mass difference preventing the decay of S into two DM particles

is of the same order as the thermal contribution to mS at the typical scale T ∼ mS . In particular, in

figure 3b the forbidden region shown in orange do not probe this tuned transition regime in details for

small α.
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3 Forbidden freeze-in and the Higgs portal

In this section we explore an explicit realisation of the general mechanism described above.

We focus on a Higgs portal model, which is an archetype for a wide class of DM models

where the dark sector is connected to the visible sector by a scalar mediator mixing with

the SM Higgs boson.

3.1 The model

We introduce a real scalar “dark Higgs” boson field S, which is not protected by a Z2

symmetry and hence can decay into Standard Model fields through its mixing with the

SM Higgs boson. A dark matter candidate is taken to be a Dirac fermion that couples to

the dark Higgs boson through a small Yukawa coupling yχ. The corresponding part of the

Lagrangian thus reads

LDM = χ̄ (iγµD
µ − µχ)χ+

1

2
(DµS)(DµS)− yχSχ̄χ− VHS , (3.1)

with the dark Higgs boson potential term defined as11

VHS =
µ2
S

2
S2 +

λS

4!
S4 +ASH†H + λHS S2H†H , (3.2)

where H denotes the Standard Model Higgs boson doublet. The total scalar potential is

V = VHS − µH†H +
λH

2

(

H†H
)2
.

At low temperatures (T . 160 GeV), both the Higgs and dark Higgs fields develop a

non-zero vacuum expectation value (VEV), so that H =
1√
2

(

0

h+ v

)

and S → vS + S.12

In the limit where A ≪ v the calculation simplifies significantly and the minimization

conditions for the scalar potential in term of λH and vS can be easily obtained as

λH ≈
(

2µH

v

)2

+

(

A

mS

)2

vS ≈ − Av2

2mS
2
. (3.3)

Furthermore, we can rotate the scalars to their eigenvalue basis, i.e.
(

h, S
)

→ R
(

h, S
)

,

where R is a rotation matrix parametrised by the small angle θ given by

θ =
Av

m2
h −mS

2

[

1− λHS v2

mS
2

]

, (3.4)

11Notice that several other operators can be written within our symmetries, including a trilinear coupling

S3 and Yukawa couplings to left and right components of the dark matter fermion. We will neglect the

trilinear in the following and enforce an exact χ-number global symmetry to fix the latter to zero.
12Since S plays a crucial role in the production of DM before and after EW phase transition, we just

denote the VEV-shifted dark Higgs boson as S in order to avoid changing the notation when dealing with

different temperature regimes.
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where we have used the masses of h and S (at T = 0) defined by

m2
h = λHv2 and mS

2 = µ2
S + λHSv

2 . (3.5)

The branching ratio of the Higgs decay to invisible particles is constrained to be [38] smaller

than 0.19, which translates to λHS . 10−2. Furthermore, note that while we have supposed

that the trilinear term λ3S
3 was negligible in our original Lagrangian,13 the shift by vS

re-introduces such a term as
λS

3!
vSS

3. For consistency, we will therefore further require

that this contribution is negligible with respect to µS , leading to the condition

A

µS
≪ 12mS

2

λSv2
. (3.6)

Notice that this also automatically ensures that the shift in the SM Higgs boson quartic

coupling λH is negligible in eq. (3.3). An interesting feature is that the dark Higgs bo-

son is extremely long-lived at low mass. When only its decays into a lepton ℓ pair are

kinematically allowed, and assuming µS ∼ mS , we obtain

τS =
8π~

mSy2ℓ θ
2
≫



















4 · 106 s × λ2
S

(

100 MeV

mS

)7

for S → e+e− ,

0.15 s × λ2
S

(

250 MeV

mS

)7

for S → µ+µ− .

(3.7)

As we will see in the next section, such long lifetime are severely constrained by astro-

physical limits and beam dump limits. For simplicity, we will therefore typically restrict

ourselves to mS > 100MeV in the following.14

The relevant processes determining the evolution of number densities of S and χ in

this model are: i) the direct mediator decay S → χ̄χ, ii) the mediator decay to SM

particles due to its mixing with the SM Higgs boson, and iii) the annihilation of S to SM

particles, as well as all the inverse reactions. The Feynman diagrams for these processes

are given in figure 4.15 The direct S → χ̄χ decay width is given by eq. (2.21) and is

suppressed by the very small Yukawa coupling yχ. The decay of S to SM particles is given

by Γ(S → SM) = θ2 Γh→SM(mS,T ), where the Γh→SM(mS,T ) is the total width of the

SM-like Higgs boson with mass mS,T . We implement using the results taken from [39–41]

and a direct evaluation for leptonic decay at low masses.

13For example, this term can shift the thermal mass of S by a factor of O

[

λS

(

vS

µS

)2
]

.

14Note, though, that strictly speaking one could still satisfy the above bounds while keeping the τS ∼ 0.1 s,

for very low values of λS . The parameter space is however extremely restricted experimentally, as we will

see in section 3.3.
15Note that for heavy mediators a decay/annihilation channels to h could be open resulting in additional

two processes S → hh and SS → hh, governed by A and λSH , respectively. These are not relevant in our

analysis, which is focused on the regime mS < mh for the temperatures around the freeze-out temperature

of S, and therefore are not included.
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Figure 4. Feynman diagrams for the dominant processes governing the freeze-in of χ. (a) The

main χ production mode through mediator decay. (b) The mediator decay to SM particles through

mixing with the Higgs affecting both the freeze-out of S and the branching fraction of late time

decays. (c) Pair annihilation of S contributing to the freeze-out of S. The relative importance of

these processes is to large extent determined by the hierarchy of the highlighted couplings y and

λHS as well as by the mixing angle θ.

The S annihilation cross section as a function of the Mandelstam variable s reads

σv(SS → SM) =
Γh→SM(

√
s)√

s

8λ2
HSv

2

(s−m2
h)

2 +m2
hΓ

2
h

. (3.8)

It can be of the order of the standard WIMP annihilation cross-section, or smaller. This is

because S is unstable and therefore its number density right after freeze-out can be much

larger than for standard WIMP. We will assume that either λHS or the mixing angle θ are

large enough to ensure that S was in equilibrium at very early times (see discussion in the

next section).

Apart from the processes shown in figure 4, additional 2 ↔ 2 processes can in principle

play a role in the production of χs and/or their early-time thermalization with the SM

plasma. These are: SS ↔ χ̄χ, hh ↔ χ̄χ and the co-annihilation process Sh ↔ χ̄χ. The

first one has s−, t− and u-channel contributions which are proportional to θ2λ2
HSy

2
χ and y4χ,

respectively. The second and third have only s-channel diagrams proportional to A2y2χ and

λ2
HSy

2
χ, respectively. It is clear that all of theses 2 ↔ 2 processes are strongly suppressed

with respect to direct S decays due to phase space suppression exhibited by the 2-body

phase space of the former channels. However, in the deeply forbidden regime (i.e., for very

small λS), when the decay is kinematically allowed only at very high temperatures, all the

aforementioned channels could in principle play some role in the evolution of χ. In light of

this, we have implemented all of the above processes in the numerical approach presented

in the next section and checked explicitly that for the parameter ranges covered by our

scan these processes indeed can be safely neglected in solving the evolution equations of S

and χ number densities.

3.2 Relic density and numerical study

In light of the above discussion the coupled computation of the freeze-out of S and the

freeze-in of χ is performed under the assumptions that: i) χ had negligible abundance after

reheating and had not reached chemical equilibrium, ii) S was in chemical equilibrium at

early times and remained in kinetic equilibrium for all the temperatures relevant for the
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production of χs.16 In practice, the assumption made in the numerical code is that the

above conditions are satisfied up to x = 0.1, where we define x ≡ mS/T . For x < 0.1 it is

assumed that S traces its equilibrium value while the evolution of χ is given by eq. (2.11),

starting from the reheating temperature TR assumed to be given by xR = 10−9. We checked

explicitly that assuming different TR does not change the result. For x > 0.1 the coupled

system of the Boltzmann equations for the number densities of S and χ is numerically

solved, including all the relevant processes discussed above.17

Within this setup there are several possible regimes leading to the correct DM abun-

dance. In the following we first show some representative examples of the evolution of the

yields of S and χ for different regimes and then present and discuss the results of our scan

of the parameter space of the model.

3.2.1 Evolution of number densities

In figures 5–7 we present the yields of S and χ for some characteristic cases. In all following

figures the green dashed lines correspond to YS while the solid lines to YDM with the blue

color indicating standard (non-forbidden) regimes and the beige one forbidden regimes.

For completeness, the light gray area highlights the evolution of the yields during the time

before the electroweak phase transition (EWPT). In all the plots the different shadings of

the lines correspond to the variation of the most relevant parameter for a given regime, as

indicated in the figures.

The simplest case is the usual freeze-in, where mS > 2mχ and YDM gradually grows,

with most of the production happening around T ∼ mS . This is shown in figure 5a. In

this case the final relic abundance of χ is insensitive to any variations in the self-coupling

λS due to the fact that the thermal effects are important only for T ≫ mS , which is a very

short (in real time) period. Thus, the thermal mass of S has a very small impact on the

result in the standard freeze-in regime, as expected. Additionally, note that the equilibrium

number density of S is also affected only at early times due to thermal corrections, as they

shift the value of mS,T .

In figure 5b we show a typical case of forbidden freeze-in, where an opposite behaviour

can be seen. The production is active only at small x and is both stronger and terminates

later for larger values of λS . In this forbidden regime the final DM abundance is therefore

very sensitive not only to value of yχ but also the self-coupling of the mediator. Another

16Kinetic equilibrium is an extremely good assumption in the parameter space studied in this work since

away from the Higgs boson resonance elastic scatterings of S off particles of the SM plasma are much more

frequent than annihilations of S. In a different model where this assumption would be violated one would

be required to solve also for the temperature of S or even its full phase space density, see [42]. This would

also bring additional complication to the forbidden freeze-in case as the thermal mass of S would need to

be computed out of equilibrium. In fact, even if S is still in kinetic equilibrium (with the SM plasma or

with itself), but already chemically frozen-out, the thermal mass would not be given by eq. (2.3). However,

this caveat has no implications for our results since in the studied model the forbidden freeze-in happens

at large enough temperatures where S is still in equilibrium.
17This is done to ensure that the χ production from S decay takes into account possible deviations from

chemical equilibrium of S. As stated before, this does not affect the forbidden freeze-in regime in our model,

but it does some part of the parameter space of the standard freeze-in. For discussion and explicit forms

of suitable Boltzmann equations see e.g. [34].
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Figure 5. Typical evolution of the yields of S (dashed green) and χ (solid). The lower the line

opacity the larger the self-coupling λS . (a) A standard freeze-in case where the impact of λS on

the yields is only important at very high T when there is not enough time to produce significant

amounts of χ particles, leading to approximately the same value of their final relic abundance.

(b) A forbidden freeze-in case where the thermal mass of S has the dominant effect that opens up

χ production, hence one finds a very strong dependence of Ωh2 on the self-coupling λS .

point worth stressing is that one does not need large values of λS to get a sizable effect, so

the opening of the forbidden decay due to thermal effects is in fact a generic feature of the

freeze-in mechanism.

Figure 6a shows a case of a transition between the standard and the forbidden regimes.

For fixed mS = 100GeV we vary mχ and see that, as expected, around the transition the

result is very sensitive to precise value of the DM mass. In the forbidden regime increasing

mχ further leads to only very mild change in the relic abundance, i.e., the yield YDM is

inversely proportional to mχ, in agreement with eq. (2.23). This approximate DM mass

independence of the relic density is an distinct feature of the forbidden freeze-in scenario.

In figure 6b a slightly different mechanism is shown. It occurs when nominally this

would be a standard freeze-in case with mS > 2mχ but, due to the EWPT and its effect

on the mass of S (which arises when the SM Higgs gets its VEV due to the presence of

the mixing quartic coupling λHS), there appears a temporary regime where S → χ̄χ is not

allowed and the χ production is blocked for a while. However, if the self-coupling λS is

large enough the thermal mass overcomes the suppression due to the EWPT and re-opens

the decay. This is an example of a situation when the thermal mass has a large impact on

the relic abundance even in the standard freeze-in regime of mS > 2mχ. A scenario like

this is close to what was studied, in a more general context, in ref. [14].

Finally, in figure 7 we show for completeness examples of cases where the χ production

is dominated by the late-time decay of S. These cases are not directly related to the

main focus of this work but are present in some regions of the parameter when we scan

of the full model and therefore important in their own right. In these cases the complete

evolution of both S and χ is crucial. In figure 6a the final DM abundance is determined
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Figure 6. (a) A transition between the standard and the forbidden freeze-in regimes. In the former

(blue solid lines) the final abundance depends strongly on the mχ, while after a sharp transition to

the forbidden regime Ωh2 is only very mildly dependent on the DM mass. (b) Around the EWPT

the T -dependence of the VEV causes a temporary regime where in the standard case the S → χ̄χ is

forbidden and χ production is blocked. However, if the self-coupling λS is large enough the thermal

mass overcomes the suppression of mS,T due to the EWPT and re-opens the decay.

by the branching fraction of the S decays to χ and to SM particles which in the plot is

parametrised by the value of the trilinear coupling A. For smaller values (corresponding

to a weaker mixing with the SM Higgs boson), DM particles constitute a larger fraction of

S-decay products.

Figure 7b shows a situation where the details of the freeze-out of S strongly affect

its abundance that is then transferred to the χs via (rare) decays. This also shows the

potential impact that the choice of λHS can have on the final relic abundance of DM. Note

that in this plot different lines correspond to different relation between x and T due to

electroweak symmetry breaking contribution to mS which depends on λHS .

3.2.2 Scan setup and results

A numerical scan of the model parameter space has been conducted using MultiNest [43]

to direct the scan towards values of the relic density within 2σ of the standard result from

the Planck Collaboration [44] Ωh2 = 0.1198±0.0012 that we set as an allowed range.18 The

private code BayesFITS, automatically created using routines from SARAH [45–47] is used

to interface it with the Mathematica implementing the approach discussed above which we

use to evaluate the relic density. The details of the parameter ranges are given in table 1.

In figure 8 we show the points in the scan that satisfy the DM relic density constraint.

As before, blue colour indicates the standard freeze-in regime and the beige one the for-

bidden regime. It is apparent that these two regimes exhibit very distinct patterns. In

particular, as discussed in a previous section, the standard freeze-in is in most cases not

18We used an additional 10% theoretical uncertainty on our numerical results.
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Figure 7. Examples of yields evolution when the χ production is dominated by the late time decay

of S. (a) Dependence on the trilinear coupling A, which (for fixed λHS) governs the branching ratio

of S decay to χ and to SM particles. Here the freeze-out of S proceeds as for usual WIMP, with

decoupling at x ∼ 20. (b) Dependence on the portal coupling λHS (for fixed A). Lowering λHS

leads to smaller mass, due to the EWSB contribution, and also earlier freeze-out with larger YS

which then translates to larger χ population. Note that in this plot the relation between x and

time/temperature is different for different lines.

Parameter Description Range Prior

µχ (GeV) Dark matter Lagrangian mass 0.005, 50 Log

µS (GeV) Dark Higgs boson Lagrangian mass 0.100, 50 Log

A (GeV) Trilinear mixing 10−8, 10−2 Log

λHS Quartic mixing 10−8, 10−2 Log

yχ Dark matter Yukawa 10−14, 10−8 Log

λS Dark Higgs self-coupling 10−4, 1 Log

Table 1. Ranges of the parameters of the model analysed in this scan. Dimensionful quantities

are given in GeV.

sensitive to the value of self-coupling λS . It also requires very low values of the Yukawa

coupling; otherwise DM is overproduced. In contrast, the forbidden regime is highly sen-

sitive to λS , as expected. Indeed, the smaller the self-coupling, and therefore the thermal

mass, the earlier the production stops and therefore the larger yχ is needed to obtain

the correct relic abundance of DM. Nevertheless, it is a new, interesting regime that is

generically present in our scans and additionally leads to a freeze-in DM interacting more

strongly than in the usually studied scenarios. An important comment is that, while we

explicitly enforce the consistency condition (3.6) for all the scan-based plots, our choice of

parameters implies that most of our points with low dark Higgs boson mass exhibit also a

small quartic mixing λSH . This is a direct consequence of eq. (3.5).
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Figure 8. Points satisfying the observed relic density at 95%CL in the plane λS−yχ for mS < 2mχ

(orange) and mS > 2mχ (blue).
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Figure 9. Experimental limits for our model, for points satisfying the observed relic density at

95%CL in the plane mS − τS for mS < 2mχ (orange) and mS > 2mχ (blue).

3.3 Experimental limits

In dark Higgs models dark matter particles are largely out-of-reach of current experiments

due to their extremely small interactions with the visible sector. The mixing of the scalars

h and S induces, however, interactions of S with the SM particles which are proportional

to θ, hence mediating the decay of S to SM particles (if kinematically allowed). Since

θ is suppressed by powers of vS/v, the dark Higgs boson S is typically long-lived, as

shown in eq. (3.7) — particularly for low masses. In this case bounds from both colliders

and fixed target experiments [48], and for longer life-time, from astrophysics [40] apply.

Such limits have traditionally been very well-studied. We summarise them below and in

figure 9 which indicates the most relevant ones for our setups. First of all, and apart from

enforcing the proper dark matter relic density, astrophysical bounds can be divided in two
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main categories, and typically set an upper bound on the dark Higgs boson lifetime, or

equivalently a lower limit on its mixing angle with the SM Higgs boson.

• Cooling rate of the supernovae SN1987. This limit uses the fact that the core of the

nova is a thermal environment with temperature TSN ∼ 30MeV where dark Higgs

bosons can be produced and — if sufficiently feebly coupled — escape the core and

lead to a faster cooling of the supernova. Standard bounds for dark Higgs boson [49]

are derived from the requirement that the cooling rate from dark sector particles do

not exceed the neutrinos one [50–52].19

• Bounds from enforcing a successful big bang nucleosynthesis. We use the recent

bounds from [40] which are derived from the same Lagrangian as in section 3.1. In

the lower mass range (below the π-meson mass threshold) the dominant bounds are

derived by constraining the entropy injections from the e+e−/ µ+µ− decays of the

dark Higgs boson. Once dark Higgs boson annihilation/decay into hadrons becomes

accessible, more stringent bounds arise from preventing neutron-proton ratio to differ

significantly from 1/6 ∼ 1/7 due to the p ↔ n meson-mediated interaction. Finally,

for heavy enough dark Higgs boson, direct baryon/anti-baryon production become

the dominant decay channel of S. The subsequent anti-baryon annihilation with the

ambient proton and neutron population further modifies the proton-neutron ratio.

This limit dominates above the di b-quark threshold. An important comment is

that this limits depends on the dark Higgs bosons abundance YS , however given

our restriction eq. (3.6), dark Higgs bosons abundance typically freezes-out earlier

than in [40] which implies that the relativistic abundance is maintained for larger

masses. Altogether, modifying λHS only changes the limits by an O(1) factor, as can

be seen in [40]. This is a simple consequence of the fact that, in order to avoid a

significant modification of the p/n ratio, one relies on ensuring that the dark Higgs

boson decay before BBN. The limit then roughly depends on the exponentially

suppressed initial abundance YS exp(−tp/n/τS) where tp/n ∼ 2.6s is the freeze-out

time of the proton/neutron ratio.20

The second class of constraints arises from colliders and beam-dump experiments, and

typically sets a lower bound on the dark Higgs boson life-time.

• Limits from dark Higgs boson production and decay. Based on the original ALP

searches in CHARM [53], these limits have been recently updated with a better

modelling of the dark Higgs boson lifetime in the challenging region of mS around

1GeV in [41]. Note that we have included the projected limits from SHiP at 2×1020

proton-on-target [54] as a long-term prospect. Similarly, and as an example of limits

from LHC-based experiments, we have included a projection for FASER phase 2

19While we use here the results from [49], this should be considered only an order of magnitude calculation.

Note, however, that for the parameter space presented in section 3.1, this bound is not directly relevant as

can be seen in figure 9.
20This behaviour is clearly illustrated in figure 2, from ref. [40].
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at the HL-LHC from [55]. Notice that these next generation experiments have the

potential to start probing the relevant parameter space.

• Precision physics in meson decays. In the lower mass range, the dominant limits arise

from the meson decay K+ → π+νν studied in the E949 experiment [56]. Finally, for

the heavier mass range — corresponding to intermediate masses around 1GeV —

the main constraints come from searches for visible decay of B-meson by the LHCb

collaboration [57]. In both cases, we use the recasted bound from [41].

Note that in the long term, several planned experiment have the potential to greatly im-

prove the limits in this mass range [48]. LHC-based experiments, such as FASER, MATH-

USLA [58] or CODEX-b [59] are particularly interesting in that the decay of Higgs bo-

son mediated through the quartic mixing λHS can significantly enhanced the detection

prospects as they are not tied to the mixing angle per-se but only to λSH (hence the in-

visible branching ratio of the SM Higgs). Saturating the limits from invisible Higgs decay

then leads to orders of magnitude improvements, particularly in the case of MATHUSLA

or CODEX-b [48].

4 Conclusion

In this article we studied the forbidden freeze-in regime. Building on a standard decay-

mediated freeze-in scenario, we focused on the case where the decaying mediator field

couples strongly enough to the SM thermal bath to develop a significant thermal mass at

high temperature. This strongly modifies existing predictions, and in particular leads to a

particularly interesting regime of forbidden freeze-in, where the decay into DM particles is

kinematically forbidden in the vacuum but is allowed to proceed in the thermal bath.

In section 2, we described in some detail the effect of including a sizeable thermal mass

of the mediator. Assuming that the main production channel of DM is the decays of a bath

particle into a pair of DM particles, we showed that freeze-in can be dominant at both high

and low temperatures, depending on the dimension of the operators that couple the DM to

the bath particle. Although the d > 4 operators show high-temperature dominance of DM

production, this is different from the standard freeze-in case at high temperatures since the

dominance does not happen due to the kinematics of the production process, but due to

the thermal mass of the bath particle. Comparing the forbidden with the standard case of

high-temperature freeze-in, we showed that the forbidden freeze-in is generally less efficient,

leading to a stronger coupling between the DM particle and the mediator. For the case of

operators with d ≤ 4 we showed that the production is dominant at lower temperatures

close to the DM mass. In this case the scale of DM production is insensitive to the scale

of inflation and reheating, similarly to the case of standard “freeze-out”. Furthermore,

the relic abundance is ultimately almost insensitive to the DM mass and the coupling

responsible for the DM production can take significantly larger values than in the standard

freeze-in scenario.

As a concrete example we studied a scalar portal model where the DM (assumed to

be a Dirac fermion) is coupled only to a scalar which in turn is coupled to the SM Higgs
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boson field. In section 3 we showed the effect that the scalar thermal mass has on the

production of DM. We studied in detail the solution of the coupled Boltzmann equations

for the DM particle and the mediator and discussed various possible types of the evolution

of DM relic density. We also performed a scan of the parameter space of the model at hand

and presented the region where the observed relic abundance can be obtained. Focusing

on the same model, in section 3 we discussed its experimental search prospects. Since the

DM coupling to the SM particles is expected to be extremely suppressed (due to the small

Yukawa coupling and the small mixing angle between the portal and Higgs boson fields)

this model can be mostly probed by searching for a long-lived scalar mediator. We showed

the impact of all the relevant bounds on the parameter space, including BBN, LHCb,

CHARM, as well as astrophysical bounds for the presence of a light scalar field coupled to

the Higgs boson. Also, we discussed the reach of upcoming fixed-target experiments (SHiP

and FASER) and showed what part of the parameter space they will be able to probe.

As we have already pointed-out, the forbidden freeze-in regime is a general feature

of the freeze-in mechanism. It greatly expands the parameter space in models where

otherwise the DM cannot be produced by the decays of bath particle. Therefore, the

analysis performed in this work not only provides new interesting viable regions of the

Higgs portal model but may also bring some insight into how the forbidden freeze-in works

in general. Our results also strongly suggest that it would be interesting to re-examine

the dark matter abundance in other types of freeze-in models in order to uncover their

respective forbidden freeze-in regimes.
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