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We derive expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the

Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently

bonded materials. Although these potentials have a many-body nature, a pairwise force expression that follows

Newton’s third law can be found without referring to any partition of the potential. Based on this force formula,

a stress applicable for periodic systems can be unambiguously defined. The force formula can then be used to

derive the heat current formulas using a natural potential partitioning. Our heat current formulation is found to

be equivalent to most of the seemingly different heat current formulas used in the literature, but to deviate from

the stress-based formula derived from two-body potential. We validate our formulation numerically on various

systems described by the Tersoff potential, namely three-dimensional silicon and diamond, two-dimensional

graphene, and quasi-one-dimensional carbon nanotube. The effects of cell size and production time used in the

simulation are examined.

DOI: 10.1103/PhysRevB.92.094301 PACS number(s): 02.70.Ns, 05.60.Cd, 44.10.+i, 66.70.−f

I. INTRODUCTION

Molecular dynamics (MD) simulation has been used ex-

tensively to study thermal transport properties of materials.

There are mainly two methods for computing lattice thermal

conductivity in the level of classical MD simulations: the direct

method [1,2] [also called the nonequilibrium MD (NEMD)

method] based on the Fourier’s law and the Green-Kubo [3–5]

method (also called the equilibrium MD method) based on the

Green-Kubo formula. Cross-checking of these two methods

has also been the subject of several works [6–8]. In the

direct method, the thermal conductivity is usually computed

by measuring the steady-state temperature gradient at a fixed

external heat current, analogous to the experimental situation.

In contrast, in the Green-Kubo method, the thermal conductiv-

ity is computed by integrating the heat current autocorrelation

function (HCACF) using the Green-Kubo formula. While the

heat current in the direct method is created by scaling the

velocities in the source and sink regions of the simulated

system, which does not depend on the underlying interatomic

potential, the heat current in the Green-Kubo method is the

summation of the microscopic heat currents of the individual

atoms in the simulated system, which generally depends on

the specific interatomic potential used.

*brucenju@gmail.com
†pereira@dfte.ufrn.br

For a two-body potential, where a pairwise force can

be directly defined, the heat current expression used in the

Green-Kubo formula is well established. It is currently imple-

mented in Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) [9] in terms of the per-atom stress and

works well for systems described by two-body potentials such

as Lennard-Jones argon. However, it is not widely recognized

that the heat current expression based on the per-atom stress is

only applicable to two-body potentials, and is not guaranteed to

produce correct results for systems described by a many-body

potential, such as the widely used Tersoff potential [10],

Brenner potential [11], and Stillinger-Weber potential [12]. In

the literature, there have been quite a few formulations [13–17]

of the heat current for the Tersoff/Brenner potential, which

seem to be inequivalent to each other [18,19].

In this work, we present detailed derivations of the heat

current expressions for these many-body potentials. We show

that many of the seemingly different formulations of the heat

current are equivalent, except for some marginal differences

resulting from a different decomposition of the total potential

into site (per-atom) potentials. Our derivation is facilitated by

establishing the existence of a pairwise force respecting New-

ton’s third law, which is not widely recognized so far. Based

on the pairwise force, a well-defined expression for the virial

tensor can also be obtained. The derived force expression is

equivalent to other alternatives which do not respect Newton’s

third law explicitly, but it has an advantage of allowing for an

efficient implementation on graphics processing units (GPUs),

which attains a speedup factor of two orders of magnitude
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(compared to the LAMMPS implementation running on a

single CPU core) for large simulation cell sizes.

Using the efficient GPU code, we perform a comprehensive

validation of our formulations by calculating lattice thermal

conductivities of various kinds of material described by the

Tersoff potential, including three-dimensional (3D) silicon

and diamond, two-dimensional (2D) graphene, and quasi-

one-dimensional (Q1D) carbon nanotube (CNT). For each

material, we examine the convergence of the calculated

thermal conductivity with respect to the total simulation

time, the correlation time, and the finite-size effects, before

comparing our results with previous ones. Last, we present

explicit numerical evidence that the stress-based heat current

expression is inequivalent to our formulation for the Tersoff

potential.

II. THEORY

A. Green-Kubo method for thermal conductivity calculations

The Green-Kubo formula for the running thermal conduc-

tivity (RTC) tensor κµν(t) (µ,ν = x,y,z) at a given correlation

time t can be expressed as [3–5]

κµν(t) =
1

kBT 2V

∫ t

0

dt ′Cµν(t ′), (1)

where kB is Boltzmann’s constant, T is the absolute tempera-

ture, and V is the volume of the simulation cell. The HCACF

Cµν(t) is defined as

Cµν(t) = 〈Jµ(t = 0)Jν(t)〉, (2)

where 〈〉 denotes the average over different time origins. The

simulation time required for achieving high statistical accuracy

of the computed thermal conductivity in the Green-Kubo

method is usually quite challenging, as we show later. The

Green-Kubo method is capable of calculating the full conduc-

tivity tensor, but the following cases are sufficient to verify

our formulations: (1) isotropic 3D systems, such as diamond,

where we define the conductivity scalar as (κxx + κyy +
κzz)/3, (2) isotropic 2D systems, such as graphene, where

we define the in-plane conductivity as (κxx + κyy)/2, and

(3) Q1D systems, such as CNT, where only the conductivity

along the tube is needed. Periodic boundary conditions are

needed in all the transport directions. In the following, we use

J to represent the heat current vector with components Jx , Jy ,

and Jz.

B. General expression of the heat current

The heat current used in Eq. (2) is defined as the time

derivative of the sum of the moments of the site energies

Ei = 1
2
miv

2
i + Ui (3)

of the particles in the system [5]:

J ≡
d

dt

∑

i

r iEi =
∑

i

viEi +
∑

i

r i

d

dt
Ei . (4)

Here mi , vi , r i , and Ui are the mass, velocity, position, and

potential energy of particle i, respectively. Conventionally, one

defines a kinetic part

Jkin =
∑

i

viEi (5)

and a potential part

Jpot =
∑

i

r i

d

dt
Ei (6)

and writes the total heat current as a sum of them:

J = Jkin + Jpot. (7)

The kinetic term Jkin needs no further derivation, apart from

a possible issue of defining Ui for a many-body potential, and

the potential term Jpot can be written as

Jpot =
∑

i

r i(Fi · vi) +
∑

i

r i

dUi

dt
, (8)

where the kinetic energy theorem, d
dt

( 1
2
miv

2
i ) = Fi · vi , Fi

being the total force on particle i, has been used. The kinetic

term is also called the convective term, and is mostly important

for gases. For Lennard-Jones liquid, Vogelsang et al. [20]

showed that the thermal conductivity is mainly contributed by

the partial HCACF involving the potential-potential term. For

solids, the kinetic term barely contributes and can be simply

discarded. Note that the kinetic and potential terms defined

here correspond to the potential and kinetic terms, respectively,

used in the Einstein formalism studied by Kinaci et al. [21],

who also found that the convective term (the potential term

in the Einstein formalism) does not contribute to the thermal

conductivity for solids. We thus focus on the potential part

[Eq. (8)] in the following discussions.

C. Heat current for two-body potentials

Before discussing many-body potentials, let us first ex-

amine the case of two-body potentials. For these, the total

potential energy of the system can be written as

U =
1

2

∑

i

∑

j �=i

Uij , (9)

where the pair potential between particles i and j , Uij =
Uji = Uij (rij ), only depends on the distance rij between the

particles. The factor of 1/2 in the above equation compensates

the double-counting of the pair potentials; one can equally

omit it by requiring j > i (or j < i). The derived forces are

purely pairwise and Newton’s third law is apparently valid:

Fi =
∑

j �=i

Fij , (10)

Fij =
∂Uij

∂ r ij

= −Fji, (11)

where Fij is the force on particle i due to particle j and the

convention [22]

r ij ≡ rj − r i (12)

for the relative position between two particles is adopted. If

periodic boundary conditions are applied in a given direction,

the minimum image convention is used to all the relative

094301-2
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positions in that direction. Using the above notations, the first

term on the right-hand side of Eq. (8) can be written as
∑

i

r i(Fi · vi) =
∑

i

∑

j �=i

r i(Fij · vi). (13)

To make further derivation for the second term on the right-

hand side of Eq. (8), one has to make a choice for the site

potential Ui . A natural choice is Ui = 1
2

∑

j �=i Uij , but for

two-body potentials, it does not matter much how to define

the site potential. For example, the above choice is equivalent

to Ui = 1
4

∑

j �=i(Uij + Uji) because Uij = Uji . Therefore, the

second term on the right-hand side of Eq. (8) can be written as

∑

i

r i

dUi

dt
=

1

2

∑

i

∑

j �=i

r i[Fij · (vj − vi)]. (14)

Using the above two expressions, we can write the potential

term of the heat current as

J
pair
pot =

1

2

∑

i

∑

j �=i

r i[Fij · (vi + vj )]. (15)

In numerical calculations, the absolute positions, r i , will cause

problems for systems with periodic boundary conditions. For-

tunately, one can circumvent the difficulty by using Newton’s

third law Eq. (11), from which we have

J
pair
pot = −

1

4

∑

i

∑

j �=i

r ij [Fij · (vi + vj )], (16)

where only the relative positions, r ij , are involved. This

expression is also equivalent to a less symmetric form:

J
pair
pot = −

1

2

∑

i

∑

j �=i

r ij [Fij · vi]. (17)

In some situations such as in the simulation of thermal

transport in superlattices, the HCACF may exhibit large high-

frequency oscillations which do not contribute to the thermal

conductivity. In such situations, one usually replaces [23,24]

the instantaneous position difference vectors r ij by the

equilibrium ones.

The potential part of the heat current is also intimately

related to the virial part of the stress tensor. To see this, we

first note that the virial W can be written as a summation of

individual terms,

W =
∑

i

Wi, (18)

where the per-atom virial Wi for a periodic system reads

Wi = −
1

2

∑

j �=i

r ij ⊗ Fij . (19)

Therefore, the potential part of the heat current can be

expressed in terms of the per-atom virial as

J stress
pot =

∑

i

Wi · vi . (20)

The current implementation of the Green-Kubo formula for

thermal conductivity in LAMMPS adopts this stress-based

formula. However, as we show later, it does not apply to many-

body potentials.

D. Force expressions for Tersoff potential

We now move on to many-body potentials, first focusing on

the Tersoff potential. The total potential energy for a system

described by the Tersoff potential can also be written as U =
1
2

∑

i

∑

j �=i Uij , where the many-body bond energy Uij can be

written as [10]

Uij = fC(rij )[fR(rij ) − bijfA(rij )], (21)

bij =
(

1 + βnζ n
ij

)− 1
2n , (22)

ζij =
∑

k �=i,j

fC(rik)gijk, (23)

gijk = 1 +
c2

d2
−

c2

d2 + (h − cos θijk)2
. (24)

Here, β, n, c, d, and h are parameters and θijk is the angle

formed by r ij and r ik , which means that

cos θijk = cos θikj =
r ij · r ik

rij rik

. (25)

While the functions fC , fR , and fA only depend on rij , the

bond-order function bij also depends on the positions rk of the

neighbor particles of i and j and thus generally, Uij �= Uji ,

which is a manifestation of the many-body nature of the Tersoff

potential. However, we notice that bij , hence Uij , is only a

function of the position difference vectors originating from

particle i (in the equation below, k = j is allowed):

Uij = Uij ({r ik}k �=i). (26)

This property will play a crucial role in the following

derivations.

We now start to derive the force expressions for the Tersoff

potential. We begin with the definition

Fi ≡ −
∂U

∂ r i

≡ −
1

2

∑

j

∑

k �=j

∂Ujk

∂ r i

. (27)

We can expand it as

Fi = −
1

2

⎛

⎝

∑

k �=i

∂Uik

∂ r i

+
∑

j �=i

∂Uji

∂ r i

+
∑

j �=i

∑

k �=j,i

∂Ujk

∂ r i

⎞

⎠. (28)

The first, second, and third terms on the right-hand side of

Eq. (28) correspond to the parts with j = i, k = i, and j,k �= i

in Eq. (27), respectively. Then, using Eq. (26), we have

Fi = −
1

2

⎛

⎝

∑

k �=i

∑

j �=i

∂Uik

∂ r ij

∂ r ij

∂ r i

+
∑

j �=i

∑

k �=j

∂Uji

∂ rjk

∂ rjk

∂ r i

⎞

⎠

−
1

2

∑

j �=i

∑

k �=j,i

∑

m�=j

∂Ujk

∂ rjm

∂ rjm

∂ r i

=
1

2

⎛

⎝

∑

k �=i

∑

j �=i

∂Uik

∂ r ij

+
∑

j �=i

∂Uji

∂ r ij

+
∑

j �=i

∑

k �=j,i

∂Ujk

∂ r ij

⎞

⎠.

(29)
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Since
∑

k �=i

∑

j �=i

∂Uik

∂ r ij

=
∑

k �=i,j

∑

j �=i

∂Uik

∂ r ij

+
∑

j �=i

∂Uij

∂ r ij

, (30)

we have

Fi =
1

2

∑

j �=i

∂

∂ r ij

⎛

⎝Uij + Uji +
∑

k �=i,j

(Uik + Ujk)

⎞

⎠. (31)

From this, a pairwise force between two particles can also be

defined for the many-body Tersoff potential:

FTersoff
ij ≡

1

2

∂

∂ r ij

⎛

⎝Uij + Uji +
∑

k �=i,j

(Uik + Ujk)

⎞

⎠. (32)

The total force can be expressed as a sum of the pairwise forces

Fi =
∑

j �=i

FTersoff
ij , (33)

and Newton’s third law

FTersoff
ij = −FTersoff

ji (34)

still holds.

In the above derivations, we have not assumed any form

of the site potential Ui . The definition of Ui for a many-body

potential amounts to a decomposition of the total potential into

site potentials. While such a decomposition is not needed for

the derivation of the forces, it is needed for deriving the heat

current, which involves a time derivative of the site potential

[cf. Eq. (8)]. A natural choice for the decomposition is

U =
∑

i

Ui with Ui ≡
1

2

∑

j �=i

Uij . (35)

There is no clear physical intuition favoring this decomposition

over others [cf. Eq. (B18)], but we find that Eq. (35) is a very

reasonable definition. To show this, we notice that the site

potential defined by Eq. (35) is also only a function of the

relative positions originating from particle i:

Ui = Ui({r ij }j �=i). (36)

Using this property, the total force on particle i can be derived

as

Fi ≡ −
∂U

∂ r i

≡ −
∑

j

∂Uj

∂ r i

= −
∑

j �=i

(

∂Uj

∂ r i

)

−
∂Ui

∂ r i

= −
∑

j �=i

⎛

⎝

∑

k �=j

∂Uj

∂ rjk

∂ rjk

∂ r i

+
∂Ui

∂ r ij

∂ r ij

∂ r i

⎞

⎠

=
∑

j �=i

(

∂Ui

∂ r ij

−
∂Uj

∂ rji

)

, (37)

which is equivalent to Eq. (31), and the pairwise force is

simplified to be

FTersoff
ij =

∂Ui

∂ r ij

−
∂Uj

∂ rji

. (38)

One can check that Eq. (38) reduces to Eq. (11) in

the case of two-body interaction. We also point out that
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FIG. 1. (Color online) Per-atom virial stresses in the x direction

on individual carbon atoms in a configuration generated by randomly

shifting the positions of all the atoms from the perfect graphene

structure by a small amount. Circles and crosses represent the results

obtained by the LAMMPS code and our GPU code [using the formula

Eq. (39)], respectively. The solid and dashed lines represent the mean

values of the circles and crosses, respectively.

our force expressions for the Tersoff potential are only

seemingly different from other alternatives. There should be

no ambiguity for the calculation of the total force on a given

particle. However, different formulations may lead to different

computer implementations. A crucial advantage of our for-

mulation is that the total forces for individual particles can

be calculated independently, which is desirable for massively

parallel implementation. The numerical calculations presented

in this work were performed by a molecular dynamics code

implemented on GPUs using the thread scheme (one thread

per atom) in Ref. [25]. However, a detailed discussion of the

GPU implementation of the Tersoff potential is beyond the

scope this paper, which will be presented elsewhere.

Another advantage of our formulation is that the per-atom

virial for the Tersoff potential takes the same form as for the

two-body potential:

WTersoff
i = −

1

2

∑

j �=i

r ij ⊗ FTersoff
ij , (39)

which is unambiguously defined for periodic systems [26].

This is not exactly equivalent to what has been implemented

in LAMMPS, as can be seen from Fig. 1. Here, the test system

corresponds to a graphene sheet perturbed from the perfect

honeycomb structure by randomly shifting the positions of all

the atoms by a small amount. One can see that the per-atom

stresses computed by the LAMMPS code deviate from those

computed by our GPU code using Eq. (39). On the other hand,

the total (or mean) virial stresses obtained by the two methods

are equal. Despite this equivalence, we note that Eq. (39)

is easier to understand and allows for an efficient parallel

implementation on the GPU, as in the case of force evaluation.

E. Heat current for the Tersoff potential

We now derive the heat current expressions for the Tersoff

potential, using the potential decomposition given by Eq. (35).

Using Eq. (37), the first term on the right-hand side of Eq. (8)

094301-4
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can be written as

∑

i

r i(Fi · vi) =
∑

i

∑

j �=i

r i

(

∂Ui

∂ r ij

−
∂Uj

∂ rji

)

· vi . (40)

Using Eq. (36), the second term on the right-hand side of

Eq. (8) can be written as

∑

i

r i

dUi

dt
=

∑

i

∑

j �=i

r i

∂Ui

∂ r ij

· (vj − vi). (41)

From these two expressions, we get the following formula for

the potential part of the heat current for the Tersoff potential:

JTersoff
pot =

∑

i

∑

j �=i

r i

(

∂Ui

∂ r ij

· vj −
∂Uj

∂ rji

· vi

)

. (42)

Again, one can get rid of the absolute positions r i by rewriting

the above formula as

JTersoff
pot = −

1

2

∑

i

∑

j �=i

r ij

(

∂Ui

∂ r ij

· vj −
∂Uj

∂ rji

· vi

)

. (43)

A less symmetric form can also be readily obtained:

JTersoff
pot = −

∑

i

∑

j �=i

r ij

(

∂Ui

∂ r ij

· vj

)

, (44)

or equivalently,

JTersoff
pot =

∑

i

∑

j �=i

r ij

(

∂Uj

∂ rji

· vi

)

. (45)

Therefore, the potential part of the heat current for the

Tersoff potential is not equivalent to the stress-based formula

given by Eq. (20). One can check that, in the case of two-body

interactions, the heat current expressions in Eqs. (42)–(45) for

the Tersoff potential reduce to those for the two-body potential

in Eqs. (15)–(17).

Apart from the velocities vi and relative positions r ij , the

only nontrivial terms in the force and heat current expressions

are ∂Ui

∂ r ij
and

∂Uj

∂ rji
, the latter being able to be obtained from the

former by an exchange of i and j . An explicit expression for

the former is presented in Appendix A.

In Appendix B, we show that Eq. (45) is equivalent to the

one derived by Hardy [27] at the quantum level for general

many-body interactions. In the following, we refer to Eq. (45)

as the Hardy formula and Eq. (20) as the stress formula.

There has been some confusion about the seemingly

different heat current expressions for the Tersoff potential

in the literature. Guajardo-Cuéllar et al. [18] and Khadem

et al. [19] compared several expressions [13,14,16–18,27] in

the literature. From their results, it seems as if all of these

expressions were inequivalent. In Appendix B, we show that

many of them are equivalent to the Hardy formula.

F. Generalization to other many-body potentials

Besides the Tersoff potential, the Brenner potential [11] and

the Stillinger-Weber (SW) potential [12] are also widely used

in the study of covalently bonded systems. Here, we first show

that the derivations for the Tersoff potential can be generalized

to these potentials and then summarize our results for a general

many-body potential.

The generalization to the Brenner potential is straightfor-

ward. The many-body bond energy Uij for this takes the

same form as that for the Tersoff potential [Eq. (21)]. The

bond-order function bij , hence Uij , is only a function of

the position difference vectors originating from particle i,

although the explicit form of bij in the Brenner potential

is more complicated. This is the only property we used to

derive the pairwise force expression [Eq. (32)] for the Tersoff

potential. Therefore, the same pairwise force expression also

applies to the Brenner potential. Using the same potential

partition as for the Tersoff potential, Ui = 1
2

∑

j �=i Uij , we

can arrive at a simplified pairwise force expression [Eq. (38)]

and the Hardy formula [Eq. (45)] of heat current, as in the case

of the Tersoff potential.

We next consider the SW potential. The total potential

energy consists of a two-body part and a three-body part, the

latter being given as [12]

U (3) =
∑

i

∑

j>i

∑

k>j

(hijk + hjki + hkij ), (46)

where

hijk = λ exp

[

γ

rij − a
+

γ

rik − a

](

cos θijk +
1

3

)2

. (47)

Here, λ, γ , and a are parameters and cos θijk is defined as

in Eq. (25). Similar definitions apply to hjki and hkij . It is

clear that hijk is symmetric in the last two indices: hijk = hikj .

Using this property, we can reexpress the three-body part of

the total potential as

U (3) =
1

6

∑

i

∑

j �=i

∑

k �=i,j

(hijk + hjki + hkij ), (48)

which can be further simplified as

U (3) =
1

2

∑

i

∑

j �=i

∑

k �=i,j

hijk. (49)

Without referring to any potential partition, but noticing that

hijk is only a function of the position difference vectors

originating from particle i, one can derive a pairwise force

expression for the three-body part:

F
(3)
i =

∑

j �=i

F
(3)
ij , (50)

F
(3)
ij =

1

2

⎛

⎝

∑

k �=i

∑

m�=i,k

∂hikm

∂ r ij

+
∑

k �=j

∑

m�=j,k

∂hjkm

∂ r ij

⎞

⎠

= −F
(3)
ji . (51)

With a definition of the site potential,

U
(3)
i ≡

1

2

∑

j �=i

∑

k �=i,j

hijk with U (3) =
∑

i

U
(3)
i , (52)

the above pairwise force expression can be simplified to

F
(3)
ij =

∂U
(3)
i

∂ r ij

−
∂U

(3)
j

∂ rji

. (53)
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This is formally the same as that for the Tersoff potential, the

only difference being the form of the site potential. Adopting

the above potential decomposition, and noticing that Ui is only

a function of the position difference vectors originating from

particle i, one can confirm that the potential part of the heat

current also takes the form of the Hardy formula:

J
(3)
pot =

∑

i

∑

j �=i

r ij

(

∂U
(3)
j

∂ rji

· vi

)

. (54)

In fact, the pairwise force formula and the Hardy formula

of heat current apply to any many-body potential, because the

crucial property we have used in the above derivations, i.e.,

that the many-body bond energy Uij (or the site potential Ui)

is only a function of the set of vectors {r ij }j �=i , is satisfied by

any empirical potential: any other position difference vector

can be expressed as the difference of two vectors in this set.

In other words, the vectors {r ij }j �=i form a complete set of

independent arguments for any pair or site potential associated

with particle i. We can summarize our formulations as follows.

For a general classical many-body potential,

U =
∑

i

Ui({r ij }j �=i), (55)

there exists a pairwise force between two particles i and j ,

Fij = −Fji =
∂Ui

∂ r ij

−
∂Uj

∂ rji

, (56)

a well-defined virial tensor for periodic systems,

W = −
1

2

∑

i

∑

j �=i

r ij ⊗ Fij , (57)

and a well-defined potential part of the heat current for periodic

systems,

Jpot =
∑

i

∑

j �=i

r ij

(

∂Uj

∂ rji

· vi

)

. (58)

The existence of a pairwise force for classical many-body

potentials, albeit not surprising according to the principles of

classical mechanics, has not been widely recognized in the

community. Without an explicit expression for the pairwise

force, much effort has been devoted to constructing general

expressions for the virial tensor in periodic systems [26,28].

Our formulations are thus not only useful for thermal conduc-

tivity calculations based on the Green-Kubo formula, but can

also find application in the study of properties related to the

stress tensor.

III. APPLICATIONS ON THERMAL CONDUCTIVITY

CALCULATIONS

We now apply the heat current formulations to study lattice

thermal conductivities of various kinds of material. To be

specific, we present results obtained by using the Tersoff

potential, which has been applied extensively in the study

of thermal transport properties of silicon, diamond, graphene,

and CNT. The Tersoff parameters used for diamond and silicon

are taken from Ref. [10] and those for graphene and CNT are

the optimized ones obtained by Lindsay and Broido [29]. To

be specific, we only consider isotopically pure 12C and 28Si

in our simulations, although our method is not limited to this

case. When calculating the thermal conductivity of graphene

and CNT, one has to specify the effective thickness of the

graphene sheet. We have chosen it to be 0.335 nm. We use

cubic simulation cells for silicon and diamond and roughly

square-shaped simulation cells for graphene. The time step

of integration in the MD simulations is chosen to be 1 fs

for most of the simulated systems, but for smaller carbon

systems, we found that smaller time steps are desirable. The

evolution time in the equilibration stage (canonical ensemble,

where temperature is controlled) of the MD simulation lasts

one to several nanoseconds, depending on the simulations

cell size. The heat current data are recorded every 10 steps

in the production stage (microcanonical ensemble, where

temperature is not controlled). We only consider systems with

zero external pressure and the lattice constants for silicon at

500 K and diamond at 300 K are determined to be 0.544 nm

and 0.357 nm. For graphene and CNT at 300 K, the average

carbon-carbon distance is determined to be 0.144 nm.

A. Performance of the GPU implementation

Before presenting the numerical results for thermal con-

ductivity calculations, we first comment briefly on the perfor-

mance of our GPU implementation, choosing 2D graphene as

the testing system. We have chosen CUDA (compute unified

device architecture) [30] as the developing tool and used a

Tesla K40 graphics card from NVIDIA to run the CUDA code.

To measure the performance of our GPU implementation, we

compare its computational speed with that of the LAMMPS

code running on a single core in Intel Xeon CPU E3-1230 V2

at 3.3 GHz. We define the speedup factor as the computation

time used by the LAMMPS code divided by that used by the

CUDA code for the same amount of computation. It turns out

that the computational speed (defined as the product of the

number of atoms and the number of time steps divided by the

computation time) of the LAMMPS code does not change as

the simulation cell size increases from N = 103 to N = 106,

being about 6 × 105 atom · step/second. On the other hand,

due to the large number of CUDA cores in the GPU (2880

in the Tesla K40 graphics card), the computational speed of

the CUDA code increases with increasing simulation cell size

and only saturates when N exceeds one million. Specifically,

the speedup factor is about 20 when N = 103, over 100

when N = 104, over 200 when N = 105, and about 300 when

N = 106. These speedup factors are obtained by using single

precision. For double precision, the speedup factors are about

two times smaller.

B. Silicon

We start presenting our results by considering silicon.

Figures 2(a)–2(e) show the RTCs [given by Eq. (1)] for silicon

at 500 K with different simulation cell sizes N . For a given N ,

there are large variations between the independent simulations

associated with different sets of initial velocities in the MD

simulations. Despite the variations, a well-converged RTC can

be obtained by averaging over sufficiently many independent

simulations, along with estimations of an average value and
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FIG. 2. (Color online) (a)–(e) Running thermal conductivities as

a function of correlation time for silicon with different simulation cell

sizes at 500 K. The thinner (and lighter) and the thicker (and darker)

lines represent the results of independent simulations with different

initial velocities and the ensemble average over the independent

simulations, respectively. (f) Thermal conductivity as a function of the

simulation cell size N . Markers with error bars represent the average

values and the corresponding standard errors for a given N . The solid

line indicates the average (147 W/mK) over the 5 simulation cell

sizes and the dashed lines indicate the corresponding standard error

(±2 W/mK).

the corresponding error estimate for the converged thermal

conductivity. In this work, we determine them in the following

steps (for a given N ):

(1) Determine (by visual inspection) a range of correlation

time [t1,t2] where the averaged RTC has converged well.

(2) Calculate the average values of the RTCs for the

independent simulations over the range of correlation time

determined in the last step.

(3) Take the mean value and standard error (standard

deviation divided by
√

M , where M is the number of

independent simulations) of the average values obtained in

the last step as the average value and error estimate, which are

represented by an open circle and the corresponding error bar

in Fig. 2(f) for a given N .

To determine [t1,t2], we have to ensure that the averaged

RTC is sufficiently smooth. The smoothness can be enhanced

by increasing either the simulation time ts of the individual

simulations or the number of independent simulations Ns .

More precisely, it is determined by the product Ns ts . We found

that a value of Ns ts = 200 ns is enough for silicon at 500 K. It

can be seen that all the averaged RTCs in Figs. 2(a)–2(e) are

rather smooth and [t1,t2] = [400 ps, 500 ps] is a fairly good

choice for the converged time interval.
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FIG. 3. (Color online) Same as Fig. 2, but for diamond at 300 K.

Before comparing our results with previous ones, we need

to further check possible finite-size effects in the calculations.

The Green-Kubo formula is, in principle, only meaningful

for infinite systems, i.e., systems in the thermodynamic limit.

However, in practice, one can only simulate systems with

finite simulation cell sizes, with periodic boundary conditions

applied along the directions which are thought to be infinite to

alleviate the finite-size effects in those directions. One can then

check whether the results converge with increasing simulation

cell size.

Figure 2(f) presents the converged thermal conductivities

of silicon at 500 K obtained by using different simulation cell

sizes: N = 512, 1000, 1728, 2744, and 4096. It can be seen

that they do not show a systematical decreasing or increasing

trend with increasing N .

Due to the small finite-size effects, we can take the

average values of thermal conductivity for different simulation

cell sizes as independent simulation results and obtain an

average value and the corresponding error estimate. In this

way, we obtain the final result, (147 ± 2) W/mK, which

is in good agreement with that obtained by Howell [31],

(155 ± 4) W/mK. Note that Howell used the direct method

with the same Tersoff parameters. This comparison thus further

confirmed the equivalence between the direct method and the

Green-Kubo method, as has been shown by Schelling et al. [6]

for SW silicon.

C. Diamond

We next consider diamond. The RTCs at 300 K with 5

simulation cell sizes, N = 512, 1000, 1728, 2744, and 4096,

are shown in Figs. 3(a)–3(e) and the corresponding converged

values are presented in Fig. 3(f). The averaged RTCs converge

earlier than those for silicon. Here, it can be seen that the
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FIG. 4. (Color online) Same as Fig. 2, but for graphene at 300 K.

converged time interval can be chosen to be [t1,t2] = [150 ps,

200 ps]. Due to the shorter correlation time required for

converging, the total simulation time required for obtaining

smooth curves of the RTC is shorter than that for silicon,

being about Ns ts = 100 ns.

As in the case of silicon, there is no systematical decreasing

or increasing trend with increasing N . Our calculated thermal

conductivity averaged over the 5 simulation cell sizes is

(1950 ± 40) W/mK. Using the Brenner potential [11] and the

Green-Kubo method, Che et al. [14] obtained a converged

value of about 1200 W/mK for isotopically pure 12C diamond,

which is about one third smaller than ours. This difference can

be understood by noticing that the original Brenner potential

is more anharmonic than the original Tersoff potential, as has

also been noticed in the study of CNT and graphene [29].

Experimentally, the thermal conductivity of isotopically pure
12C diamond at room temperature is about 3000 W/mK [32],

larger than both of our results. The difference between theo-

retical and experimental results may result from an excessive

anharmonicity of the empirical potentials.

D. Graphene

The above results are for 3D bulk materials. We now

turn to study low-dimensional materials, first considering

2D graphene. The RTCs at 300 K with 5 simulation cell

sizes, N = 960, 3840, 8640, 15360, and 24000, are shown

in Figs. 4(a)–4(e), with the corresponding converged values

presented in Fig. 4(f). For each N , a total simulation time

of Ns ts = 500 ns is required to obtain an average RTC well

converged in the time interval of [t1,t2] = [250 ps, 500 ps].

As in the case of diamond and silicon, the thermal

conductivity of graphene does not increase with increasing

simulation cell size. In fact, the contrary is true when N is

smaller than 104, as found by Pereira and Donadio [33]. Similar

results have also been obtained by Zhang et al. [34] for smaller

N . The increasing of the simulation cell size has two opposite

effects: (1) It allows more long-wavelength phonons, which

can increase the thermal conductivity; (2) it also allows more

phonon scattering, as suggested [35] by Ladd et al., which

can decrease the thermal conductivity. In 2D graphene, more

phonon scattering can be induced by the acoustic flexural

modes with increasing out-of-plane deformation, which is

positively correlated to the simulation cell size [36]. When

the simulation cell size is relatively small, the second effect

may dominate, resulting in a decreasing thermal conductivity

with increasing simulation cell size. When the simulation cell

size is relatively large, these two effects largely compensate

each other, resulting in converged thermal conductivity with

increasing simulation cell size.

The thermal conductivity of graphene at 300 K averaged

over the 5 simulation cell sizes is (2700 ± 80) W/mK. Using

the optimized Brenner potential [29] and the Green-Kubo

method, Zhang et al. [34,37] reported a converged value

of (2900 ± 93) W/mK for graphene at 300 K, which is

slightly larger than ours. This difference may be explained

by the fact that they have used smaller simulation cell sizes,

which, according to the discussion above, results in larger

thermal conductivity for graphene. On the other hand, Haskins

et al. [38] reported a value of 2600 W/mK based on the Einstein

formulation [21], which is in good agreement with ours.

It is interesting to point out that our estimate of the thermal

conductivity for graphene at room temperature is compatible

with NEMD calculations (using the same Tersoff potential

parameters) in Ref. [39], which give κ ≈ 2300 W/mK with a

simulation length of about 1.5 µm. If we take the consistency

between the Green-Kubo method and the NEMD method as

granted, this comparison indicates that the NEMD results have

not been converged up to a simulation length of 1.5 µm. In fact,

both the NEMD results and the experimental data [39] suggest

a logarithmic length dependence of thermal conductivity

of graphene at the micrometer scale. On the other hand,

whether the thermal conductivity is upper limited or not in the

infinite-size limit has been largely debated recently [39–42].

Our results provide evidence that the thermal conductivity of

an extended (macroscopic) graphene sheet is finite, although

at the micrometer scale κ still depends on the length of the

graphene patch.

E. (10, 0)-carbon nanotube

Last, we examine the longitudinal thermal conductivity of

CNT. To be specific, we consider a (10, 0)-CNT, without

a detailed study of the effects of chirality and radius. The

RTCs at 300 K with 5 simulation cell sizes, N = 2000, 4000,

6000, 8000, and 10000, are shown in Figs. 5(a)–5(e), with

the corresponding converged values presented in Fig. 5(f). For

each N , a total simulation time of Ns ts = 1000 ns is required

to obtain an average RTC almost converged in the time interval

of [t1,t2] = [500 ps, 1000 ps].

Compared with 2D graphene, the (10, 0)-CNT has even

larger thermal conductivity: (3100 ± 68) W/mK. This high

value of thermal conductivity is mostly due to the long phonon
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FIG. 5. (Color online) Same as Fig. 2, but for (10, 0)-CNT at

300 K.

wavelength (large phonon relaxation time) in Q1D CNTs [43],

as indicated by the slow convergence of κ with respect to t .

While there were debates on the size convergence of κ for

CNTs [44–48], our results do not suggest a divergent κ with

respect to the simulation cell length. Previously, the thermal

conductivity for (10, 0)-CNT was calculated to be (1750 ±
230) W/mK in Ref. [45] (see also Ref. [48]) and (1700 ± 200)

W/mK in Ref. [49], which are both smaller than the value

obtained in this work, but due to different reasons: Ref. [45]

employed the original parameter set provided by Tersoff [10];

Ref. [49] used the stress formula as implemented in LAMMPS,

which also results in smaller values of κ comparing with the

Hardy formula, as we show below.

F. Comparing the stress and the Hardy formula

Previously, we remarked that the stress formula [Eq. (20)]

and the Hardy formula [Eq. (45)] are inequivalent for the

Tersoff potential. Also, the per-atom virial as implemented

in LAMMPS is not equivalent to ours [Eq. (39)], which would

result in different heat currents based on the stress formula.

Here, we show these two kinds of nonequivalence numerically.

Figure 6 shows the RTCs of (a) silicon at 500 K, (b) diamond

at 300 K, (c) graphene at 300 K, and (d) (10, 0)-CNT at

300 K calculated using the Hardy formula, the stress formula

in our formulation, and the stress formula as implemented

in LAMMPS. We note the following observations based on

Fig. 6:

(1) For 3D diamond and silicon, all the three methods result

in comparable results.
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FIG. 6. (Color online) Running thermal conductivities κ(t) as a

function of correlation time for (a) silicon at 500 K, (b) diamond at

300 K, (c) graphene at 300 K, and (d) (10, 0)-CNT at 300 K obtained

by using the Hardy formula (solid lines), the stress formula (dashed

lines), and LAMMPS (dot-dashed lines). For each material, the line

and the shaded area represent the averaged κ(t) and the standard error

calculated from an ensemble of 10 independent simulations.

(2) For 2D graphene, the RTC in the converged regime

([250 ps, 500 ps]) obtained by the stress formula is about

1/2 of that by the Hardy formula and that by the LAMMPS

implementation is about 1/3 of that by the Hardy formula. The

LAMMPS results are consistent with previous ones [33,50].

(3) For Q1D CNT, while the RTC in the converged

regime ([400 ps, 600 ps]) obtained by the stress formula is

comparable to that by the Hardy formula, that by the LAMMPS

implementation is about 1/2 of that by the Hardy formula. The

LAMMPS results are also consistent with previous ones [49].

From these observations, we conclude that the stress

formula is generally inequivalent to the Hardy formula

and the LAMMPS implementation of the stress formula is

inequivalent to our implementation based on the pairwise

force. Although we are not clear about the reason why the

differences between these formulations are more significant

in low-dimensional materials (especially 2D graphene) than

in 3D materials, our results can explain an extraordinarily

low value of thermal conductivity of graphene at 300 K,

(280 ± 15) W/mK, obtained by Mortazavi et al. [51] using

LAMMPS and the (second-generation) Brenner potential [52].

Apart from the higher anharmonicity of this empirical potential

compared with the optimized Tersoff potential, this small

thermal conductivity could be attributed to the use of the stress

formula implemented in LAMMPS.

IV. CONCLUSIONS

In summary, we formulated force, stress, and heat current

expressions of many-body potentials in MD simulations. After

deriving these expressions for the Tersoff potential in detail

and briefly discussing their generalizations to the Brenner

potential and the Stillinger-Weber potential, we reached a set of
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universal expressions [Eqs. (56)–(58)] which apply to general

many-body potentials.

The pairwise force expression [Eq. (56)], whose existence

is guaranteed by the principles of classical mechanics, has

not been widely recognized in the community so far. We

demonstrated the importance of the pairwise force expression

in the construction of a well-defined virial tensor [Eq. (57)].

With a reasonable potential partition, we arrived at the Hardy

formula [Eq. (58)] for the potential part of microscopic

heat current used in lattice thermal conductivity calculations

based on the Green-Kubo formula. Many of the seemingly

different formulations of the heat current in the literature were

demonstrated to be equivalent to the Hardy formula.

We have implemented the formulations for the Tersoff

potential on GPUs and obtained orders of magnitude speedup

compared to the serial LAMMPS implementation. While the

details of the GPU implementation are beyond the scope of

this paper, we have applied it to calculate systematically the

lattice thermal conductivities of various kinds of material,

including 3D silicon and diamond, 2D graphene, and Q1D

CNT, with emphasis on the effects of the simulation time and

simulation cell size. We demonstrated the correctness of our

formulations by comparing our results with previous ones.

Last, we provided explicit evidence on the nonequivalence

between the Hardy formula and the stress formula as well as

on the nonequivalence between the LAMMPS implementation

of the stress formula and our implementation based on

the pairwise force. Particularly, we showed that the stress-

based formulation underestimates the thermal conductivity

of systems described by many-body potentials, and that this

effect is more noticeable for low-dimensional systems. While

a more in-depth understanding of these differences is yet to

be obtained, our findings in this work would be very useful

for scientists modeling thermal transport in low-dimensional

systems via molecular dynamics simulations.
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APPENDIX A: EXPLICIT EXPRESSION OF
∂Ui

∂ r i j
FOR THE

TERSOFF POTENTIAL

In this Appendix, we present an explicit expression of ∂Ui

∂ r ij

for the Tersoff potential, which can be easily implemented in

a computer language.

Using the partition given by Eq. (35), we have

∂Ui

∂ r ij

=
1

2

∂Uij

∂ r ij

+
1

2

∑

k �=i,j

∂Uik

∂ r ij

. (A1)

After some algebra, we have

∂Ui

∂ r ij

=
1

2
f ′

C(rij )[fR(rij ) − bijfA(rij )]
∂rij

∂ r ij

+
1

2
fC(rij )[f ′

R(rij ) − bijf
′
A(rij )]

∂rij

∂ r ij

−
1

2

∑

k �=i,j

fC(rik)f ′
C(rij )fA(rik)b′

ikgijk

∂rij

∂ r ij

−
1

2

∑

k �=i,j

fC(rik)fC(rij )g′
ijk

∂ cos θijk

∂ r ij

× [fA(rij )b′
ij + fA(rik)b′

ik], (A2)

where

∂rij

∂ r ij

=
r ij

rij

, (A3)

∂ cos θijk

∂ r ij

=
1

rij

[

r ik

rik

−
r ij

rij

cos θijk

]

, (A4)

and we have used the following notations: f ′
A(rij ) ≡

∂fA(rij )/∂rij , f ′
R(rij ) ≡ ∂fR(rij )/∂rij , f ′

C(rij ) ≡
∂fC(rij )/∂rij , b′

ij ≡ ∂bij/∂ζij , and g′
ijk ≡ ∂gijk/∂ cos θijk .

APPENDIX B: UNIFYING DIFFERENT HEAT CURRENT

EXPRESSIONS IN THE LITERATURE

The derivation of the heat current expressions for a general

lattice has been considered very early by Hardy [27] at the

quantum level. The potential part of the heat current was

derived to be

J
Hardy
pot =

1

2

∑

i

∑

j �=i

rji

1

i�

[

p2
i

2mi

,Uj

]

+ H.c., (B1)

where � is the reduced Planck constant, pi and mi are the

momentum operator and mass for particle i, and H.c. stands

for Hermitian conjugate. Using the identity

[ pi,Uj ] = −i�
∂Uj

∂ r i

, (B2)

the classical analog of Eq. (B1) can be derived to be

J
Hardy
pot =

∑

i

∑

j �=i

r ij

(

∂Uj

∂ r i

· vi

)

. (B3)

Using Eq. (36), we have

∂Uj

∂ r i

=
∑

k �=j

∂Uj

∂ rjk

∂ rjk

∂ r i

=
∂Uj

∂ rji

, (B4)

and

J
Hardy
pot =

∑

i

∑

j �=i

r ij

(

∂Uj

∂ rji

· vi

)

. (B5)

This equation is identical to Eq. (45) and thus equivalent to all

the expressions in Eqs. (42)–(44).
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We now show that many of the seemingly inequivalent

expressions of the potential part of the heat current for the

Tersoff/Brenner potential are equivalent to the Hardy formula.

We first consider the one used by Li et al. [13], which takes

the following form:

JLi
pot = −

∑

i

∑

j �=i

r ij

∂Ei

∂ rj

· vj . (B6)

Since ∂
∂ rj

( 1
2
miv

2
i ) = 0, we have

JLi
pot = −

∑

i

∑

j �=i

r ij

∂Ui

∂ rj

· vj , (B7)

which has the same form as that used by Dong et al. [16]. By

noticing that [where we have used Eq. (36)]

∂Ui

∂ rj

=
∑

k �=i

∂Ui

∂ r ik

∂ r ik

∂ rj

=
∂Ui

∂ r ij

, (B8)

we have

JLi
pot = J

Dong
pot = −

∑

i

∑

j �=i

r ij

∂Ui

∂ r ij

· vj , (B9)

which is exactly Eq. (44) and is thus equivalent to the Hardy

formula. We also note that the one used by Berber et al. [15]

is exactly the Hardy formula.

We next consider the one derived by Che et al. [14], which

takes the following form:

JChe
pot = −

1

2

∑

i

∑

j

∑

k

∑

l

r ik

∂Ukl

∂ r ij

· vi . (B10)

Since

∂Ukl

∂ r ij

=
∑

m

∂Ukl

∂ rkm

(δkiδmj − δkjδmi), (B11)

we have

JChe
pot =

1

2

∑

i

∑

j

∑

l

r ij

∂Uj l

∂ rji

· vi

=
∑

i

∑

j �=i

r ij

∂Uj

∂ rji

· vi, (B12)

which is exactly the Hardy formula.

The Hardy formula is also equivalent to a seemingly

different one derived by Chen et al. [17], which reads (the

original expression in Ref. [17] contains a typo, which has

been noticed by Guajardo-Cuéllar et al. [18])

JChen
pot = −

1

2

∑

i

∑

j �=i

r ij

∂Uij

∂ rj

· vj

−
1

2

∑

i

∑

j �=i

∑

k �=i,j

r ik

∂Uij

∂ rk

· vk. (B13)

By a change of indices (k ↔ j ), the second term on the right-

hand side of the above equation can be written as

−
1

2

∑

i

∑

j �=i

∑

k �=i,j

r ij

∂Uik

∂ rj

· vj , (B14)

which, combining with the first term, gives [using Eq. (35)]

JChen
pot = −

∑

i

∑

j �=i

r ij

∂Ui

∂ rj

· vj . (B15)

It takes the same form of Eq. (B7) and is thus equivalent to the

Hardy formula.

Recently, Guajardo-Cuéllar et al. [18] also derived an

expression for the potential part of the heat current. They

have used the equation mi
dvi

dt
=

∑

j �=i

∂Uij

∂ r ij
in their derivation,

which means that the force on particle i was taken to be

Fi =
∑

j �=i

∂Uij

∂ r ij
. This is only valid for two-body potentials,

and as such it is not valid for the Tersoff potential. We thus

do not expect that their expression is equivalent to the Hardy

formula.

Last, we notice that Li et al. [13] also presented the potential

part of the heat current as the sum of the following parts:

JLi1
pot = −

1

4

∑

i

∑

j �=i

⎛

⎝r ij

∂Uij

∂ rj

· vj +
∑

k �=i,j

r ik

∂Uij

∂ rk

· vk

⎞

⎠

(B16)

and

JLi2
pot = −

1

4

∑

i

∑

j �=i

⎛

⎝rji

∂Uij

∂ r i

· vi +
∑

k �=i,j

rjk

∂Uij

∂ rk

· vk

⎞

⎠.

(B17)

It can be shown that JLi1
pot = J

Hardy
pot /2 and JLi2

pot �= J
Hardy
pot /2 if

one assumes the partition of potential energy given by Eq. (35).

However, they have in fact chosen a different decomposition:

Ui =
1

4

∑

j �=i

(Uij + Uji). (B18)

The calculated thermal conductivity is usually insensitive to

the specific decomposition of the potential energy, as shown

by Schelling et al. [6] for SW silicon.
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