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Abstract— Under a whole hand grasp, it may not be pos-
sible to generate grasping forces in all directions. Thus, the
traditional techniques developed based on fingertip contacts
is inadequate. In this paper, we decompose the contact force
space into four orthogonal subspaces, each with a clear physical
interpretation. Based on linear matrix inequalities (LMI’s) rep-
resentations of grasping constraints, we address and formulate
the active force closure and the active grasp feasibility problems
as LMI feasibility problems. Combining the effects of both
active and passive forces, we propose a new cost index for the
whole hand grasping force optimization problem. We further
simply the force optimization problem for a whole hand grasp,
which is active force closure.

I. INTRODUCTION

There are numerous literatures on grasping force analysis
and optimization developed over the last two decades. The
three main problems that have been frequently addressed
are: force closure, force feasibility, and force optimization
problems. To deal with the nonlinear nature of the friction
models, Buss et al. [1] observed an important fact that the
friction cone constraints are equivalent to positive definite-
ness of certain symmetric matrices and transformed grasping
force optimization problem into a convex optimization prob-
lem with linear constraints. In order to eliminate structure
constraints and thus reduce corresponding dimension of the
optimization problem, Helmke et al. [2] refined the semi-
definite representation of the friction cone. Han et al. [3]
transformed the friction cone constraints into Linear Matrix
Inequalities (LMIs) and formulated the three main problems
as convex optimization problems with LMI constraints. All
those, however, rely upon a fundamental assumption that an
arbitrary resultant contact force can be actively applied by
the hand, which is no longer true in the case of a whole hand
grasp.

To deal with the incomplete controllability of contact
forces, Yoshikawa [4] introduced the concepts of active
and passive contact forces, and classified force closure into
passive, active and hybrid closures. He gave conditions for
each type of force closure for a constrained mechanism.
Based on Yoshikawa’s work, Watanabe [5] further defined
the direction of active and passive force closure and showed
the orthogonality of those two directions. From the physical
nature of contacts, Wang and Liu [6] introduced the concepts
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Fig. 1. A k-fingered hand grasping an object with whole hand grasp

of active and passive contacts, and proposed a new definition
of active and passive contact forces. Based on the minimum
norm principle, they proposed a framework for force and
closure analysis involving force passivity. The active contact
force defined by the styles of contacts, however, still contains
the force that can not be generated actively by the hand. By
interpreting the geometric structure of contact force space,
Bicchi [7] proposed a force distribution method for a whole
hand grasp. A geometric control method was provided for the
control of passive internal forces. Zhang et al. [8] presented
a new classification of contact force. They proposed a new
force distribution method for a whole hand grasp based on
the connectivity and mobility of the grasped object. Omata
[9] showed that frictional forces involved in a whole hand
grasp are indeterminate because of the limited mobility of the
inner links and the palm. He proposed a method to compute
the bound of those indeterminate frictional forces. Yu et al.
[10] described the region of feasible joint torques for a stable
whole hand grasp and introduced a method for determination
of the optimal whole hand grasp. However, resultant optimal
grasping forces sometimes can not be generated by the hand
because of its passivity and indetermination. For this reason,
most previous research focus on the distribution but not the
optimization of contact force for a whole hand grasp.

In this paper, by intersecting two different decompositions
of contact force space, we derive four orthogonal subspaces,
each with a clear physical meaning. Based on this decom-
position and Han’s grasp analysis approaches [3], active
force closure and active grasp force feasibility problems
are formulated as LMI feasibility problems. Considering the
roles of both active and passive forces, a new cost index
is proposed. The grasping force optimization problem for a
whole hand grasp is thus formulated as a convex optimization
problem with LMI constraints. This problem can be readily
solved using fast convex programming techniques. Finally,
several numerical examples show the validity of the problem
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formulations and the performance of solution algorithms.

II. GRASP MODEL AND CONSTRAINTS OF A WHOLE

HAND GRASP

Consider a k-fingered hand grasping an object using a
whole hand grasp as shown in Fig. 1, with a total of n contact
points. Denote by ni the number of contact points on the
links of the ith finger, and np the number of contact points
on the palm, we have

n = np +
k∑

i=1

ni

Note that contact points on the same inner link have the
same kinematics property, so contact forces applied at such
contacts also have the same properties.
Assumption 1.To simplify the grasp model and make the
problem well defined, we make the following assumptions:

(a1). Without loss of generality, we consider the case that
there is at most one contact point on each link of a
finger. Moreover, there is at most one contact point on
the palm.

(a2). The contact model is point contact with friction
(PCWF). Coulomb friction coefficients at all contact
points are the same, and is denoted by µ.

Following the notations in [11][12], attach a body frame O
to the mass center of the object, and a spatial frame W to
the palm of the hand. For the ith finger, attach a base frame
Si to the base of the finger and contact frames Cij to the
jth contact point on this finger. Similarly, attach a contact
frame Cp to the contact point on the palm.

Static balance of all forces exerted on the object implies
that

Gx = Gpxp + Gf xf = −ω0, (1)

where ω0 ∈ R
6 is the external object wrench, G =

[Gp, Gf ] = [Gp , Gf1 , · · · , Gfk ] ∈ R
6×3n the grasp map,

with Gfi = [Gci1 , · · · , Gcini
] ∈ R

6×3ni and Gp ∈ R
6×3

being, respectively, the grasp map of the ith finger and the
palm; x = [xT

p , xT
f1

, · · · , xT
fk

]T := [xT
p , xT

f ]T ∈ R
3·n the

contact forces of the hand, with xfi = [xT
ci1

, · · · , xT
cini

]T

and xT
p ∈ R

3 being, respectively, the contact forces of the
ith finger and the palm.

The physics of contact imposes a nonlinear quadratic
constraint on all finger forces. For example, under the PCWF
model, the contact force xp is constrained to the friction cone

FCp = {xp ∈ R
3|x2

p,1 + x2
p,2 < µ2x2

p,3 , xp,3 > 0} (2)

Where xp,1 and xp,2 are the tangential components, and
xp,3 the normal component of the contact force on the
palm. A similar constraint holds for xcij ∈ R

3, with the
corresponding friction cone FCcij . Collectively, we let

FCf = FCc11 × · · · × FCcknk

and
FC = FCp ×FCf

See [1], [3], [13] for a detailed model of grasping statics and
friction cone constraints.

By refining the results of Buss, Hashimoto and Moore
[1],Helmke, Hueper and Moore [2] showed that the friction
cone constraint (2) is equivalent to the positive definiteness
of the following 2 × 2 symmetric matrices

Pp =
[

µxp,3 + xp,1 xp,2

xp,2 µxp,3 − xp,1

]
� 0, (3)

and the totality of the hand constraints x ∈ FC is equivalent
to

P ∈ R
2n×2n = diag(Pp, Pf1 , · · · , Pfk ) � 0, (4)

where Pfi = diag(Pci1 , · · · , Pcini
).

Another observation by Han, Trinkle and Li [3] shows that
constraint (4), by a reordering of the indices for the contact
forces, has the form of Linear Matrix Inequalities (LMIs),
which is studied extensively in [14]:

P (x) = AP,0 +
3n∑
l=1

AP,lxl � 0 (5)

with AP,0 = 0. The force balance equation (1) can be
rearranged as a set of linear constraints:

Tr(BiP ) = ωoi , i = 1, · · · , 6, (6)

where Bi = BT
i are symmetric k-block diagonal matrices

with dimension n×n, ωoi the ith component of the external
wrench ωo ∈ R

6. We will assume that the Bi’s, i = 1, · · · , 6
are linearly independent, and using the scheme of [2] or the
standard Gram-Schmidt process to orthonormalize the Bi’s.

Denote by τij the joint torque of the jth joint of finger i,
and τi = [τi1, · · · , τiqi ]T ∈ R

qi the joint torques of finger i,
where qi is the number of joints of finger i. The relationship
between the joint torques and the contact wrenches are [11]

τi =
ni∑

j=1

JT
hij

xcij =
[
JT

hi1
· · · JT

hini

]



xci1

...
xcini


 := JT

hi
xfi (7)

and
Jhij =

[
Ĵij 03×(qi−m)

] ∈ R
3×qi ,

where qi−m is the number of joints which can not generate
contact forces at contact point Cij , m is the number of joints
between the contact point Cij and the palm, and Ĵij the
Jacobian matrix of contact frame Cij . Note that contact force
on the palm, xp , is only the reaction force generated by the
palm, so it will not result in any joint torque. In the case
that the palm contacts the object, the joint effort of the hand,
denoted by τ = [τT

1 , · · · , τT
k ] ∈ R

q , where q =
∑k

i=1 qi, has
the following relations with the contact forces

τ = Hx = [0q×3, J
T
h ]x, (8)

where
JT

h = diag(JT
h1

, · · · , JT
hk

).
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When the palm does not contact the object, H = JT
h . Note

that each joint torque τij is limited by its upper and lower
bound τU

ij and τL
ij as,

τL
ij < τij < τU

ij .

We formulate the corresponding LMIs in terms of x with the
same order as the LMI constraint (5)

T L(x) = diag(τ − τL)
= T L

0 +
∑3n

l=1 T L
l xl � 0

T U (x) = diag(−τ + τU )
= T U

0 +
∑3n

l=1 T U
l xl � 0

(9)

where τL and τU are the lower and upper bound of the whole
hand’s joint efforts. Let T (x) = diag(T L(x), T U (x)), then
the positive semi-definiteness of both T L(x) and T U (x) is
equivalent to the positive semi-definiteness of T (x).

Constraints (4), (6),(8) and (9) comprise the system model
for our subsequent analysis of the whole hand grasp prob-
lems. A whole hand grasp is said to be valid if it satisfies
the above grasping constraints simultaneously.

III. GRASPING FORCE DECOMPOSITION

Given a whole hand grasp G and an external wrench ωo,
the resultant contact force can be solved from the force
balance constraint (1) as

x = −G‡ω0 + V1z,

where G‡ = GT (GGT )−1 is the generalized inverse of the
grasp map G. Columns of the matrix V1 form a basis of
the null space Ker(G) of G, and z is a vector of free
variables with the same dimension as Ker(G). In this way,
the contact force space X can be decomposed into two
orthogonal subspaces

x ∈ Ker(G)⊥ ⊕ Ker(G).

Ker(G)⊥ is called the object force subspace because it
contains grasping forces balancing the external object force.
Ker(G) is called the internal force subspace, because it
contains all internal forces.

On the other hand, from the relationship between the
grasping forces and the joints efforts (8), the grasping forces
can also be expressed as

x = H‡τ + V2y

where H‡ = HT (HHT )−1 is the generalized inverse of H .
Columns of the matrix V2 form a basis of the null space
Ker(H) of H , and y is a vector of free variables with the
same dimension as Ker(H). Thus, another decomposition
of the contact force space can be derived as

x ∈ Ker(H)⊥ ⊕ Ker(H).

Note that contact forces lying in Ker(H) can not be actively
generated and controlled by the hand’s joint torques. We
call such forces passive forces, and Ker(H) the subspace
of passive forces. On the other hand, contact forces in
Ker(H)⊥ can be actively generated and controlled by the

UAO

UPO

UAI UPI

Object force

Internal force

Active force Passive force

Fig. 2. Decomposition of grasping force into 4 subspaces

hand. We call such forces active forces and Ker(H)⊥ the
subspace of active force.

From the above two different decompositions, the contact
force space X can be decomposed into four subspaces which
are orthogonal relative to each other, as shown in Fig. 2,

X = UAO ⊕ UPO ⊕ UAI ⊕ UPI ,

where

UAO = (Ker(G))⊥ ∩ (Ker(H))⊥,
UAI = Ker(G) ∩ (Ker(H))⊥,
UPO = (Ker(G))⊥ ∩ Ker(H),
UPI = Ker(G) ∩ Ker(H).

Subspace UAO is called the subspace of active object forces,
subspace UAI is called the subspace of active internal forces,
subspace UPO is called the subspace of passive object forces,
and subspace UPI is called the subspace of passive internal
forces. Thus, a contact force can be written as

x = xAO + xPO + xAI + xPI .

When an external wrench ω0 is applied to the object, the
passive object force xPO will be generated by the reaction
force of the hand to balance ω0. Then, the object force xAO+
xPO is determined as the particular solution to the force
balance equation (1)

xAO + xPO = −G‡ω0 (10)

Let VAI and VPI be the two matrices whose columns form a
basis of the subspace UAI and UPI , respectively. The contact
force has the following form

x = −G‡ω0 + VAIzAI + VPIzPI , (11)

where zAI ∈ R
l and zPI ∈ R

r are free variables, and l and
r are the dimensions of UAI and UPI , respectively.

IV. FORCE ANALYSIS OF WHOLE HAND GRASP

It has been shown that a grasp is force closure if and only
if the grasp map G has full row rank and there exists an
admissible strictly-internal grasp force [3], [11].

Proposition 1: A grasp is force closure if and only if the
following two conditions are satisfied simultaneously,

1). rank(G)=6;
2). there exists admissible internal force xint, s.t.

P (xint) � 0, Gxint = 0.
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But for a whole hand grasp, contact forces are constrained
by the structure of the hand mechanism, and the hand may
not be able to generate the resultant contact forces when an
external wrench is applied. If a grasp can actively balance
any external wrench, we call it a active force closure grasp.

Definition 1: Active Force Closure Grasp
A grasp is said to be active force closure if given any external
wrench ω0 ∈ R

p, there exists a contact force x ∈ FC, which
can be actively generated and controlled by the hand, such
that Gx = −ω0.
Because of the existence of the passive internal force in
the whole hand grasp, not all admissible internal forces
satisfying conditions of Proposition. 1 can be generated
actively by the hand. Therefore, a force closure grasp may
not also be an active force closure one.

Problem 1: Active Force Closure Problem
Given a grasp, determine whether for any external wrench
ω0, there exists a contact force x, which can be actively
controlled and generated by the joint efforts, such that
P (x) � 0 and Gx = −ω0.
Recall the decomposition of the contact force space in section
III, both active and passive object forces, can be determined,
as shown in (10), when given any external wrench. However,
the passive internal force has to be preloaded and can not be
controlled by the hand during the grasp, and only the active
internal force is actively controllable by joint efforts. Then,
a whole hand grasp is active force closure if and only if the
grasp map G has full row rank and there exists an admissible
strictly active internal grasp force.

Proposition 2: A whole hand grasp is active force closure
if and only if the following two conditions are satisfied
simultaneously,

1). rank(G)=6;
2). there exists active internal force xAI ∈ UAI , s.t.

P (xAI) � 0.
Recall that the admissible active internal force can be written
as

xAI = VAIzAI , (12)

the LMI (5) is equivalent to an LMI in terms of zAI for the
active internal forces

P̃ (zAI) := P (VAIzAI) = Σl
i=1ÃizAIi

. (13)

With this formulation, the active force closure problem for
a whole hand grasp can be solved by first checking the
surjectivity of the grasp map G, then determining whether
there exists such a zAI so that (13) holds, which is a standard
LMI feasibility problem[3][15].

We are also interested in knowing whether the hand can
actively generate grasping forces to make the grasp feasible.
This is the active grasp feasibility problem, which can be
stated as follows:

Problem 2: Active Grasp Feasibility Problem
Given a grasp G and external wrench ω0, determine if there
exists contact force x, which can be actively applied and
controlled by joint efforts τ , and satisfies grasping constraints
(4), (6), (8) and (9).

The active grasp feasibility problem can be solved in a
similar manner as the force closure problem. First, determine
whether there exists an object force x0 ∈ R

3n for the force
balance equation

Gx0 = ω0 (14)

Obviously, a simple choice is the particular solution of (14)

x0 = G‡ω0 = xAO + xPO

where G‡ is the generalized inverse of G. This particular
solution is deterministic for a given external wrench, because
the active object forces xAO can be controlled by joint efforts
and the passive object force xPO is the reaction force by the
hand mechanism itself. But such x0 may not be admissible
if it does not satisfy force closure constraints. Thus, a term
of internal force has to be added such that the grasping
force satisfies all the grasp constraints. Note that the joint
torques can only generate active internal forces, which lie in
the subspace UAI . The admissible resultant contact force for
Problem 2 has the form

x = x0 + VAIzAI . (15)

Hence, the force feasibility problem can be solved by check-
ing whether for a given external wrench ω0, there exists
z ∈ R

l the following LMIs in terms of zAI hold,

P̃ (zAI) := P (x0 + VAIzAI) = Ã0 + Σl
i=1ÃizAIi

T̃ (zAI) := T (x0 + VAIzAI) = T̃0 + Σl
i=1T̃izAIi

.
(16)

Again, Problem 2 can be solved as an standard LMI feasi-
bility problem in terms of zAI .

V. GRASPING FORCE OPTIMIZATION FOR A WHOLE

HAND GRASP

A central issue in the study of dextrous robotic hands is
the determination of optimal grasping forces, which balance
the external wrench and maintain all grasp constraints si-
multaneously. This is the grasp force optimization problem
which can be stated as follows

Problem 3: Grasping force optimization problem
Finding the optimal admissible contact force x, which satis-
fies grasping constraints (4), (6), (8) and (9), and minimizes
some suitable cost function .
One property of a whole hand grasp is that it can balance
the external wrench partly using the passive forces generated
by the hand mechanism. By doing so, a whole hand needs
less joint efforts to grasp the same object much more
stably compared with a fingertip grasp. For this reason, we
minimize the joint efforts of the hand and formulate the
whole hand grasping force optimization problem as

Problem 4: Whole Hand Grasping Force Optimization
Problem 1

min ‖τ‖
subject to

P (x) � 0
τ < τU

τ > τL

Gx = ω0
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Fig. 4. Example 3: A 2-fingered hand grasp a spherical object

With the resultant optimal contact force obtained by solving
Problem 4, the hand balances the external wrench mostly
with the passive object force generated by the hand mech-
anism itself. At the same time, the hand may also generate
more passive internal force, which causes no joint effort
either, to satisfy the friction constraints. However, the passive
internal force has to be preloaded and can not be controlled
and adjusted when there is a disturbance applied to the
object. Therefore, the less the passive internal force get
involved, the more controllability the grasp achieves. For this
reason, we proposed a new cost index by adding a weighed
term of passive internal force, so that the grasp cost the least
energy and achieve the most controllability at the same time.
With this new cost index, the whole hand grasping force
optimization problem is reformulated as

Problem 5: Whole Hand Grasping Force Optimization
Problem 2

min W1‖H(x0 + VAIzAI)‖ + W2‖VPIzPI‖
subject to

P̃ (z) � 0
T̃ (z) � 0

where x0 = −G‡ω0 for a given external wrench ω0. Note
that both the objective function and the LMI constraints are
convex [16]. Thus, Problem 5 is a convex optimization prob-
lem involving a set of LMI constraints, and it is able to be
solved using Interior-point convex programming techniques
and SDP programming techniques.[17], [16]

When a grasp is active force closure, an optimal grasping
force should be the one which are completely controllable,
and, at the same time, minimizes the joint efforts. Then
Problem 5 can be further simplified as
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Fig. 5. (a) Trajectory of the cost index of Problem 4, (b) Trajectory of the
cost index of Problem 5.
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Fig. 6. (a) Trajectory of the norm of the passive internal force solving
from Problem 4, (b) Trajectory of the norm of the passive internal force
solving from Problem 5.

Problem 6: Grasping Force Optimization for Active
Force Closure Whole Hand Grasp

min ‖H(x0 + VAIzAI)‖
subject to

P̃ (zAI) � 0
T̃ (zAI) � 0

Remark 1: Since much more contacts are involved in the
whole hand grasp comparing with the fingertip grasp, the
dimension of the grasping force optimization problem will
greatly increase. For a whole hand grasp which is active
force closure, however, the dimension of the grasping force
optimization problem is greatly reduced from dim(V1) to
dim(VAI) with the simplified formulation as Problem 6. This
will very much reduce the computational complexity and
improve the convergence performance of the optimization
algorithm.

VI. NUMERICAL EXAMPLE AND SIMULATION RESULTS

Consider a 4-fingered hand grasping the same spherical
object as in Example. 1 with a whole hand grasp, as shown
in Fig. 4. Each finger of the hand composes of 2 inner
links and has 2 degree of freedoms. Each inner link form
one contact with the object and the palm also has one
contact point with the object. The local coordinates of the 7
contact points are αo11 = (−π

4 , 0)T ,αo12 = (π
4 , 0)T , αo21 =

(−π
4 , π

2 )T ,αo22 = (π
4 , π

2 )T , αo31 = (−π
4 , π)T ,αo32 =

(π
4 , π)T , αo41 = (−π

4 , 3π
2 )T ,αo42 = (π

4 , 3π
2 )T , and αop =

(−π
2 , 0)T . The grasp map

G = [Gp Gc11 Gc12 Gc21 Gc22 Gc31 Gc32 Gc41 Gc42 ] ∈ R
6×27
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, where

Gi =




− sin ui cos vi sin vi cos ui cos vi

− sin ui sin vi − cos vi cos ui sin vi

cos ui 0 sin ui

R sin vi R sin ui cos vi 0
−R cos vi R sin ui sin vi 0

0 −R cos ui 0




for i ∈ {p, c11, c12, c21, c22, c31, c32, c41, c42}, and

H =
[
O8×3 diag(JT

h1
, JT

h2
, JT

h3
, JT

h4
)
] ∈ R

8×27

where Jhi ∈ R
6×2 is the hand jacobian of the ith finger. The

bases of the subspace of active internal force UAI and the
subspace of passive internal force UPI form two matrices
VAI ∈ R

27×8 and VPI ∈ R
27×13. Hence, the dimension

of grasping force optimization Problem 4 and Problem 5
are both equal to 27. By solving Problem 2, it is shown
that the grasp is active force closure. Then, Problem 5 is
able to be simplified into the optimization Problem 6, whose
dimension is reduced to 8. Using the convex optimization
techniques, we solve the grasping force optimization with
the formulations of Problem 4, Problem 5 and Problem 6,
respectively. The weight parameters of the active forces and
passive forces in Problem 5 are selected as W1 = 1 and
W2 = 10. Fig. 5-(a) and 5-(b) show the convergence of the
cost index of Problem 4 and Problem 5, respectively. It is
shown that the cost indices we proposed in Problem 4 and
5 convergent to their optimal values after 5 and 9 iterations,
respectively. Fig. 6-(a) shows the trajectory of the norm of
the passive internal forces of Problem 4. Although it needs
less iterations to reach the optimum by solving Problem
4 comparing with Problem 5, it leads to the large passive
internal forces. Fig. 6-(b) shows the norm of the passive
internal forces by solving Problem 5. The passive internal
force goes to zero when we reach the optimal grasping force
because the grasp is active force closure.

Fig. 7 shows the trajectory of the cost index of Problem
6. Comparing with Fig. 5-(b), we can see that it only take
4 iterations for the cost index to converge to its optimum,
which is much less than the number of iterations of Problem
5. Moreover, the optimal force solved from Problem 6 is the
same as the active part of the resultant contact forces solved
from Problem 5.

VII. CONCLUSION

This paper discussed the grasping force analysis and
optimization of the whole hand grasp. By intersecting two
different decompositions, the space of contact forces was
further decomposed into four subspaces, each of which is
orthogonal to the others. With this decomposition, active
force closure problem and active force feasibility problem
were addressed and formulated into LMI feasibility prob-
lems. A new suitable cost index was proposed for the whole
hand grasping force optimization. Furthermore, the force
optimization problem was reformulated and solved as convex
optimization problems involving LMIs. A simplified problem
was proposed for those whole hand grasps, which are active
force closure, to improve the performance of the optimiza-
tion. Finally, a numerical example verified the validity of the
whole hand grasp analysis problems’ formulations and the
performance of the solving algorithms.
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