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FORCE AND DISPLACEMENT INFLUENCE 
FUNCTIONS FOR THE CIRCULAR RING 

J. R. BARBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADepartment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Mechanical Engineering, University of Newcastie upon Tyne. Member of 
the Institution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof influence functions is developed for the complete, uniform, circular ring, subjected to concentrated forces or 
moments. Equilibrium is satisfied by the introduction of  fictitious supports that are self-cancelling when the applied 

force system is in equilibrium. The method provides a general solution for the circular ring on a statically determinate 

support. 

1 INTRODUCTION 

If a complete circular ring is subjected to a known, self- 
equilibrating system of forces, the equations of equili- 
brium are not sufficient to determine the internal forces 
and moments. In certain cases, the defect can be made up 
by arguments from symmetry, but it is usually necessary 
to impose the condition of continuity of displacements 
around the ring. This condition is often greatly simplified 
by the use of Castigliano’s theorem, but the solution can 
be tedious in asymmetric practical problems, particularly 
if a number of concentrated forces and moments are 
applied to the ring. 

In the design field, it is usual to build up the solution to 
such a problem by superposition. Lists of elementary 
solutions appropriate to the complete circular ring are 
given by Roark (l)t (in-plane loading only) and Blake (2) 
(in-plane and transverse loading). However, neither of 
these authors gives a set of influence functions that is 
sufficiently general to cover all possible problems. In this 
paper, a set of functions is given that satisfies this 
requirement of generality. 

It is assumed throughout that the cross-section of the 
ring is uniform and small in both directions in comparison 
with the mean diameter. It is also assumed that extension 
of the centre-line and shear deflection can be neglected. 

2 THE FICTITIOUS SUPPORT SYSTEM 

The simplest system of influence functions would be that 
corresponding to the application of a force in an arbitrary 
direction and a moment about an arbitrary axis to a given 
point on the ring. However, this system of forces is not 
self-equilibrating, and if we select any particular system of 
supports to oppose the load (as is done by Roark (1) and 
Blake (2)) we immediately lose the generality of the 
method. 

This difficulty can be overcome by introducing 
‘fictitious supports’ and applying the real support reac- 
tions in a particular problem as additional external loads. 
The fictitious supports can be so chosen that their total 
effect on the system is self-cancelling whenever the applied 
external forces are in equilibrium. For the results given 
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here, forces acting through the ring centre are supported 
by equal and opposite reactions uniformly distributed 
around the ring; moments about the ring axis by a uni- 
form tangential load; and transverse moments by a 
sinusoidally-varying distributed transverse load. This 
system of fictitious support reactions is illustrated in Fig. 
1. 

This choice of fictitious support is identical with the 
system of ‘inertia forces’ which would be developed if the 
ring were actually allowed to accelerate as a rigid body 
under the influence of an unbalanced force system. If a 
self-equilibrating system of forces were applied, there 
would be no acceleration and hence the total fictitious 
support must be identically zero. 

An incidental advantage of this choice of support is that 
it automatically takes account of the loading and deforma- 
tion due to self-weight of the ring, provided that appro- 
priate values are used for the real support reactions. 

3 NOTATION AND SIGN CONVENTIONS 

The moment, M, and the force, F, transmitted across a 
typical cross-section of the ring can be conveniently repre- 
sented in terms of their components along the co-ordinate 
directions (r, 8, z) as shown in Fig. 2. 

The position of the section is defined by an angle, 8, 
measured anticlockwise from a suitable datum when 
viewed from above in Fig. 2. The axial co-ordinate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, is 
taken as positive upwards. Positive moments appear as 
clockwise when viewed along the arrows. 

The deformation of the ring is defined by the displace- 
ment u of the centroid of the ring section (components u, 
U,, u,) and by the angle of twist, p. Twist is regarded as 
positive if the ring cross-section is seen to rotate anti- 
clockwise when viewed in the direction of increasing 8. 

4 DERIVATION OF INFLUENCE FUNCTIONS 

The transverse and in-plane loading systems are not 
coupled and, hence, greater simplicity can be obtained by 
resolving the applied forces and moments into components 
along the axes. We therefore have to treat six elementary 
problems, each involving a single concentrated force (or 
moment) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan approximate fictitious support as defined 
in Section 2. The force can be applied at the section 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 
without loss of generality. The problem is to find the 
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transmitted force and moment at an arbitrary section and 
the deformed shape of the ring. 

The solution is obtained by integrating the load- 
deflection relations for the ring (see, for example, case 3) 
and applying appropriate symmetry or continuity con- 
ditions. The derivations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) are elementary, though 
tedious, and only the results are given here in Appendix 1. 

The expressions obtained for the displacements contain 
six arbitrary constants (c,-c,) corresponding to the six 

Fig. 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/ 
d 

Fig. 1 

degrees of freedom of rigid-body displacement of the ring. 
A pure rigid-body displacement is described by the 
equations 

1 du, 
{ ~ - u o } = - C ,  

U, = C ,  cos 8 + c2 sin 8 

U, = -c ,  sin 8 + c2 cos 8 + ac, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p = C, cos 8 + c5 sin 8 

(2) 

(3) 

(4) 

1 du, 

a de 
- -c, sin 8 + c5 cos 8 

U, = ac, cos 8 + ac, sin 8 + C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6 )  

These terms are omitted from the influence functions in 
the interests of brevity, but they must be reintroduced in 
the treatment of particular problems. The arbitrary 
constants are then determined from the boundary con- 
ditions of the problem. These boundary conditions may 
specify the slope of the ring as well as its displacement at a 
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given point (as in a built-in support). Expressions for the 
in-plane slope 

and the two transverse slopes 

(Band'".) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa d6 

are therefore included in the list of influence functions 
given in Appendix 1. 

The use of these results is illustrated in Section 5 .  

5 APPLICATIONS 

If the loads on the ring are all known and the support 
system is statically determinate, the results given in 
Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 permit the solution to any problem to be 
written down as a sum, or as a definite integral, of the 
given functions. 

For example, suppose that the ring in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w2 

I 

Fig. 3 

The support introduces the following loading: 

case 2: W =  -W, at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8= 0 
case6: T=+W,aat  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = 0  

The uniform self-weight of the ring need not be 
explicitly introduced, as it will be automatically invoked 
as a fictitious support for this otherwise unbalanced 
loading. 

Using results for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, from Table la, we have 

M2=-woaf6(e-o)  + woU{f2(e-o)+fa(e-o)} 

471 

from equations (18). The shear forces F,, F, are readily 
found in the same way. 

Applying the same procedure to the displacement 
equations, but introducing an arbitrary tigid-body displace- 
ment, we obtain 

W, a3 

EZz (9) u = - - (f9 + f 6 }  + C, cos 8 + c2 sin 8 

Fig. 3 is subjected 

to a self-equilibrating system of axial loads, W,, acting at 
angular positions 8, (i = 1 to n), then the transverse 
bending moment, M,, will be 

(7) 

(See Table lb, where f 5 ( @  is given by equation (18)) 
The results in Table 1 have been calculated for positive 

arguments in the range (0 < 8 < 271). When (8- '8,) is 
negative, (271 + 8 - 8,) should therefore be used in its 
place. 

As a simple example of this procedure, we consider a 
uniform ring of weight W,, radius a, supported in a 
vertical plane by a built-in support at one end of the 
horizontal diameter (see Fig. 4). 

The ring is built-in at 8 = 0 and hence 

u = u  --{ 1 du, u . ) = O a t ~ = o  
r -$j'- 

These three equations enable us to find the three 
constants : 

c, = o  
3 W0a3 

c 2 = -  - 
4 nEI, 

3 Woa2 
c3 =- 

4 nEZ, 

Substituting back into equations (9) and (10) gives 

u r = - -  w, a3 (1---)- 8 8sin 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
EIz 4 

sin8 (1 -cos@ 

471 

In particular, we note that the downward vertical 
displacement at 8 = 71/2 is 

Fig. 4 
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2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFe 

J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. BARBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- Wf, Wh 

Table 1 

a In-plane loading 

6 

In-plane moment 

Loading 1 2 

Radial load Tangential load 

Function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
na 

wd6 6 Waf5 

Ta 
- if1 - f 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
El ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 

9 ue I -  
b Transverse loading 

3 
Transverse load 

W 

4 
Transverse moment 

5 
Twisting moment Loading 

Function 
/ .  

TI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

Tsin 6 

(1 - 1) cos 6 

?' { "- 2 K ( 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ A )  4 M ,  - wafJ 

-v, (1-L)sinO 
5 Me 

10 B 

I du, 
I I  - - 

a d 6  

Ta( 1 + 1) 
($6 + f 9 !  

Err 

12 u, 
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whereas at 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn it is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+u,(lI)= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw0a3 (1 +i) 
8 EZ, 

6 CONCLUSIONS 

The solution to any problem for the complete, uniform, 
circular ring on a statically determinate support can be 
written down as a finite sum, or a definite integral, of the 
set of influence functions given in Appendix 1. 

This degree of generality makes the method particularly 
suitable for incorporation into a computer-aided design 
routine, in which context it was originally developed. 
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APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

The influence functions can be expressed concisely in 
terms of the nine functions defined below. 

cos8 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f , = - + -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

51 2n 

+- 

8 sin 8 cos 8 
f 4 =  (1  -;& + 

1 

-- 
4n 

8 sin 8 5cosO 1 
I - -  + -  

f 7 = (  2 4n 2n 

2 

sin 8 (1 -cos 8) 
x -  + 

4 2n 

In the equations that follow, I,, Z, are the second 
moments of area of the ring section about centroidal axes 
parallel to the r,z directions respectively, E is Young’s 
modulus, and GK is the torsional rigidity of the section. 
The ratio 1 defined by 

occurs in the results for transverse bending of the ring. 

forms shown in Table 1. 
Using this notation, the influence functions take the 

APPENDIX 2 
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