
Forbidden paths and 
y
les in ordered graphs and matri
esJ�anos Pa
h G�abor TardosAbstra
tAt most how many edges 
an an ordered graph of n verti
es have if it does not 
ontain a�xed forbidden ordered subgraph H? It is not hard to give an asymptoti
ally tight answer to thisquestion, unless H is a bipartite graph in whi
h every vertex belonging to the �rst part pre
edesall verti
es belonging to the se
ond. In this 
ase, the question 
an be reformulated as an extremalproblem for zero-one matri
es avoiding a 
ertain pattern (submatrix) P . We disprove a general
onje
ture of F�uredi and Hajnal related to the latter problem, and repla
e it by some weakeralternatives. We verify our 
onje
tures in a few spe
ial 
ases when P is the adja
en
y matrixof an a
y
li
 graph and dis
uss the same question when the forbidden patterns are adja
en
ymatri
es of 
y
les. Our results lead to a new proof of the fa
t that the number of times that theunit distan
e 
an o

ur among n points in the plane is O(n4=3).1 Introdu
tionA simple graph G with a linear ordering on its vertex set V (G) is 
alled an ordered graph. The edgeset of G is denoted by E(G). In the spirit of the fundamental problem of Tur�an-type extremal graphtheory [3℄, one 
an raise the following general question. What is the maximum number ex<(n;H) ofedges that an ordered graph on n verti
es 
an have without 
ontaining a (not ne
essarily indu
ed)subgraph isomorphi
 to a �xed ordered graph H? The ordering of the verti
es is inherited by thesubgraphs. An isomorphism between two ordered graphs is an isomorphism between the underlyingunordered graphs that respe
ts the ordering of the verti
es. If a graph does not 
ontain H as anordered subgraph, it is 
alled H-free. We assume H has at least one edge.De�ne the interval 
hromati
 number �<(H) of an ordered graph H, as the minimum numberof intervals the (linearly ordered) vertex set of H 
an be partitioned into, so that no two verti
esbelonging to the same interval are adja
ent inH. By a simple appli
ation of the Erd}os{Stone theorem[7℄, one 
an easily des
ribe the asymptoti
 behavior of ex<(n;H), unless �<(H) = 2. See also [5℄ fora similar result and proof.Theorem 1 For any ordered graph H, the maximum number of edges that an H-free ordered graphwith n verti
es 
an have satis�esex<(n;H) = �1� 1�<(H)� 1��n2�+ o(n2):Proof. Let G be an H-free ordered graph with n verti
es. Let m = jV (H)j, � = �<(H), and letK�(m) denote the unordered �-partite 
omplete graph with m verti
es in ea
h of its vertex 
lassesV1; : : : ; V�. It follows from the Erd}os{Stone theorem that if the unordered graph obtained from G bydisregarding the ordering 
ontains no K�(m), then its number of edges is at most �1� 1��1� �n2�+o(n2). 1



Therefore, it is suÆ
ient to show that in any ordering of K�(m) there is an ordered subgraphisomorphi
 to H. To see this, let v1i ; : : : ; vmi be the elements of Vi in in
reasing order (1 � i � �).Partition the vertex set of H into � independent intervals. For 0 � j � �, let mj stand for the totalsize of the �rst j intervals. De�ne a permutation � on f1; : : : ; �g as follows. Let �(1) be the index ifor whi
h vm1i is the smallest. Assume that we have already de�ned �(1); : : : ; �(j � 1). Let �(j) bethe index i di�erent from the previous ones for whi
h vmji is the smallest. Now we 
an easily givean order preserving embedding of H into K�(m): if the jth smallest vertex of H belongs to the ithinterval (that is, we have mi�1 < j � mi), then map it to vj�(i). 2This theorem naturally extends to families H of forbidden ordered subgraphs with �<(H) :=minf�<(H)jH 2 Hg.Note that the interval 
hromati
 number is easily 
omputable. Indeed, by a simple greedyalgorithm one 
an eÆ
iently �nd an optimal partition of the vertex set of H into �<(H) independentintervals. This is in sharp 
ontrast with the fa
t that even the approximation of the usual 
hromati
number of a graph is an NP-hard task.As shown by Theorem 1, determining the maximum number of edges of an H-free ordered graphbe
omes more interesting when �<(H) = 2. In this spe
ial 
ase, it is more 
onvenient to restri
tour attention to H-free ordered graphs G whi
h themselves have interval 
hromati
 number 2. Theverti
es of su
h a graph 
an be enumerated as v1 < v2 < : : : < vn < vn+1 < : : : < vn+m so thatevery edge of G 
onne
ts some vi; i � n to a vj; j > n. Let A = A(G) be an n�m adja
en
y matrixwhose rows and 
olumns 
orrespond to the verti
es vi, i � n and vj , j > n, respe
tively, and whoseentry ai;j�n = 1 if vivj is an edge of G, and 0 otherwise. A(G) is uniquely determined if G hasa unique de
omposition into two independent intervals. This is the 
ase, for example, if G has noisolated verti
es. Conversely, any n�m zero-one matrix A gives rise to an ordered graph G(A) with�<(G(A)) � 2, whose verti
es 
orrespond to the rows and 
olumns of A, and the adja
en
ies betweenthe two kinds of verti
es depend on the 
orresponding entry of A. We always have G(A(G)) = G.The weight w(A) of a zero-one matrix A is the number of its 1 entries. A zero-one matrix ofpositive weight is 
alled a pattern. Following [9℄, we say that a zero-one matrix A 
ontains a patternP if P is a submatrix of A or if P 
an be obtained from a submatrix of A by 
hanging some 1 entriesto 0. The 
orresponding submatrix of A is said to represent P . Noti
e that we 
an delete somerows or 
olumns of A to �nd the submatrix P , but we are not allowed to permute the remainingrows and 
olumns. If A does not 
ontain P , we say that A avoids P . Let ex(n;m;P ) denote themaximum weight of an n�m zero-one matrix that avoids P . For simpli
ity, write ex(n; P ) insteadof ex(n; n; P ). If a family P of patterns is forbidden, we use ex(n;P) to denote the 
orrespondingmaximum weight. The problem of estimating these fun
tions for various patterns has been 
onsideredin [1, 2, 8, 9, 11, 15℄.Let G and H be two ordered graphs with interval 
hromati
 number 2, and assume that H hasa unique de
omposition into two independent intervals. Then G is H-free if and only if A(G) avoidsA(H). Therefore, if G is H-free and the �rst and se
ond intervals in its de
omposition 
onsist of nand m elements, respe
tively, then its number of edges satis�esjE(G)j � ex(n;m;A(H)):If we only assume that �<(H) = 2, but there is no assumption on the host graph G, then thesituation is somewhat more 
ompli
ated. Nevertheless, in Se
tion 2 we prove the following generalresult linking the solutions of the extremal problems for graphs and for patterns (matri
es).2



Theorem 2 Let H be an ordered graph with interval 
hromati
 number 2, whi
h has a uniquede
omposition into two intervals that are independent sets. Then we haveex(bn=2
; A(H)) � ex<(n;H) = O(ex(n;A(H)) log n):Moreover, if ex(n;A(H)) = O(n
) holds for some 
 > 1, then we have ex<(n;H) = O(n
).We 
onje
ture that if H is an ordered tree of interval 
hromati
 number 2, then ex<(n;H) is onlyat most slightly superlinear (Conje
ture 1). In Se
tion 3, we verify this statement in several spe
ial
ases.In Se
tion 4, we 
onsider the 
ase when H is an ordered 
y
le (of even length) with �<(H) = 2.It is well known (see [3℄) that there are (unordered) graphs with n verti
es and with at least 
onstanttimes n1+ 12k edges that 
ontain no 
y
le of length 2k or shorter. Therefore, by Theorem 2, in this
ase the order of magnitude of ex<(n;H) is the same as that of the solution of the 
orrespondingmatrix problem. In Se
tion 4, we analyze the latter version of the question.We 
all a sequen
e C = (p0; p1; : : : ; p2k) of positions in a matrix A an orthogonal 
y
le if p0 = p2kand the positions p2i and p2i+1 belong to the same row, while the positions p2i+1 and p2i+2 belongto the same 
olumn, for every 0 � i < k. If the entry of A in positions pi is 1 for all 0 � i � 2k, thenC is said to be an orthogonal 
y
le of A. Noti
e that, for any zero-one matrix A, ea
h 
y
le of G(A)(with a starting point and an orientation) 
orresponds to an orthogonal 
y
le of A. In general, anorthogonal 
y
le of A 
orresponds to a walk in G(A) that starts and ends at the same vertex.Given a position p = (i; j) of the matrix A and an orthogonal 
y
le C = (p0; p1; : : : ; p2k), de�neC(i; j) to be the number of times that the possibly self-interse
ting polygon p0p1 : : : p2k en
ir
les (inthe 
ounter-
lo
kwise dire
tion) a point p0 = (i + 1=2; j + 1=2) of the plane. Here we interpret theposition (i; j) in a matrix as the point (i; j) or the Eu
lidean plane. Noti
e that this 
onvention isagainst the tradition of writing the �rst row of a matrix on top. Formally, let P (i; j) be the set ofpositions (i0; j0) with i0 > i and j0 > j, and setC(i; j) = jf0 < l � k : p2l 2 P (i; j)gj � jf0 < l � k : p2l�1 2 P (i; j)gj:An orthogonal 
y
le is said to be positive if C(i; j) � 0 for every pair (i; j) and C(i; j) is stri
tly posi-tive for at least one su
h pair. A 
olle
tion C of orthogonal 
y
les is 
alled positive ifPC2C C(i; j) � 0for every (i; j) and there exists at least one (i; j) for whi
h this sum is positive.Let G be an ordered graph with interval 
hromati
 number 2. It is easy to 
he
k that, for any
y
le of length 4, the 
orresponding entries of the adja
en
y matrix A(G), with a proper orientation,form a positive orthogonal 
y
le. However, the entries of A(G) assigned to the edges of a 
y
leof length 6 may or may not indu
e a positive orthogonal 
y
le. For obvious reasons, 
y
les of theformer type are 
alled non
rossing hexagons. Katz [10℄ proved that the maximum weight of an n by nzero-one matrix that avoids 
y
les of length four and non
rossing hexagons (or, equivalently, positiveorthogonal 
y
les of length at most 6) is O �n 32�"� for some " > 0. This is somewhat stronger thanthe trivial bound O �n 32�, whi
h is tight when only 4-
y
les are forbidden. Katz applied his resultto measure-theoreti
 problems.The main result of Se
tion 4 is the following.Theorem 3 The maximum weight of an n by n zero-one matrix 
ontaining no positive orthogonal
y
le is O(n4=3). The order of magnitude of this bound 
annot be improved.3



In fa
t, we prove a stronger result (Theorem 5) that provides several 
ounterexamples to a
onje
ture of F�uredi and Hajnal [9℄. It also o�ers a new proof of the following well-known theoremof Spen
er, Szemer�edi, and Trotter [12℄.Corollary 1 [12℄ The number of unit distan
e pairs determined by n points in the plane is O(n4=3).The proof of these fa
ts, a 
ounterexample to a related 
onje
ture of Brass, K�arolyi, and Valtr[5℄, as well as some 
on
luding remarks are presented in Se
tion 5.2 Ordered graphs vs. zero-one matri
esFirst, we establish Theorem 2 
onne
ting the extremal problems for ordered graphs and matri
es.Roughly speaking, it shows that if we want to estimate the maximum number of edges that an H-freeordered graph of n verti
es 
an have, we do not lose mu
h by restri
ting the sear
h to ordered graphswith interval 
hromati
 number 2. For the proof, we need two simple observations summarized inthe following lemma. Throughout this paper, log always stands for logarithm of base 2.Lemma 1 (i) For any ordered graph G of n verti
es, one 
an �nd edge disjoint subgraphs Gi for0 � i � dlog ne su
h that E(G) = [dlog nei=0 E(Gi) and ea
h 
onne
ted 
omponent of Gi has atmost dn=2ie verti
es and interval 
hromati
 number at most 2.(ii) (Super-additivity) For any pattern P and for any positive integers n and m, we haveex(n+m;P ) � ex(n; P ) + ex(m;P ):Proof. To show (i), denote the verti
es of G by v0; : : : ; vn�1. Let Gi 
onsist of all edges vjvk 2 E(G),for whi
h b2ij=n
 = b2ik=n
 but b2i+1j=n
 6= b2i+1k=n
. These subgraphs obviously meet therequirements.To verify part (ii), we establish the super-additivity of the asymmetri
 version of the ex fun
tion:ex(n1 +m1; n2 +m2; P ) � ex(n1; n2; P ) + ex(m1;m2; P ):Assume �rst that P = (pij) has at least a single 1 entry in its �rst row, at least one 1 in its last row,and that the same holds for its �rst and last 
olumns. Mark a 1 entry in the �rst row of P red, a 1entry in the last row of P blue, and assume without loss of generality that the blue entry does notlie to the right of the red one. Let A and B be n1�n2 and m1�m2 zero-one matri
es, respe
tively,that avoid P . Let us obtain the (n1 +m1) � (n2 +m2) matrix C by putting A and B together asblo
ks along the main diagonal, and �lling all the remaining positions by 0. We 
laim that C avoidsP . Suppose not. If the red entry of P is represented in blo
k B or the blue entry is represented inblo
k A, then B or A would not avoid P , respe
tively. Thus, we 
an assume that the blue entry isrepresented in B, and the red entry is represented in A. However, in this 
ase the blue entry lies tothe right of the red one, whi
h is impossible.Suppose next that, e.g., the �rst row of P 
ontains no entry 1. For any matrix A, let A0 denotethe matrix obtained from A by removing its �rst row. Then A 
ontains P if and only if A0 
ontainsP 0. Using this simple observation, it is not hard to see that ex(n;m;P ) = ex(n� 1;m; P 0)+m. Thisimplies that super-additivity is inherited from P 0 to P . Therefore, it must hold for every patternP . 24



Proof of Theorem 2. The inequality ex<(n;H) � ex(bn=2
; A(H)) dire
tly follows from thede�nitions: if A is an bn=2
 � bn=2
 zero-one matrix not 
ontaining A(H), then G(A) is an H-freeordered graph on 2bn=2
 verti
es whose number of edges 
oin
ides with the weight of A.To prove the upper bound on ex<(n;H), 
onsider an ordered graph G on n verti
es that doesnot 
ontain H. Apply Lemma 1 (i) to partition the edges of G into subgraphs Gi satisfying the
onditions. Sin
e any nontrivial 
onne
ted 
omponent C of Gi is H-free, the matrix A(C) 
annot
ontain A(H). Thus, we have eC � ex(nC ; A(H)), where nC and eC denote the number of verti
esand the number of edges in C. If ex(n;A(H)) = O(n
) for some 
 > 1, then summing these estimatesover all i and over all 
onne
ted 
omponents C of Gi, we obtain that jE(G)j = O(n
), as required.In the general 
ase, summing over all 
onne
ted 
omponents C of a �xed Gi and using the super-additivity property in Lemma 1 (ii) we 
an 
on
lude that jE(Gi)j � ex(n;A(H)), and hen
e G hasat most (log n+ 2)ex(n;A(H)) edges. 2As shown by Theorem 2, there is little di�eren
e between the extremal problems for orderedgraphs and for the 
orresponding zero-one matri
es. In many 
ases, one 
annot get rid of thelogarithmi
 fa
tor in the se
ond inequality. Consider, for instan
e, the ordered graph G4 withverti
es v1 < v2 < v3 < v4 and edges v3v1, v1v4, and v4v2. As an unordered graph, G4 is a path oflength 3. Now A(G4) is a 2� 2 matrix 
onsisting of three 1 entries and a 0 entry. It is easy to verifythat ex(n;A(G4)) = 2n� 1.On the other hand, let G be an ordered graph with verti
es v1; : : : ; vn; where vi is 
onne
ted tovj if and only if ji � jj is a power of 2. Clearly, G is G4-free and its number of edges is at leastn logn� n. Thus, in this 
ase we haveex<(n;G4) � n logn� n � log n4 ex(n;A(G4)):We remark that Lemma 1 (ii) 
on
erning the super-additivity of the fun
tion ex(n; P ), does notextend to arbitrary families of forbidden patterns. For instan
e, let P be the family 
onsisting of alln � n zero-one patterns of weight 1. Clearly, we have ex(i;P) = i2 for i < n, but ex(i;P) = 0 fori � n.3 TreesWe say that an ordered graph is a
y
li
 if its underlying unordered graph 
ontains no 
y
les. Theaim of this se
tion is to establish some partial results 
on
erning the following 
onje
ture.Conje
ture 1 For any a
y
li
 ordered forbidden graph H with interval 
hromati
 number 2, wehave ex<(n;H) � n(log n)O(1).Noti
e that, if true, this statement strongly 
hara
terizes a
y
li
 ordered graphs H with �<(H) �2: for any other graph H, there exists " > 0 su
h that ex<(n;H) � n1+". Indeed, in view ofTheorem 1, if �<(H) � 3, the extremal fun
tion ex<(n;H) is quadrati
. On the other hand, if Hhas a 
y
le of length k (with any ordering), then its extremal fun
tion is at least as large as themaximum number of edges that a Ck-free unordered graph of n verti
es 
an have, whi
h is 
(n1+ 1k ).Conje
ture 1 is stated with the upper bound n(logn)O(1). We do not know, however, any 
oun-terexample to this 
onje
ture with the stronger bound O(n log n), whi
h has been proposed by F�urediand Hajnal [9℄. It would also be interesting to prove a weaker form of the same statement, a

ordingto whi
h ex<(n;H) = O(n1+") holds for any " > 0.5



In order to establish Conje
ture 1 in some spe
ial 
ases, we need a 
ouple of statements relatedto the 
orresponding problems for zero-one matri
es.Lemma 2 Assume that the last 
olumn of a pattern P 
ontains a single 1 entry, and let P 0 denotethe pattern obtained from P by removing this 
olumn. Then we haveex(n; P ) = O0�Xi�0 2iex(bn=2i
; P 0)1A ;and, 
onsequently, ex(n; P ) = O (ex(n; P 0) log n) : Furthermore, if ex(n; P 0) = O(n
) holds for some
 > 1; then we have ex(n; P ) = O(n
).Proof. It is suÆ
ient to prove the �rst part of the statement, be
ause it implies the last two 
laims,just like in the proof of Theorem 2.Let A be an n�m zero-one matrix, whi
h avoids P and whose weight is maximum, that is, wehave w(A) = ex(n;m;P ). Assume that m is even and 
onsider the submatrix A1 of A formed by allrows of A that have no 1 entry in their last m=2 positions. Let A2 be the submatrix of A formed bythe remaining rows A. Denote by n1 and n2 the number of rows in A1 and A2, respe
tively, so thatwe have n1 + n2 = n. Furthermore, for i = 1 and 2, let Ai1 and Ai2 denote the submatri
es of Aiformed by the �rst m=2 and by the last m=2 
olumns of Ai, respe
tively. Clearly, we haveex(n;m;P ) = w(A) = w(A11) + w(A12) + w(A21) + w(A22);where w(A12) = 0 holds, by de�nition. Sin
e the other three matri
es on the right-hand side are sub-matri
es of A, they all avoid P . Therefore, w(A11) � ex(n1;m=2; P ) and w(A22) � ex(n2;m=2; P ).As for A21; it also avoids the pattern P 0. Indeed, if A21 had a submatrix representing P 0, adding toit a 
olumn of A22 we would obtain a representation of P . Thus, we have w(A21) � ex(n2;m=2; P 0).This yields ex(n;m;P ) � ex(n1;m=2; P ) + ex(n2;m=2; P ) + ex(n2;m=2; P 0):Assume now that m = 2k. Applying the above bound re
ursively k times, we 
on
lude thatex(n;m;P ) � kXi=1 2i�1Xj=1 ex(nij;m=2i; P 0) + n;where the nonnegative integers nij satisfy that P2i�1j=1 nij � n, for any 1 � i � k.Every n�mmatrix avoiding P 0 
an be partitioned into dn=me submatri
es of size at most m�m,so that we have ex(n;m;P 0) � dn=meex(m;P 0). This, in turn, impliesex(n; P ) � kXi=1(2i + 2i�1)ex(n=2i; P 0) + n;if n = 2k. Thus, the �rst statement of the lemma holds for powers of 2, and, by the monotoni
ity ofthe ex fun
tion, it is also true for all other values of n. 2There are several examples showing that the logarithmi
 fa
tor in Lemma 2 
annot be always re-moved. Let F = � 1 1 01 0 1 �. F�uredi [8℄ and Biensto
k-Gy}ori [2℄ proved that ex(n; F ) = �(n log n),6



while Tardos [15℄ found the sharper estimate ex(n; F ) = n logn+O(n): On the other hand, as men-tioned before, the pattern F 0 obtained from F by removing its last 
olumn satis�es the equationex(n; F 0) = 2n� 1.Applying Theorem 2 on
e and Lemma 2 several times, one 
an verify Conje
ture 1 for a large
lass of graphs. By symmetry, one 
an apply Lemma 2 to eliminate the �rst 
olumn or the �rst (last)row of a pattern, provided that it has a single 1 entry. In parti
ular, the 
onje
ture holds for allperfe
t mat
hings, i.e., ordered graphs H whose adja
en
y matrix A(H) has pre
isely one 1 in ea
hof its rows and 
olumns. In fa
t, in this 
ase, improving some earlier results of Alon and Friedgut[1℄, Mar
us and Tardos [11℄ established a linear upper bound on ex(n;A(H)). The smallest orderedgraphs H for whi
h Conje
ture 1 
annot be proved in this way are paths of length 5 whose adja
en
ymatrix A(H) is 0� 1 0 11 0 00 1 1 1A ;or one of the three other matri
es that 
an be obtained from this one by rotation (or re
e
tion).Before proving Conje
ture 1 for this path and for many other patterns, we propose a generalizationof Lemma 2 that would immediately imply Conje
ture 1 in its full generality.Conje
ture 2 Let P be a pattern whi
h has a 
olumn with a single 1 entry, and let P 0 denote thepattern obtained from P by removing su
h a 
olumn. Then we haveex(n; P ) = O(ex(n; P 0) log n):Using the fa
t that every tree has a vertex of degree 1, it would follow from Conje
ture 2 thatex<(n;H) = O(n logjV (H)j�3 n)holds for any ordered tree or forest H whose interval 
hromati
 number is 2.In the following two lemmas, we verify Conje
ture 2 in some spe
ial 
ases.Lemma 3 Let P = (pij) be a pattern whose j0-th 
olumn 
ontains a single 1 entry at pi0j0 = 1.Assume further that pi0(j0+1) = 1 and that there exists an index i1 with pi1(j0�1) = pi1(j0+1) = 1. LetP 0 denote the pattern obtained from P by removing 
olumn j0. Then we haveex(n; P ) = O(ex(n; P 0) log n):Proof. Let A = (aij) be an n� n zero-one matrix whi
h avoids P and whose weight is maximum,that is, w(A) = ex(n; P ). For any i and j, let mij stand for the largest j0 < j with aij0 = 1. In the
ase when no su
h j0 exists, mij is not de�ned.For 0 � l � blog n
, de�ne an n�n zero-one matrix Al = (a(l)ij ), as follows. Set a(l)ij = 1 if aij = 1,mij is de�ned, and j � 2l+1 < mij � j � 2l. We have that,blog n
Xl=0 w(Al) � w(A) � n;asPAl 
ontains ea
h 1 entry of A with the ex
eption of the �rst su
h entry in ea
h row. Obviously,if a(l)ij = a(l)ij0 = 1 and j < j0, then we have j + 2l � j0. Now let A0l denote the n� n zero-one matrix7



obtained by deleting every other 1 entry in every row of Al but keeping w(A0l) � w(Al)=2. Clearly,any two 
onse
utive 1 entries in ea
h row of A0l are at least 2l+1 positions apart.We 
laim that, for 0 � l � blog n
, the matrix A0l avoids P 0. Assume, to the 
ontrary, that A0lhas a submatrix B whi
h represents P 0. Let 
olumn j0�1 and 
olumn j0 of B be 
olumns j0 < j00 inA0l. Let rows i0 and i1 of B be rows i0 and i00 in A0l. As 
olumn j0 of B 
orresponds to 
olumn j0+1of P , and we have pi1(j0�1) = pi1(j0+1) = pi0(j0+1) = 1, we obtain that A0l has 1 entries in ea
h of thepositions (i00; j0), (i00; j00), and (i0; j00). In parti
ular, we have j0 + 2l+1 � j00. Now we 
onsider thesubmatrix C of A 
onsisting of all rows and 
olumns that 
onstitute B and of the additional 
olumnmi0j00 . As a(l)i0j00 = 1, the value mi0j00 is well de�ned and we have j00 > mi0j00 > j00 � 2l+1 � j0. Thus,the new 
olumn is 
olumn j0 of C. As ai0mi0j00 = 1, the submatrix C represents P , a 
ontradi
tion.Now the proof 
an be 
ompleted by simple 
al
ulation:ex(n; P ) = w(A) � n+ blog n
Xl=0 w(Al)� n+ 2 blog n
Xl=0 w(A0l)� n+ 2 blog n
Xl=0 ex(n; P 0)= O(ex(n; P 0) log n): 2The proof of the following lemma is very similar to that of Lemma 3 and is, therefore, left to thereader.Lemma 4 Assume that the pattern P = (pij) 
ontains two 
olumns j0 and j0 + 1, both of whi
hhave pre
isely one 1 entry, at the positions pi0j0 = pi1(j0+1) = 1. Suppose further that pi0(j0�1) =pi1(j0+2) = 1.If there exists a row i2 with pi2(j0�1) = pi2(j0+2) = 1, then we haveex(n; P ) = O(ex(n; P 0) log2 n);where P 0 is obtained from P by removing 
olumns j0 and j0 + 1. 2By multiple appli
ation of Theorem 2 and Lemmas 2 and 3, one 
an easily verify Conje
ture 1 forall ordered graphs on at most 6 verti
es. For ordered graphs on 7 verti
es, we 
an pro
eed similarly(also using Lemma 4), ex
ept when the adja
en
y matrix of the forbidden ordered subgraph isequivalent (up to rotation or re
e
tion) to one of the following two patterns:0� 0 1 0 11 0 0 11 0 1 0 1A 0� 0 1 0 11 0 1 01 0 0 1 1AFor these \ex
eptional" ordered paths of length 6 (a 
ouple of whi
h are depi
ted in Figure 1), ourmethods break down. We do not know any upper bound better than O(n5=3), whi
h follows fromthe fa
t that the 
orresponding bipartite graph 
ontains no K3;4.8



Figure 1.Two ex
eptional paths of length 6.4 Cy
lesTo formulate our results, we have to 
onsider the following �ve properties of n�N zero-one matri
esM . Properties (a) and (a') 
orrespond to in�nite families of forbidden subgraphs, in
luding manyordered 
y
les. The ne
essary de�nitions 
an be found in the Introdu
tion.(a) No 
olle
tion of orthogonal 
y
les of M is positive.(a') No orthogonal 
y
le of M is positive.(b) M 
an be obtained from an n � N real matrix M 0 = (m0i;j) by repla
ing ea
h 0 entry by 1and ea
h nonzero entry by 0. For every 1 � i < n and 1 � j < N , the matrix M 0 satis�esdi;j := m0i+1;j+1 �m0i+1;j �m0i;j+1 +m0i;j > 0.(b') There is a bivariate twi
e 
ontinuously di�erentiable real fun
tion f satisfying ddx ddyf(x; y) > 0for all x and y and real values x1 < x2 < : : : < xn, y1 < y2 < : : : < yN su
h that M = (mi;j)is de�ned by mi;j = � 1 if f(xi; yj) = 00 otherwise.(
) M 
an be obtained from a matrix M 00 whose entries are 0, 1, and �1, by repla
ing ea
h 0 entryby a 1 and ea
h �1 entry by 0. Every 2� 2 submatrix (bij)j=1;2i=1;2 of M 00 satis�es at least one ofthe following four 
onditions: b11 = +1, b12 = �1, b21 = �1, or b22 = +1.We start with the simple 
onne
tions between the 
onditions (a) and (a'), and (b) and (b'),respe
tively.Lemma 5 For any zero-one matrix M , we have(i) (a))(a');(ii) (b),(b');(iii) if G(M) is 
onne
ted, then (a),(a').Proof. We just sket
h the simple proofs.Part (i) is trivial.For part (ii), (b'))(b) assume M is obtained from the fun
tion f as in 
ondition (b'). We de�neM 0 = (m0i;j) by setting m0i;j = f(xi; yj). Noti
e thatdi;j = Z xi+1xi Z yj+1yj � ddx ddy f(x; y)� dy dx > 0:9



For the reverse impli
ation (b))(b'), assume thatM 
an be obtained from the matrixM 0 = (m0i;j)in the way des
ribed in 
ondition (b). Set xi = i for 1 � i � n and yj = j for 1 � j � N and de�nef0(i; j) = m0i;j for integers 1 � i � n and 1 � j � N . Next we extend f0 as a bilinear fun
tion toea
h of the boxes [i; i+1℄� [j; j +1℄ for integers 1 � i < n and 1 � j < N , separately. The resultingfun
tion f0 is 
ontinuously de�ned on [1; n℄ � [1; N ℄ and satis�es ddx ddyf(x; y) = di;j > 0 if x andy are not integers and i and j are their integer parts. However, f is not ne
essarily di�erentiableat points with at least one integer 
oordinate. We de�ne f as a twi
e 
ontinuously di�erentiableapproximation of f0 satisfying the 
ondition on the positive mixed derivative everywhere. We 
anmake sure that f agrees with f0 on the integer points. Finally, we extend f to the entire real planekeeping the mixed derivative positive everywhere. This fun
tion shows that M satis�es (b0).To establish part (iii) (a'))(a), one has to \
ombine" the orthogonal 
y
les of M in a positive
olle
tion into one big orthogonal 
y
le. To 
ombine two orthogonal 
y
les C 0 = (p0; : : : ; p2k) andC 00 = (q0; : : : ; q2l) of M , 
onsider a sequen
e of positions (r1; r2; : : : ; r2s) that represent a path inG(M) from the vertex 
orresponding to the row of p0 to the vertex 
orresponding to the row of q0.Now C = (p0; p1; : : : ; p2k�1; r1; r2; : : : ; r2s; q0; q1; : : : ; q2l�1; r2s; r2s�1; : : : ; r1; p0) is another orthogonal
y
le of M and we have C(i; j) = C 0(i; j) + C 00(i; j) for every i and j. 2The following 6� 6 matrix shows that the (a))(a') impli
ation 
annot be always reversed.0BBBBBB� 0 0 1 0 0 10 0 0 1 1 01 0 0 0 1 00 1 0 0 0 10 1 1 0 0 01 0 0 1 0 0
1CCCCCCATheorem 4 For any zero-one matrix M , 
onditions (a){(
) satisfy the following impli
ations:(a),(b))(
).Proof. First we show that (b))(a). Assume that an n�N matrix satis�es 
ondition (b). For anyorthogonal 
y
le C = (p0; : : : ; p2k), easy 
al
ulation givesn�1Xi=1 N�1Xj=1 C(i; j)di;j = 2k�1Xl=0 (�1)lm0pl ;where m0pl represents the entry of the matrix M 0 in position pl. If C is an orthogonal 
y
le of M ,then the right hand side is 
learly 0. Let C be a 
olle
tion of orthogonal 
y
les of M . Summing theabove equations we get n�1Xi=1 N�1Xj=1  XC2CC(i; j)! di;j = 0:The linear 
ombination of the positive terms di;j is zero, therefore one of the 
oeÆ
ients is negativeor all are zero. This proves property (a).(a))(b) We prove that for an n�N zero-one matrix M either (b) or the negation of (a) holds.Consider the n by N real matrix M 0 = (m0i;j) that has 0 in pla
e of all 1 entries of M and distin
treal variables at all of the remaining positions. Consider the inequalities di;j := m0i+1;j+1�m0i+1;j �m0i;j+1 +m0i;j > 0 on these variables. The stri
t linear inequalities determine an open region in the10



variable spa
e, so if this region in nonempty, we 
an �nd a solution where no variable is zero. In this
ase, 
ondition (b) is satis�ed.In the opposite 
ase, when our inequalities do not have a solution, Farkas's lemma states theexisten
e of a positive linear 
ombination of these inequalities yielding 0 > 0. Let ki;j � 0 be the
oeÆ
ient of di;j > 0 in su
h a linear 
ombination. We 
an assume that these 
oeÆ
ients are integers,so that ki;j is a nonnegative integer for all i and j, and not all of them are zero. We de�ne ki;j = 0if i = 0 or n, or if j = 0 or N .We build an oriented multigraph G� on the vertex set fvi;j : 1 � i � n; 1 � j � Ng as follows.There are two types of edges in G�: For any 1 � i � n, 1 � j < N , we 
onne
t vi;j and vi;j+1 byjki�1;j � ki;jj horizontal edges. If ki�1;j > ki;j, these edges are dire
ted toward vi;j, otherwise theyare dire
ted toward vi;j+1. Similarly, for any 1 � i < n, 1 � j � N , vi;j and vi+1;j are 
onne
tedby jki;j�1 � ki;jj verti
al edges dire
ted toward vi+1;j or vi;j , depending on whether ki;j�1 > ki;j orthe other way around. It is easy to verify that in this graph every vertex has the same indegreeand outdegree. Therefore, the edge set of G� 
an be partitioned into dire
ted 
y
les. WheneverM has a zero at a position (i; j), we know that the variable m0i;j will 
an
el at the 
ombinationP ki;jdi;j. This implies that the numbers of in
oming and outgoing horizontal edges in
ident to anysu
h vertex vi;j must 
oin
ide. Therefore, the 
y
les of the edge partition 
an be 
hosen so that noneof them \bends" at su
h verti
es, i.e., all of their bends o

ur at positions where M has an entry1. We 
annot ex
lude self-
rossing 
y
les that pass through the same vertex more than on
e. Theorthogonal 
y
les 
orresponding to edge partitions with the above property are orthogonal 
y
les ofM . Moreover, it is easy to argue that they form a 
olle
tion C that satis�es PC2C C(i; j) = ki;j forall i and j. This shows that 
ondition (a) does not hold for M .(b))(
) Suppose that M 
an be obtained from M 0 = (m0i;j) in the way des
ribed in (b), andde�ne a matrix M 00 = (m00i;j) by setting m00i;j = sign(m0i;j). Consider the submatrix of M 00 de�ned bythe rows i1 < i2 and 
olumns j1 < j2. We have m0i2;j2�m0i1;j2�m0i2;j1+mi1;j1 =Pj2�1i=j1 Pj2�1j=j1 di;j > 0.This implies that at least one of the following 
onditions must be satis�ed: m0i1;j1 orm0i2;j2 is positive,or m0i1;j2 or m0i2;j1 is negative. 2We remark that 
ondition (a'), whi
h is somewhat weaker than (a), also implies (
) as 
an beshown by 
onstru
ting the 
orresponding matrix M 00 entry by entry. The following 6 � 6 matrixsatis�es 
ondition (
) for M 00, but the 
orresponding matrix M does not have property (a). Thus,the impli
ation (b))(
) 
annot be always reversed.0BBBBBB� 0 + + 0 + +� 0 0 � + +� 0 � � � 0� + 0 � 0 ++ + + 0 0 +0 + � � � 0
1CCCCCCATheorem 5 (i) The maximum weight of an n� n zero-one matrix with property (
) is O(n4=3).(ii) For arbitrarily large values of n, there exist n�n zero-one matri
es of weight 
(n4=3) that satisfy
ondition (b') (and thus 
onditions (a), (a'), (b), and (
) are also satis�ed).Proof. (i) Let M be an n� n zero-one matrix satisfying 
ondition (
), and let M 00 = (m00ij) be the
orresponding matrix with �1, 0, and 1 entries. 11



For a �xed 0 � i � n, we de�ne a linear ordering on the symbols pij, where 1 � j � n. For1 � j < j0 � n, set pij0 < pij if there exists a row 1 � i0 � i with m00i0j � 0 and m00i0j0 � 0. Otherwise,set pij < pij0 .To see that this de�nition indeed gives rise to a linear order, we have to 
he
k that for 1 � j <j0 < j00 � n we 
annot have pij < pij0 < pij00 < pij, nor 
an it o

ur that pij < pij00 < pij0 < pij .To ex
lude the �rst possibility, assume pij00 < pij . Then there exists 1 � i0 � i su
h that m00i0j � 0and m00i0j00 � 0. If m00i0j0 � 0, then we have pij00 < pij0, while if m00i0j0 � 0, it follows that pij0 < pij. Ineither 
ase, we obtain a 
ontradi
tion.To ex
lude the se
ond possibility assume that pij00 < pij0 < pij . Then there exist suitable indi
es1 � i0 � i and 1 � i00 � i su
h that m00i0j � 0, m00i0j0 � 0, m00i00j0 � 0, and m00i00j00 � 0. We 
laim that fori� = max(i0; i00) we have m00i�j � 0 and m00i�j00 � 0, and hen
e pij00 < pij , whi
h is a 
ontradi
tion. This
laim is trivial for i0 = i00. If i0 < i00, the 
laim follows from 
ondition (
) applied to the submatrixdetermined by rows i0 and i00 and 
olumns j and j0. If i0 > i00, it follows from 
ondition (
) appliedto the submatrix determined by rows i0 and i00 and 
olumns j0 and j00.Let us represent pij (0 � i � n, 1 � j � n) by points in the plane, denoted by the same symbols.For a �xed i, we 
hoose the points pij on the line y = i, ordered from left to right a

ording to thelinear order de�ned above. For 1 � j � n, we draw a y-monotone 
urve lj 
onne
ting the pointsfpijgni=0. This 
an be done in a su
h a way that lj and lj0 
ross at most on
e between the horizontallines y = i � 1 and y = i. Moreover, su
h a 
rossing o

urs if and only if the order of p(i�1)j andp(i�1)j0 is di�erent from that of pij and pij0 .It is 
lear from the de�nition that if pij0 < pij for some 0 � i � n and 1 � j < j0 � n, then wealso have pi0j0 < pi0j for all i < i0 � n. Thus, the total number of interse
tions between the 
urves ljand lj0 is at most one. In other words, these 
urves form a 
olle
tion of pseudolines.For any 1 � i � n, 
onsider the set of indi
es Ji = fj j mij = 0g. Let j; j0 2 Ji, j < j0. By thede�nition of the ordering, it is 
lear that pij0 < pij. On the other hand, it follows from 
ondition(
) that p(i�1)j < p(i�1)j0 . Thus, the pseudolines lj, j 2 Ji must pairwise 
ross ea
h other betweenthe horizontal lines y = i � 1 and y = i. Modifying these pseudolines within the horizontal stripi� 1 < y < i, we 
an make sure that all of them pass through the same point Pi. Thus, we obtain a
olle
tion of n pseudolines lj and a set of n points Pi in the plane. The number of point-pseudolinein
iden
es between them is exa
tly the same as the number of 1 entries in the matrix M . A

ordingto the generalization of the Szemer�edi{Trotter theorem [14℄ by Clarkson et al. and Sz�ekely [6, 13℄,the number of in
iden
es between n points and n pseudolines is O(n4=3), whi
h proves part (i).(ii) Consider a 
olle
tion of n straight lines and n points in the plane with 
(n4=3) in
iden
es betweenthem. Assume that all points have distin
t x 
oordinates, all lines have distin
t slopes, and noneof them is verti
al. The standard example of a point set and a line set with many in
iden
es is anpn � pn integer grid with the n lines 
ontaining the highest number of points. There are manyparallel lines in this example, but we 
an get rid of them (along with the verti
al lines and the pointswith identi
al x 
oordinates) using a generi
 proje
tive linear transformation that keeps the numberof in
iden
es un
hanged. Denote the points by Pi = (xi; vi) with x1 < x2 < : : : < xn, and the linesby li : y = yix+wi with y1 < y2 < : : : < yn.Let f(x; y) = xy � f1(x) + f2(y);where f1 and f2 are twi
e 
ontinuously di�erentiable fun
tions su
h that f1(xi) = vi and f2(yi) = wi.Clearly, we have ddx ddyf(x; y) = 1 > 0. Furthermore, de�ning the matrix M = (mij) as in 
ondition(b'), we have mij = 1 if and only if f(xi; yj) = 0, whi
h happens if and only if Pi is in
ident to lj .12



Thus, the weight of M satis�es w(M) = 
(n4=3), as required. 25 Geometri
 
onsequen
es and 
on
luding remarksA. First we dedu
e Corollary 1, the best known bound on the number of unit distan
es determinedby n points in the plane, from Theorem 5.Proof of Corollary 1. Let P be a set of n points in the plane. Let l be a line in general position;i.e., assume that l does not pass through any point in P and that the orthogonal proje
tions ofthe elements of P onto l are all distin
t. Let l partition the point set P into two subsets, P1 andP2, 
ontaining n1 and n2 elements, respe
tively, where n1 + n2 = n. Constru
t an n1 � n2 matrixA = (apq), as follows. Let the rows (and 
olumns) of A 
orrespond to the points of P1 (and P2,respe
tively), in the order of their proje
tions to l. Let the entry apq in the row of A 
orrespondingto p 2 P1 and in the 
olumn 
orresponding to q 2 P2 depend on the Eu
lidean distan
e d(p; q)between p and q: apq = 8<: �1 if d(p; q) < 10 if d(p; q) = 11 if d(p; q) > 1:We 
laim that M 00 := A satis�es the requirement in 
ondition (
) formulated at the beginningof Se
tion 4. To see this, assume without loss of generality that l is horizontal and let p, q, r,and s be points in P with p and q above l, and r and s below l. Furthermore, let q be to theright of p, and let s be to the right of r. We need to show that at least one of the following fourinequalities are valid: d(p; r) < 1, d(p; s) > 1, d(q; r) > 1, d(q; s) < 1. (See Figure 2.) Indeed, ifthe four points form a 
onvex quadrilateral in the order pqsr, then this follows from the fa
t, thatthe sum of the lengths of its two diagonals is larger than the total lengths of two opposite edges:d(p; s) + d(q; r) > d(p; r) + d(q; s). If this is not the 
ase, then p or q is not above the line rs, or r ors is not below the line pq. Let us assume that p or q is not above the line rs. Then rs must interse
tl at a point x. Point x is either to the left of r or to the right of s. Assume without loss of generalitythat the �rst possibility holds. Then p or q is to the left of x, so p (whi
h is to the left of q) must bein the quadrant to the left of x and above l. This implies d(p; r) < d(p; s), so we have d(p; r) < 1 ord(p; s) > 1.
p

q

r

l

s

x

r

s

p

l

Figure 2.We 
an apply Theorem 5 (i) to 
on
lude that A has O(n4=3) zero entries. In other words, thenumber of pairs of points that determine distan
e one and are separated by the line l is at most13



O(n4=3).We �nish the proof by 
hoosing a random dire
tion and, again randomly, pla
ing in�nitely manyparallel lines in the 
hosen dire
tion so that the distan
e between any two 
onse
utive lines is 2. LetL denote the family of sele
ted lines. For any l 2 L, let Pl denote the set of points p 2 P withindistan
e 1 of l. All the unit distan
e pairs of point in P that l separates are in Pl, so l separatesO(jPlj4=3) pairs.As the sets Pl are disjoint we have Pl2L jPlj � n. The total number of unit distan
e pairsseparated by a member of L is Pl2LO(jPlj4=3) = O(n4=3). Sin
e ea
h unit distan
e pair of pointshas a positive 
onstant 
han
e of being separated by a member of L, the result follows. 2Note that the above argument does not use any spe
i�
 property of the Eu
lidean norm. Forany stri
tly 
onvex norm N , one 
an slightly modify the proof to show that a set P of n pointsin the plane has O(n4=3) pairs at N -distan
e 1. Let l be a line in general position that splits Pinto two parts P1 and P2. Consider a unit 
ir
le with respe
t to the N -norm 
entered at a pointof l, and take a tangent t to this 
ir
le at one of its interse
tion points with l. Order the elementsof P1 and P2 a

ording to their proje
tions onto l, parallel to t. De�ne the matrix A = (apq) forp 2 P1, q 2 P2 by letting apq = sign(dN (p; q) � 1). As in the Eu
lidean 
ase, one 
an show thatA meets the requirements on M 00 in 
ondition (
). Thus, Theorem 5 implies that the number ofunit-N -distan
e pairs in P separated by l is O(n4=3). We pro
eed by randomly 
hoosing a dire
tionand, again randomly, pla
ing in�nitely many lines in this dire
tion su
h that the N -distan
e betweenany pair of 
onse
utive lines is two. The number of unit-N -distan
e point pairs in P separated by atleast one of these lines is still O(n4=3). The probability that a segment of N -distan
e one is 
ut by aline belonging to the family is bounded from below by a positive 
onstant depending on N . Hen
e,the number of unit-N -distan
e pairs is O(n4=3, where the 
onstant of proportionality depends onN . We 
an get rid of the dependen
e on N by �rst applying an aÆne transformation that bringsthe norm N 
lose to the Eu
lidean norm. In other words, we 
an assume without loss of generalitythat 1 � dN (x; y)=d(x; y) � 2 for all points x 6= y. Now the probability that a unit-N -distan
epair is separated by one of the lines in our random 
olle
tion is bounded from below by a positiveabsolute 
onstant. Thus, with respe
t to any stri
tly 
onvex norm, the number of unit distan
e pairsdetermined by a set of n points in the plane is O(n4=3), where the 
onstant of proportionality doesnot depend on N .A

ording to Brass [4℄ and Valtr [16℄, there exist stri
tly 
onvex norms with respe
t to whi
h themaximal number of unit distan
es among n points in the plane is �(n4=3). One 
an only hope tomake further progress in bounding the number of unit distan
e pairs by �nding forbidden patterns
hara
teristi
 of the Eu
lidean norm.This is the �rst proof of this result, that does not use any 
ombinatorial tool other than a\forbidden pattern" argument. Our proof 
annot be 
onsidered entirely independent, be
ause theproof of Theorem 5 was based on Sz�ekely's O(n4=3) upper bound on the number of in
iden
es betweenn points and n pseudolines in the plane, from where one 
an dire
tly dedu
e Corollary 1.Note that Theorem 5 involves an in�nite 
lass of forbidden patterns. It would be interestingto 
ome up with an alternative argument using only a �nite number of forbidden 
on�gurations,perhaps only 4-
y
les and non
rossing hexagons.B. For any unordered graph H0, let ex0(n;H0) stand for the maximal number of edges that a simpleunordered graph with n verti
es 
an have if it does not 
ontain H0 as a (not ne
essarily indu
ed)subgraph. 14



F�uredi and Hajnal [9℄ 
onje
tured that for every ordered graph H with interval 
hromati
 number2, the extremal fun
tion ex(n;A(H)) is 
lose to ex0(n;H0), where H0 denotes the unordered graphobtained from H by disregarding the ordering of the verti
es. More pre
isely, they asked whetherex(n;A(H)) = O(ex0(n;H0) log n)holds for all ordered graphs H with �<(H) = 2.We answer this question in the negative. Let H be any even 
y
le of length k � 8, whose verti
esare ordered in su
h a way that �<(H) = 2 and the 1 entries of A(H) form a positive orthogonal
y
le. (It is easy to see that su
h an ordering exists.) Obviously, no matrix satisfying 
ondition (a)or (a') 
an 
ontain A(H). By Theorem 5 (ii), there exist n� n zero-one matri
es of weight 
(n4=3)whi
h satisfy 
ondition (a). Thus, we have ex(n;A(H)) = 
(n4=3). On the other hand, H0 = Ckand, by the Bondy{Simonovits theorem (see [3℄), we have ex0(n;Ck) = O �n1+ 2k�. For k � 8, thesetwo bounds are far apart.Let us remark that F�uredi and Hajnal, perhaps having doubts about their 
onje
ture, also askedif their statement holds at least for trees. This problem is still open and it 
an be regarded as astrong version of our Conje
ture 1.C. Bra�, K�arolyi, and Valtr [5℄ studied 
y
li
ally ordered graphs and asked whether the verti
es ofevery graph H0 
an be 
y
li
ally ordered so that the extremal fun
tions of the unordered and orderedgraphs di�er by at most a 
onstant fa
tor. Without pre
isely de�ning 
y
li
ally ordered (in theirterminology, \
onvex geometri
") graphs, we note that their 
onje
ture would immediately implythat the verti
es of any 
onne
ted bipartite graph H0 
an be ordered in su
h a way that the resultingordered graph H has interval 
hromati
 number 2 and satis�esex(n; fA(H); (A(H))T g) = O(ex0(n;H0)):Our 
ounterexample to this 
onje
ture is a tree of seven verti
es: let H0 
onsist of three pathsof length 2, joined at a 
ommon endpoint. Sin
e H0 is a tree, we have ex0(n;H0) = O(n). It iseasy to see that for any ordering H of H0 of interval 
hromati
 number 2 the matrix A(H) 
ontainsthe pattern F = � 1 1 01 0 1 � or one of the seven other patterns obtainable from F by rotationor re
e
tion. If A(H) 
ontains F , then ex(n; fA(H); (A(H))T g) � ex(n; fF; F T g), where the latterextremal fun
tion is �(n log n) as proved in both of the papers [2, 8℄. By symmetry we have to
onsider only one more pattern: let us assume A(H) 
ontains F1 = � 1 0 11 1 0 �. In this 
ase wehave ex(n; fA(H); (A(H))T g) � ex(n; fF1; F T1 g). Here we also have ex(n; fF1; F T1 g) = �(n logn) asproved in [15℄. (An earlier lower bound of 
(n logn= log log n) is proved in [2℄.) In neither 
ase doesthe required inequality hold: the left-hand side is larger than the right-hand side by a fa
tor of logn.D. It is tempting to make the following \optimisti
" 
onje
ture that 
an be regarded as the \least
ommon denominator" of the two 
onje
tures disproved above.Conje
ture 3 The verti
es of any unordered graph H0 
an be ordered in su
h a way that for theresulting ordered graph H we have ex<(n;H) = O(ex0(n;H0) log n).A
knowledgement. We are very grateful to our friend, Rom Pin
hasi, for many important obser-vations and valuable insights that led to the birth of this paper.15
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