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Abstract. The Lorentz force and torque exerted on an electrically conducting
sphere exposed to an external, time-varying magnetic field are analytically calcu-
lated. The external magnetic field is generated by a set of sinusoidally alternating,
but otherwise arbitrary, current density fields of different frequencies and phases. Ex-
pressions for the force and torque in a laboratory frame of reference, which is more
convenient for application, are also given. Finally, the special cases of rotational and
mirror-symmetric external current density fields are treated in more detail.

1. Introduction. Eddy currents are induced when an electrically conducting sample
is placed in an external, alternating magnetic field. These eddy currents give rise to
two effects. On the one hand, they heat and melt the sample. On the other hand, the
interaction of the eddy currents with the primary, nonuniform magnetic field results
in a Lorentz force that can support the solid or liquid sample against gravity. This
process, known as "electromagnetic levitation", is an important instrument in mate-
rials science, when either very hot metallic melts or metallic melts in the undercooled
state have to be handled contactlessly. Moreover, this technique, especially when it
is performed under microgravity conditions [1, 2], establishes the basis for improved
measuring methods of different thermophysical properties of undercooled metallic
melts [3].

For a levitated specimen the questions of interest are: What is the power absorbed
in the specimen, and what is the force and torque exerted on it by the external,
alternating magnetic field. In answering these problems several points have to be
considered. An investigation of the sample stability in the magnetic field supposes
in general a three-dimensional treatment of the problem. Moreover, demands for
high efficiency and independent control of positioning and heating of the sample
require at least two magnetic fields of different frequencies or phases [1,2, 4], In
regarding such points the present work goes beyond former publications [5, 6] that
suppose cylindrical symmetry with a common axis of symmetry for the field and
the spherical sample. The simplified 3-d theory of [7], and [8], on the other hand,
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which is also discussed in [9], is restricted to slightly inhomogeneous magnetic fields,
a condition that is seldom satisfied in reality.

Here, we calculate basically the time-averaged force and torque exerted on an elec-
trically conducting sphere in an external, alternating magnetic field. This magnetic
field is supposed to be generated by a given set of sinusoidally alternating, but other-
wise arbitrary, current density fields of different frequencies and phases. The present
work is based on a paper [9] in which the induced eddy currents and the electrical
power absorption of the sphere have already been calculated.

For a simple formulation of the boundary conditions at the surface of the sphere,
we firstly calculate force and torque supposing a frame of reference whose origin is
fixed at the center of the sphere. This assumption, which also restricts the results
of [5], [6], and [9], has, however, the disadvantage that any movement of the sphere
results in a coordinate transformation of the given external current density functions,
which is inconvenient in application. To overcome this restriction, we also derive
expressions for the force, the torque, and the power absorption from [9] that are based
on a laboratory frame of reference fixed at any suitable point (e.g., point of symmetry)
of the given external current density fields. Finally, these results are applied to the
special cases of rotational, and mirror-symmetric external current density fields.

2. Foundations. In terms of the vector potential A(x, t), which is uniquely defined
[ 10] by the magnetic field

V x A(x, t) = B(x, t), (1)

the Coulomb gauge
V-A(x,/) = 0, (2)

and the condition A(x, t) —► 0 for |x| —> oo, the basic Maxwell equations read in
the present case [9] for all x e 1,3

j(x, t) = -<t(x)-^A(x, /), (3)

/«oi(x' 0 = A(x, t), (4)
where j(x, t) is the current density field, er(x) the dc conductivity, and /uQ the
magnetic induction constant.

In the following we identify our spherical sample with the closed point set S
{x: |x| < Rs} of radius Rs and center in the origin of the coordinate system.
(Throughout this paper all terms concerning this sphere are labeled by the index
S.) In order to separate S from the given set of sinusoidally alternating, "external"
current density fields

( 0 for all x € S+ ,
jF(x, t) := < 3 (5)

I j(x> 0 = EJnMcost&y + aJ for all x € M \5" ,

we define a second concentric spherical point set: S+ := {x: |x| < Rs+ , Rs+ > Rs};
see Fig. 1. Inside of the gap 5,+\5' we assume a(x) = 0 and obtain there j(x, t) = 0
from (3). Assuming integrability we see that the given external current density field
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Fig. 1. Arrangement of the metal sphere S of radius Rs , the sur-
rounding sphere S+ of radius Rs+ , and the applied frame of refer-

iE(x> t) can be used to define the "external" vector potential AE(x, t) by [10]:

ae(x'') := S;/3 je(x ' ? d3x'. (6)
4^ JR\s+ |x — x |

Finally, we define the eddy current density field inside the sphere by

f j(x, t) for all x e S,
j?(x, t) := < 3_ (7)
s \ 0 for all x e R \S.

Then, the assumption of a constant conductivity as inside S and the partition of
the total vector potential A(x, t) in

A(x, t) = A5(x, t) + Ae(x, t) (8)

leads together with Eqs. (3)-(7) to
r\

js(x, t) = -as—A(x, t) for all x 6 S, (9)

AA5(x, t) = t) forallxeS, (10)
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and
AA5(x,?) = 0 for all x G M3\5. (11)

Subject to the boundary conditions that A5(x, t) is continuously differentiable in
■7

E and As(\, t) —* 0 as |x| -+ oo, the vector potential A5(x, t) and hence the
current density js(x, t) inside the sphere S can be uniquely determined from these
differential equations.

In order to satisfy the boundary conditions at the surface of S it is convenient to
represent the solution in spherical coordinates x = (r, u, <p), where u := cos6 , with
origin in the center of S. When the exponentially decaying term that describes the
time development of the initial state is neglected, the resulting stationary solution of
the eddy current density js(x, t) inside the sphere S generated by the given external
current densities j„(x) outside of S+ then reads [9]

~ OO +/ OO I 1/1^

   o-iEj; E E, , T==
S n 1=0 m=-l k=\ '+1/2^ /+1/2, k' yj4^ + xi+\/2 ,k

x r~l/2jM/2 (*/+i/2,*^") (M> (p)cos(cont + an + yyn k l)

(12)
with the complex, vectorial coefficients

r*+1 r2?[r OO r +1 rZ7l _ ^

ln i m '= / / in(r' "> <P)r Y? (u, <p)d<pdudr
JRS+ J-1 J 0

s^b,Ls-x'"'(xy'"(x}d'x-
(13)

where the definitions of at m and the kernel X™ are given in (87) and (88), respec-
tively. Furthermore, Jl+l/2 denotes the half-integer order Bessel functions, xl+l/2 k
the positive real zeros of and Y™ the spherical harmonics (see Appendix
D). The angle Vn k t, that specifies the phase shift between the external (5) and the
induced current density (12) of mode 1, k is determined by

T 2 2
Z^n ■ 1+1/2, k ,. . ,

c™K,kJ = - / 4 4 slnK,kj = —rA 4 4 (!4)
\Jl+ Xl+l/2,k V + Xl+l/2,k

and depends on the skin depth Sn via

(,5)

With the help of the series representation for j^°(x, t), which is uniformly convergent
throughout S, the time-averaged power absorbed in the sphere can be written in the
form [9]

J OO +/

s s n 1=0 m=—l
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where
f + ')<?„) 1

3. Time-averaged force. The time-averaged Lorentz force exerted by the magnetic
field B(x, t) on the sphere S is defined [10] by

F5 := lim ^ [ f j(x, t) x [V x A(x, t)]d3xdt
r-»oo 1 J0 Js

= ^limo~f ^V{A(x, 0}"j5(x> t)d3x-Jj(x, t)-V A(x, t)d3x^j dt,
(18)

where (1), (7), and the well-known triple vector product formula have been used. In
ambiguous cases those vectorial or dyadic fields that are differentiated by the nabla
operator are enclosed in braces. Equation (18) contains identically vanishing terms
that will be identified in the following.

Using the Gaussian integral theorem, the second term of (18) can be transformed
into

_ j(x, t) • VA(x, t)d3x = f n(x) -j(x, t)A(\, t)da - /_A(x, t)V -j(x, t)d3x = 0,
Js Jds Js

(19)
where n(x) is the normal vector to the spherical surface dS. The integrands of both
integrals vanish identically in their respective regions of integration. This is due to
the fact that the Coulomb gauge (2) and Eq. (4) immediately result in

V-j(x,0 = 0 (20)

for all xel3, Furthermore, due to Gauss's integral theorem, Eq. (20) again implies
that the normal component of j(x, t) is continuous throughout a smooth surface.
Since, see Sec. 2, j(x, t) = 0 inside a spherical shell around S, we also find that

n(x) • j(x, t) = 0 for all xe dS. (21)

For a further simplification of (18) we remark first that subject to the boundary
condition given in Sec. 2

0 471 Jo X — X (22)

is the unique solution of (10) and (11) [11, Chap. IV, 1]. According to the partition
of the vector potential (8) the first term on the right-hand side of (18) contains the
integral

[v{As(\, 0}\j5(x, t)d3x= ^ [ [ js(x, 0-j.s'(x', Op—^d3x'd3x = 0. (23)
J S J S J S IX X I

The interchange of the order of differentiation and integration is justified in [11,
Chap. IV, 1]. The last expression on the right-hand side of (23) disappears, because
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an interchange of the order of integration changes the sign but keeps the double
integral otherwise form-invariant. From this discussion we conclude that

F5 = lim i [ [v{AE{x,t)}-j™{x,t)d3xdt. (24)
r->oo i j0 js

In (24) we consider only the stationary part: j~(x, /), i.e., (12), of the eddy cur-
rent solution, assuming that the physically interesting observation time scale is long
compared to the decay of the initial state of j5(x, t) (for an estimation see [9, Sec.
3]).

To calculate the volume integral in (24) explicitly, we first investigate the dyadic
tensor VAE(x, t) for xe S in more detail. Using (6) we find

VA e(x,0 = M
E 4^ Jr\s+ |x — x |

= _/fo
471 Vx'(l  —~\ } ^X' ■J«.\s+ I |x — X I J

(25)

, (27)/* ,3 /

Using for |x-x'|_1 with x e S and x e K3\5'+ the series representation (107),
which (see Appendix C) may be differentiated and integrated termwise, we obtain
using (5)

OO ~\~1 / / \

VAe(x,0 = -^oEE E 21+1 9 K,l,mCOS(COnt + an) (26)
n 1=0 m=—l

with the dyadic tensor
T™I m r I / 1 -w r Wl / f ' \ •» « / ' \ _/ 3 f

n ,l,m *= I 3 + Vx'{>" Yt (u ,<p)}jn(x)d X

—[, .v., {*>')})„(*') A
/, m Jn \s

in which the definitions of X™(x) and at m from (87) and (88) have been used.
Contrary to the known integral coefficients \n f of (13), which occur in the eddy
current solution j^°(x, t) of (12), this integral contains the gradient of the kernel
X™ . According to the results (86), (94)-(96) of Appendix B, Fn t m and ln [t m,
are, however, closely related, which leads to

*
F* — e>? a!+\ ■ m + l T* ei a,+ l ,m-l |* , ai+1,m j* pni

n,l,m n n,l+l,m+l n n,l+\,m-\ ' z n ln,I+l,m" \v 2 alm v2 alm alm

The properties of the complex unit vector := (ex + iey)/V2 are given in Appendix
B.

Provided in (26) and consequently also in (27) and (28) the same frame of refer-
ence is used as in (12) (see Fig. 1), the two series representations render possible an
easy evaluation of the volume integral of (24). The uniform convergence of both se-
ries allows a term-by-term integration that can immediately be evaluated taking into
account the orthonormality relation of spherical harmonics (104), the well-known
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integral and recurrence properties of the Bessel functions [12], and the properties of
the numbers x/+1^2 k , see Sec. 2. Thus, we obtain for the time-averaged force

OO +/

'S = !c.EEE E rT'K.,,<2.,.',/. (»>
« n' /=0 m=—l

where Qn n> t contains the time-averaging integral

2 lim7--oo 7 fo C0SK' + an + Vn , k ,I) C0SK' Z + V ) dt
"n,n',l— 2qnZ^ 2 /7~4 4 

*=' xl+l/2,k\J 4<?n + x/+l/2,/c

2 ~ limr-oo{<5a>„ ><8 , 1C0SK - V + K,k ,/) + ^„(r)] + 0 - \ ,® , )S<o„ .a , (T)}  X " n n n n n n
~ "n / v

k=I xf+l/2 ,k\J*Qn + -*7+1/2,it

= g y- 2<?* C0SK g«*/+l/2, fc sinK - V)

^2+i/2,.(4<?n4+^+,/2>)
(30)

In the last sum the expressions for the circular functions of y/n k , given in (14) have
been inserted. The above calculations take into account that R, , (T) and S ,, (T)03 „ v ' W„ , CO / v '

« n ' n

can be estimated for con ± <x>ni in the following way:

i^mi < 1OiT' <31>

Since property (91) of X™ is analogously satisfied by In t m , and utilizing (90) and
(84), we finally get F5 in a very compact form:

  oo +/= i E E E E •>»„»„, 1
n n /=0 m——l

^/+1 , W+l Uo/T T* _j_ lo ^^/+1, wi j
,/+l,w ' n,l,m z I 9

/ + i,ra+i D ^ rT t i i /-hi, rn j
   { n' ,/+l ,m+l 'ln,l,m(*x + *ey)} + ~n V,

"/, m "/,m

(32)

where
o 4 •/! 2 28<7„ - i4q x.

" X/ u 4 4 x 2
fc=l ^ "n +-*7+1/2,^-*/+1/2, A:

^1+3/2^ +
(33)

(2/ + 1)//_1/2((1 + /)?„) '

and, see Appendix B,

ai,m:= (-1)/+mV2^r(/ + w)!(/ ~ m)

The equality of the two expressions in (33) is proved in Appendix A.

(34)
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Together with In l m from (13), Eqs. (32) and (33) describe the time-averaged
Lorentz force on the sphere S, generated by a set of given, sinusoidally alternating
current density fields of the form: jn(x) cos(a>nt + an) in an area outside of S+ (cf.
Sec. 2). In principle, (32) is time independent. According to (31), Eq. (32) represents,
however, a good approximation also in the case of time-dependent parameters pro-
vided their time scale T satisfies T > co~x and T » \a>n -wn/|_1 , and provided T
is long compared to the decay time of the initial state of j5(x, t) (for an estimation
see [9, Sec. 3]). The occurrence of the Kronecker symbol S in this case implies

n ' n
that Lorentz forces resulting from external current density distributions of different
frequencies are independent of each other, which means that they can simply be
added. This is, however, different for current density fields of equal frequencies but
different phases.

Equation (13) shows that, roughly speaking, (32) essentially represents an expan-
sion of Fs in powers of Rs/r, where r denotes the distances of the external current
elements from the center of the sphere. Since Rs/r < 1 , this series converges ab-
solutely for integrable j„(x) (cf. Appendix C). The frequency dependence of every
mode in this expansion is via qn and the skin depth Sn , see (15), given by Gt{qn).
In practical applications the quantity Rs/r may sometimes be small enough to con-
sider only the first, or the first two nonvanishing terms in the series representation.
For / = 1 Eq. (32) agrees essentially with the theories of [5] and [6] (cf. [9, Sec. 1]).

Note that the functions jn(x) as well as In ; m , the unit vectors ex , e(,, ez , and
hence also F5 are defined in a frame of reference, the origin of which is fixed at
the center of the sphere S (see, e.g., Fig. 1). This special choice of the coordinates
makes possible a simple formulation of the boundary conditions in [9, Sec. 3], It
implies, however, that the functions jn(x) change, if the relative position between
the sphere (or the frame of reference) and the external current distributions changes.
This problem is discussed in Sec. 5.

4. Time-averaged torque. The time-averaged torque on the sphere S around its
center generated by the magnetic field B(x, t) is defined [10] by

N„ := lim 1= [ [ x x (j(x, t) x [V x A(x, t)])d3.xdt
T-+°o 1 Jo Js

= lim 1= f ( f x x V{A(x, /)} -j* (x, t)d3x (35)
r-oo l j0 \JS

+ j[j(x,0-V{A(x , /)} x x d3x^j dt.

The time-averaged torque around any other point is then related to N5 and F5 by
Steiner's theorem. Since the following calculations for Ns run similar to that for F^ ,
we will no longer display all steps in detail. Here too, Eq. (35) contains identically
vanishing terms that will now be eliminated.
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By analogy with (19), the second term of (35) can be transformed into

,3

3
X

3
X

(36)

[_j(x, t) ■ V{A(x, 0} x x d
Js

= f V • {j(x, t) A(x, t) x x} d3x + [ V • {j(x, t) x} x A(x, t) d
Js Js

= f n(x) • j(x, t) A(x, t) x xdo + / V • {j(x, /)} x x A(x, t)d
Jds Js
+ _j5(x, t) • V{x} x A(x, t) d^x

Js
- /_jc(x, 0 x A(x, t)d3x

Js

= /_jc(x, t) X Ae(x , t) d*x.
Js

The first and second integral behind the second equality sign disappear because of
(21) and (20). The final result profits again from the fact that with the help of (22)

[ i,(M)x A5(x , I) d'x = £ f / ■" rf V rf'x = 0.
Js 4n Js Js |x - X I (37)

Hence, according to (8), only the external vector potential AF(x, t) is involved in
(36).

This is also true for the first term on the right-hand side of (35), because, similar
to (23), it contains the integral

fx x V{As(x, 0} -js(x, t)d*x

S r r ' (38)f I . , x . / ' s X X X ,3 / ,3= -7T /_ -is(x> 0*Jj(x > 0: rj d x d x = 0,
m Js Js |x — X I

which vanishes for the same reason that (23) vanishes. Consequently, we find that

rT

Ns = r1™ ̂ Jf (f-x x V{ae(x, 0}-i™(*,

- J_Ae(x, ?) x j~(x, t)d3xj dt.
(39)

Here too, we consider only the stationary part: j^°(x, t), i.e., (12), of the eddy
current solution.

Obviously, the two volume integrals in (39) are very similar to that in (24). Com-
paring (6) as well as

x x VAE(x, 0 = j2- / x x Vxj,E(X ' l) d*x
E 4^ x |x - x |

= _£/3 x' x vx' {| 1 /,}iE(x/>
JR\S+ * I |x — x | J

(40)
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with (25), we see that the time-averaged torque can, in complete analogy to (29), be
expressed as

OO +/

= £ afV.',»~Kj,.*1.,<41>
n n' 1=0 m=—l

where the tensor N* l m is obtained from F* / m (27) by replacing the operator
Vx< under the integral by x x Vx- :

+x'x Vx,{X/m(x')}j „(xVV. (42)
«/>m Jr \s

Analogously, the vector M* t m is obtained by replacing formally Vx» by -1 :

f, .= -i;, „. (43)
al,m JU \S+

The quantity Qn n< t is defined in (30). According to Appendix B, Nn / m can
immediately be related to the expansion coefficients ln l m« defined in (13). With
(97), (98) we obtain

^ /C Cli , « ^ /G Cli t *

+ iezmKj,m-

In the same way and under the same conditions as in the derivation of F5 in (32),
we also obtain Ny from the above equations in the compact form

    CO 4-/

"i = fEEE E Re{G,
n n' 1=0 m=—l

* (v.i.,xKj.m- + 'V> <45)
V /, m

where Gt{qn) and at m are defined in (33) and (34), respectively. Evidently, those
properties of F5 that have been discussed at the end of Sec. 3 are valid for Ns of
(45) as well.

Note, however, that the time-averaged torque N5 around the center of the sphere
S may be different from zero only under certain conditions. Taking into account
that In i m = (-1)"X / -m ' which follows from (13) and (91), we find that

+i +i
y ' , /, m X , /, m ~ ^ ^ , / ,m * ^n', I, m '

*=-/ m=-l
+/ +/ V '

i i m = - mi m• c1n ,l,m n,l,m / > n,l,m n ,/,w
m=—/ m=—l
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Furthermore, taking the definition (34) of at m into account, we have

m——l l'm m=—l !'m

= ~ Y1 a'' (l + m+ ,l,m'ln,l,m+1
m=_/ /,-m-l

= - E ^=±i(/ -
m=—l '>">

(47)
Consequently, the n, «'-sums over these terms on the right-hand side of (45) and
thus Ns vanish, unless there are at least two external current distributions, indicated,
e.g., by n = 1 and n = 2, having the same frequency a>j = a>2 (which implies that
q{ = q2, see (15)) and a phase difference a, - a2 ^ 0, ±7r.

5. Change of the coordinate system. The time-averaged power absorption (16),
force (32), and torque (45), are functionals of the external current density fields
j^(x) via the coefficients

= -i-/ xf{x)in(x)d'x. (48)
al,m J& \S+

As already pointed out at the end of Sec. 3, the functions j„(x) are defined in a
frame of reference the origin of which is fixed at the center of the sphere S (see,
e.g., Fig. 1). A movement of the sphere relative to the external current distributions
consequently affects In t m and the related quantities in the form of a coordinate
transformation of j„(x). From a practical point of view, such dependence is, how-
ever, very inconvenient, because in the present case it requires recalculations of the
integrals of (48). Therefore, we investigate in this section the possibility of express-
ing the coefficients In { m and hence the related results like power, force, and torque
in a displaced "laboratory" coordinate system that may no longer be attached to the
sphere S, so that by this means a movement of the sphere no longer influences these
integrals.

According to Fig. 2 on p. 506, let (x, y, z) be, as before, the coordinates of a
point x in a frame of reference fixed at the center of the sphere and (Jc, y, z) those
of a point x in a displaced (not rotated) laboratory frame of reference. Denoting in
the laboratory coordinate system the position vector of the center of S by \s and
the external current density fields by jn(x), we find the relations

\ = X + XS, j„(x) = j„(x-x5) =: jB(x), (49)

and thus for (48)

II. K (x-x.c)L(x)d'x. (50)J— [3 S (x-x5)j„(x)/x.
ai,m Jr3\S+
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Fig. 2. Sketch of the metal sphere S , and the (x, y, z) coordinate
system shifted by the vector \s from the center of the laboratory
(x, y, z) frame of reference. The given external current density dis-
tribution is assumed to be different from zero outside of C+ U S+
only.

To achieve our goal we expand the function X/m(x — \s) in a power series around
x. When the properties of X™ , derived in Appendix B, are considered, this is, how-
ever, an easy and straightforward task that can be reduced to the series representation
(107) of |x - x'f1 • In order to formulate convergence conditions for this procedure
let us at first define two additional spherical point sets

C := {x: |x| < rs}, C+ := {x: |x| < Rc+, Rc+ > r5} (51)

of radius rs = |x5| and Rc+, respectively, and centered in the origin of the laboratory
(hat) coordinate system; see Fig. 2. The definition of C implies that
the center of S lies on the boundary of C . Taking (94), (95), and (92) into account,
we then find that for fixed x^. in the case of m > 0

dl—m o m r\l—m ^ m 1
_  Y®(x x ) —  — ! 

"/ v* -SJ~- d2l-mdf,mX°{X XS>~2 dz'-mdijm\x-xs\- (52)
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Supposing that x e K3\C+ , the last term can be substituted by (107) leading to
oo +A A , q m

X,m(x - x„) = ^(ms, <p„) 2m/2 d JL^y^x)
fb; , (2/l +« o z 9fj x
A=0 /i=-A V ^ >
oo +A .

47T a.
(53)

= EE (2/i + Da ^ Cw>
A=0 ̂ =-A (M+

where (rs, u$, tps) with us := cos 9S denote the spherical coordinates of xs . A
justification for the term-by-term differentiation of the series is given in Appendix C.
Equation (53) holds for m < 0 too. Because of the symmetry properties (90), (91),
and (106) of al m, X™ , and Y™ , the proof of this case can immediately be reduced
to that of m >0.

Insertion of (53) in (50) and term-by-term integration finally results for all I, m e
Z with \m\ < I in

00 d a

ln,l,m = E £ 2^^>S^S)fLfS^nMl^rn^ (54)
X=0»=-XZA+l I ,mX,n

where in analogy to (13)

3 + +x? (x)jfl(x)rf3*
I, m J«?\S+\C+

= / j {r, u, (p)r l+lYl" (u, (p)d(pdudr.
Jr\s+\c+

(55)

/K3\5+\C+

Provided the laboratory (hat) coordinate system is not attached to the sphere S, the
functions rsY"(us, (ps) in (54) describe explicitly the dependence of In : m , and
therefore also of Ps, F5, and Ns, on the position of S. Moreover, as long as
the external current density fields are fixed to the laboratory coordinate system, its
functional representations in this frame of reference, i.e., j„(x), and therefore also
the integrals ln t m remain unchanged under motions of S.

We found, see Appendix C, that (53) converges uniformly for x £ C+. Conse-
quently, term-by-term integration leading to (54) is permitted, supposing that jn is
integrable, if jn(x) = 0 for all x e C+ . Hence we conclude that, due to (5), the series
expressions for power absorption, force, and torque in (16), (32), and (45) converge
in connection with the series representation for \n t m in (54), if jn(x) = 0 for all
xsS+UC+. This means that the given set of external current density fields has to be
located completely outside of the area bordered by the bold line in Fig. 2. Evidently,
the dimension of this area and hence the variation of the sphere S depends on the
choice of the origin of the laboratory (hat) frame of reference.

Collecting equal orders of rs, the coefficient products appearing in Ps, Fs , and
Ns then read at full length

a ( T . T* \ 00 / m° C ,m (u to )
l+ln,m+mn I n' l+l m+mn n.l.m I .A I 'n n,n S' r S>*0 > i n ,/+/0,ra+m0

al,m \^n',l+l0,m+m0X^n,l,m J A=0 \l0"^n\n'
(56)
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where

?0°Cl'ym(us, <PS)

X +A X—A | ^ 2 ! +
:=y" Y* Y  7 — 7 (57)

^ ^ , (2A'+1)(2(A-A') + 1) A 5 5 A~* 5 5A =0 n =-X /i=-(X~,I') v A v ; ;

al'+/+/0,/i'+m+m0aA-A'+/,//+m | , A'+/+/n ,/i'+m+m0 ' ^X, X-X'+l ,/i+m
X 2 I   ^

, ft', fi \^n', A1+I+l0 , fi'+m+m0 X , A—X'+l, /i+w

From the definition (55), or more clearly from (63) together with (65) we find, for
the order of the coefficients, |Tn t m\ = 0(1/R1), where R := max{7?c+, Rs+} . This
again implies that = 0{l/RA+2l+l°).

Iq n, n

After insertion of (56) the time-averaged heating power (16), the time-averaged
force (32), and the time-averaged torque (45) of the sphere S in a laboratory (hat)
frame of reference can be expressed as

j OO OO

Ps(rs, Us, <ps) = jj— J2 E J2d<o„,<o„,Hl(<ln)COSK-an')RSrl
S S n , n' 1=0 A=0

(58)
X Y2 lCnym(US> <PS)>

m=—l

OO OO

F5(r5, us,(ps) = ^J2J2 Re{G/(4> ^ an']}Rs+l4
n,n 1=0 A=0
+/

X (Re{lci;^m(w^ , <Ps)(.ex + i*y)}+Wn'!n'm(US> <PS)*z) '
m=—l

(59)

Ns(rs, is, t>s)=%ZZ Zs„„«,„,
n , n' i=0 A=0

x J2 (IK ' 9s) -il-m) Im{l0C*ym(us ,.<ps)(ex + iey)}
m=—l

-'-0 0/~i"h, I, fti / \ \
-imnCny (us,<ps)ez).

(60)
In most practical cases the series over / and X converge quickly enough to neglect all
but the first nonvanishing terms. Moreover, with the help of (59), it is evidently an
easy task to derive sufficient conditions for the local stability of the spherical sample
S close to an equilibrium point of the magnetic force field.
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6. Special cases.
6.1. Azimuthal external current distribution. In this section we treat the special

case of azimuthal external currents, which is often encountered in practice. This
means that the set of external current density distributions (5) has rotational symme-
try, and, moreover, that the current directions have no component radial or parallel
to the axis of symmetry. In a laboratory frame of reference whose z-axis is identified
with the axis of symmetry this special case can be written as

i»(*) = Jn(r> ")eP(0)> (61)

where

eP(0) = - sin (pex + cos <pey (62)

is the unit vector in the azimuthal direction. The scalar function jn(r, u) describes
the remaining f and u (u := cos 6) dependence of the «th external current density
field. In [9, Sec. 5] it has been shown that for this case with the notation of (84)

Vf'-A.
where

2/+ 1 roo r+l _

/ / Jn(r, u)r~ + Pt (u)dudr.
Jr„+ J-1/(/+ 1)1n i '■= \ 777 , n / / Jn(r>u)r p,(u)dudr. (64)

If, moreover, the external current density distributions jH(r, u) are approximated
by a set of circular current loops, Eq. (64) modifies to [9, Sec. 5]

In J = y ^TTT)Inf" 1 Sin w! (C0S On) ' (65)

where rn and 6n are the coordinates of the «th current loop carrying the current
In of frequency a>n and phase an .

Using (63) and considering the properties (85), (90), and (106), we find that the
coefficients (57) read

J_ \6n I ,n ,X'+l+lJn,X-X'+l ak'+l+t0, \®X—X'+I, 1m0^X,l ,m , ■.  

/0 n,n' ><Ps)-2 ^W+ \){2(X - k') + 1) a2lm

Y'y °(US >

®X', l—m—m^X—X1, 1 — m

,,I +m+ml , . \irl+W/.. _ \
+ 2i!  5' Vs^x-x' (US'

^X', 1 +m+m0®X-X', 1+m
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. n v^-> I671 ,X'+l+l/nJ-X'+l ak' +/+/„, \aX-X'+l,\

V;-"-^(«s, <fS)Yl:f(us, fs)

2
A'=0v— , vrr «/ ■ a,^m

a,,X' ,l—m-m0 A—A', 1—m
(67)

+m+m'n , NVl+m/

(_iro5' «>S)Y1-X'(US' <Ps)
a,,i! , l+m+m0^/l—A', 1+m

'V

According to (103), both terms in the brackets of (66) and (67) are real for m0 = 0.
Hence, in this case, the coefficients have the properties

K'y"W(«5 .**)=" , PS) (68a)

and

»s) = rs). <68b)

When inserted in (58), (59), or (60), the above results finally yield the time-averaged
power, force, or torque of a conducting sphere in an azimuthal external current
density field. In particular, (68a) and (68b) imply that the summations over m
of the first and third terms on the right-hand side of (60) identically disappear.
Consequently there is no component of the torque through the center of S parallel
to the axis of symmetry (z-axis). Note, that due to (103), i.e., Y™ = 0 for I < \m\,
an appreciable number of coefficients in these equations become zero.

6.2. Azimuthal and mirror-symmetric external current distributions. Azimuthal
external current distributions with additional mirror symmetry are used in some
electromagnetic levitation facilities working under microgravity conditions [1], [2],
Here, two different azimuthal current density fields of different frequencies are su-
perposed, where one, indicated by n = 1 , has an additional mirror symmetry with
respect to a plane perpendicular to the z-axis and the other one, indicated by n = 2,
has an additional anti-mirror symmetry, cf. Fig. 3. Provided the mirror plane is
defined by z = 0, this means that for n = 1 ,

jl(r,-u)=jl(r,u), (69)

and for n = 2,
]2{r, -u) = -)2{r, u). (70)

Due to the different frequencies, the occurrence of d t in (58) and (59) allows
n ' n  

for each of the two current density fields a separate calculation of Ps and F5 . From
the discussion at the end of Sec. 4 we immediately conclude that N5 = 0 in both
cases.
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(a) (b)

Fig. 3. Schematic cross-sectional drawing of the spherical sample
S surrounded by (a) an azimuthal, mirror-symmetric external cur-
rent density distribution, here exemplified by a single toroidal current
coil; (b) an azimuthal, anti-mirror-symmetric external current density
distribution, here exemplified by a pair of toroidal coils carrying op-
positely directed currents. A part of the corresponding magnetic field
lines is sketched too. The results derived in Sec. 6 are valid only if the
center of S remains inside of the dash-lined sphere of convergence,
i.e., if rs < Rc+ .

1. Mirror-symmetric current density. First of all we calculate for the n = 1 cur-
rent density field (69), cf. Fig. 3(a), an explicit expression for Ps and F5 in the
first two nonvanishing orders of the sample distance rs and the sample radius Rs .
Since P/(-«) = (-1 )/+1P/1(w) (see, e.g., [13]), we find from (64) that 7, t ± 0
only if / = 1,3,5,.... Hence it follows from (66) that ^ 0 only if
A + 2/-f/0 = 2,4,6,..., and if A' + / + /0 = 1, 3, 5, ... for any A' with 0 < A' < A.
Moreover, because of (103), there are only a few values of m for which (66) is dif-
ferent from zero. Hence, in the present case, we find using (68b), (103), and the
definition of P["(u) from [13] that the time-averaged power absorbed by the sphere
S is

Ps(rs, us, <ps) —2Rsas RlHJll+R<'sH>'',3 + 0(RslR's°)
^2 I 

+ rl (Ho V Si"2 °s + r2sH> V Tf« •1 •3(3 COs2 9s - 1]

+ 0(R*/(R*R2c+))] + 0(rl/RU

(71)
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where the function Hl(ql) of (17) has been abbreviated by Ht. For an explanation
of the geometrical quantities, see Fig. 3.

The time-averaged force exerted on S can be represented in the form

Fs(rs, us, <Ps) = Fp{rs, us){cos <psex + sin <psey) + Fz(rs, us)ez (72)

with

F (r u \ — ^°n*p(rS ' US> - 7 rs sin ds ^ 1^1,3 + 0(^5 ^

+ sin 0^ |,/[ 3(3 cos 6S 1)

+ r3sg1
9 -2

28^/, 3(5 + 3 cos 6S)

405
176J\l n£ h , 1^1 , 5^ COS

+0{ji^))+O{r',R'c'\

(73)
and

f (r \ _ ^071rz\rs' us> ~ 2
72- ~ 40 -2 . „ (R1

rscos\RSG{\J 7 /, 1 /, 3 + RsG2 7 7,3 + 0 s
\R'S+RC

+ rs cos 0S | RsG0yJ^7, ,/, 3 sin 6S

+ RlG,
18-2 ,. 2 ,
y/, 3(1 + COS 0S)

+ Vl^V.V5(5cos20s-3)

+o(^i))+0(^')

(74)
Above we used the abbreviation for the function Re{G:/(<3,1)} of (33).

2. Anti-mirror-symmetric current density. Next, we calculate analogous formulas
for the n = 2 current density field (70); cf. Fig. 3(b). In this case, the symmetry
property of P](u) implies that J2 , ± 0 only if / = 2,4,6,.... Hence it follows
from (66) that ± 0 only if A + 21 + /„ = 4, 6, 8, ... , and if A' + / + /„ =
2, 4, 6, ... for any A' with 0 < A' < A. Now using the abbreviations Ht := Hj{q2)
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and G[ := RefG^^)} , we find in the present case that for the time-averaged power
absorbed by the sphere S

Ps(rs, us, <ps) — sas
Kh2i22 2 +rsshj22 4 +o(«;2/42+)

+rl(^1^.2(1 + c°s2 es)

+ ^2\/f^,2^,4(3C0S2^-l)

+ 0(R6s/(R6s+R2c+))^+0(r4s/R4c+)

and for the components of the time-averaged force (72) exerted on S

(75)

p (r u \ -rpvs > us> - 2 rs S^n j Q h, 2 , 2^2,4 + ^ ^

+ rs sin @s io^2'2 cos 2 ^2,2^2,4 s*n @s

+o(-rrV))+0(rJ/4t)
(76)

and

17 (r u \ — Wrz(rs, us) — 2 rS COS 5 h,2 + ^S^2 \J 3 ^2, 2^2,4 + ^ f ^7 ^
S+"C+

+ cos 0^ IRSGQ j q I2 2 sin

-\-RgG^^/96I2 2^1 4 cos @s ^
\RS+RC+ J

+ 0(r'/i?5s' "c+

(77)
Several conclusions can be drawn from these formulas.

(1) Since the power absorption of the sphere S in the center of the mirror-
symmetric external current density field j\(r, u) is of the order P s = 0(R2s/R2s+),
see (71), whereas in the center of the anti-mirror-symmetric external current density
field j2(r, u) it is of the order Ps = 0(R4S/R4S+), see (75), the inductive heating
capability of the former current density field is usually more efficient than that of the
latter one.
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(2) The forces generated from the anti-mirror-symmetric current density field
j2(r, u) have a stable equilibrium point at the origin of the coordinate system, see
(76) and (77), and are of the order Fz, Fp = 0(R3s/R3S+) in its neighborhood. On the
contrary, mirror-symmetric external current density fields jl(r, it) that are mainly
concentrated close to the (x, y)-plane (cf. Fig. 3(a)) give rise to unstable force com-
ponents in the z-direction (74), because in this case /, 3 < 0. If, however, j, is
chosen in such a way that the integral Ix 3 = 0, then F_ is near the origin of the or-

9 9der Fz = 0(Rs/Rs+) only and therefore usually much lower than the corresponding
force component generated by j2 .

The above discussion implies that in electromagnetic levitation facilities, in which
external current density fields of these symmetries are simultaneously applied [1],
[2], inductive heating and positioning of the metallic sample by mirror and anti-
mirror-symmetric current density fields, respectively, can be performed almost inde-
pendently of each other.

(3) In most electromagnetic levitation facilities, the axis of symmetry (z-axis) of
the levitation coil is directed along the gravity vector. Comparing (73) with (74) we
remark that the force components generated by a mirror-symmetric external current
density field, so e.g. by the single coil winding of Fig. 3(a), behave near the origin

2 2like Fz/Fp = 0(Rs/Rs+) and are usually lower than 1. Hence it follows, however,
that levitation would generally be more efficient, if the coil axis were pointed perpen-
dicular to the gravity vector.

Appendix A. The function Gt(q). In this appendix we prove that for q € R , q > 0 ,
and 1 = 0, 1,2,...

,= ^ 8g4-'V*/2+1/2.* = Jl+y2((\ + i)q)

k=l (4?4 + Xl+l/2,k)Xl+l/2,k (2/+ 1)-//_1/2((1 + 0^)
(78)

where x/+1/2 k , k e N , are the positive real zeros of Jt_X/2{x) arranged in ascending
order of magnitude.

Proof. For z € C and v e R the Bessel functions satisfy the recurrence relation
[12]: zJu+l(z) + zJv_x{z) = 2vJv{z). Furthermore, if v / -1, -2, -3, ... , an
asymptotic approximation for z —► 0 is given by: Jv{z) ~ [\z)v/T{v + 1). Hence,

^1+3/2(Z) _ l/2(Z) 1 _ ^1+ l/2(Z) ^/+1/2(Z) ,_g.

(2/ 4- 1)7/_i/2(z) ~ zJ!_l/2(z) 21+1" zJ!_l/2(z) z*™ z//_1/2(z) '

In [9, Appendix B] it is proved that for z ^ R and z ^ x l+\/2,k

■^/+1/2(Z)

zjl-\n(z)
= Y,-2 2 " (80)

1/2 ' k= 1 Z Xl+\/2,k
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Inserted into (79) this result implies that

J'+3/2^") _  2z^ 

(21 + 1 )J,_1/2(z) k=i (z2 - xf+ll2tk)xf+l/2ik '
For z = (1 + i)q this equation is identical to (78).

Appendix B. Definition and properties of the function XT (x). We first introduce
the complex-valued differential operator

9 _ 1 / d ^ ■ 9 1
dt]' V2{dx + ld);/• ( }

Using the well-known expressions for the differential operators d/dx, d/dy, and
d/dz in spherical coordinates (r, u, <p), where u := cos0, see e.g. [13, p. 85], we
find that

9 e'v I r 2 d i d r 2 o
V1-" ^ + ;dr\ r\fl [ dr _ u2 d<p v du

d d 1 - u2 d
u— +

(83)

dz dr r du'
Furthermore, we define the complex-valued unit vector

e":= 7f(Cx + iCy) (84)

and its complex conjugate counterpart e*, respectively, that obviously satisfy the
following orthonormality relations:

e • e* = 1, e -e =0, e -e =0;in' ii' n 2 (85)
e„x% = -'ez> e„xe„ = °> e„xez = 'V

It is easily proved that the nabla operator can now be written in the form
_ * d d dv = e^+<W+e*a5' (86)

In the main part of this paper the treatment of the function X™{x), defined for
/, m e Z and 0 < / by

X™(x) := a,mr ' lY™(u,cp) for|m|</,
X™(x) := 0 for \m\ > /

with the spherical harmonics Y™(u, <p) from (103) and the constants

(87)

°l,m ■= (-1)/+'" V 2TTT(/ + mW " m)! ' (88)
plays an important role. Its definition leads, together with the introduction of the
coordinate t], to great simplifications of the calculations. Inserting (88) and (103)
in (87) a more explicit expression of X™(x) for \m\ < I is given by

X,m(x) = (-!)'(/ - m)\rl~lP™{u)eim'1'. (89)
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As an immediate consequence of the definitions in (87) and (88) we find that

al,m=a!,-m> (9°)

and, taking (106) into account, that

x;m(x) = (-\)mxf(x). (91)

Moreover, since P0 (u) = 1 , Eq. (89) implies that

<(*) = ■ (92)

Next we derive properties of the derivatives of X™(x). Combinations of well-
known recurrence relations for the Legendre functions [12] lead to

(i _ u2)dP' - (/+ 1 )uP["(u) = -(/+ 1 - m)P™l(u),
m (93)

l~ 2 dPi (tl) , l~ 2 n*", ^ W m, r.m+1 , .
«V 1 ~~ M ^ f (/ + 1)Y 1 - M Pj (M) + ^ 2^i (W) = P/+1 (M) •

(Note, that the definition of the Legendre functions P["(u) in [12] differs by a factor
(-l)m from the one in [13] and this paper.) With these two equations, Eq. (83), and
the expression of X™(x) in (89) we can show that for all /, m e Z with |/w| < I

d-X/m(x) = (—!)'(/ - m)\r~l~2eim(p |-(/ + 1)« + (1 - u2)^ } P/>)
dz

/ \ t / 2 ZW(p nftl / \ A72 /• \= (-1) (/ + 1 - m)!r e P/+1(m) = JT/+1(x)!
(94)

(95)

d vm, \ ( — 1) ,, x, —1—2 i(m+\)tp/(x) = _7T( }

„j_(/+i)v/Tv _ J />>)
(—1) M —/—2 i(m+l)(i nm+l, > 1 vm+ 1, >

= ^ (l-m)\r e Pl+l (u) = -^=Xl+l (x),

and finally with (91) and (95)

= (-if (|^~"<*))' = <*> = -^"7' w ■ («)
Obviously, the differential operators d/dt], d/dt]*, and d/dz are ladder operators
for X™(x). The fact that a differentiation of X™(x) means, in principle, noth-
ing but a change of its order and degree, simplifies the treatment of this function
considerably.

Another operator appearing in the main part of the text is: x x V . It can immedi-
ately be related to the well-known quantum mechanical angular momentum operator:
L = (Lx,Ly,Lz) [13] by

x x V = /L = / j 4- ~=L_ + ezLz| , (97)
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where for simplicity the Plank constant h has been dropped. Since L does not affect
the spherical coordinate r, the application of the ladder operators L± := Lx ± iL
and Lz on X™(x)

LzX™(x) = mX,m(x), L±X™(x) = -(/ =f m)X?±l(x) (98)

immediately results from the well-known application on Yf"(u, cp) [13, p. 573].

Appendix C. Convergence problems. Here we prove that for x e M3\C+, where
C+ is defined in (51), the series representation

oo +/ .

E E (21+Da rsY" (»s,rs)X?m (99)
1=0 m=-l[Zl+ ' > m

of |x - x5|_1 can be infinitely often differentiated term by term for fj, fj*, and
z (see Appendix B). By (rs, us, <ps) and (r,u, <j>) with u = cos6 we denote the
spherical coordinates of xs and x, respectively. It is sufficient to prove that the
term-by-term differentiated series is again uniformly convergent for all xs G dC
and x e R3\C+ . Taking account of the definitions and results of X™(x) and at m
stated in Appendix B and the estimation of Y™(u, (p) given in (105), we find for
any z,, z'2, z'3 € {0, 1,2,...} that

V" v 4nr'sY'm ^S-L Vs) ( 9 V' (JL\2 ( 9 V Xm(x\
2.2^ (2l+\)alm \dfj) W) \dz) i{)

1 oo +/ 4^1/7 I m I

^ 1=o m=—l v " 1 <ml '

| OO +/ ^1+^2  "1 -2 ^   / y

^ TXTiE E n Vl + m + k n Vl-m + k'S-
p,iiti -1—' ■*—' " \R^+

C+ 1=0 m=—l k= 1 k= 1 ^

where the abbreviations kx := il + i2 + z'3, k2 := i\ — i2, and k3 := i{ + i2 have been
used. With

kx+k2 kx—k2 2 k\ , 
Y[ Vl + m + k s/l-m + k < \]{l + k)2 - m2 < (I + 2kx)lk1 (101)
k=1 k=\ k=l

the continuation of the estimation in (100) finally results in the series

(102)
Kc+ 1=0 v c /

that converges absolutely and independently of xv and x and for all k} e {0, 1,
2, ...} because rs < Rc+ .

Appendix D. Important properties of spherical harmonics. For /, m eZ and 0 < /
the spherical harmonics are defined by [13]

for \m\<l,
Y™(u,<p)\= 0 for |m| > /,
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where P™{u) denotes the associated Legendre functions. Note that the factor (-l)m
is sometimes, e.g. in [12], incorporated in the definition of P™{u). The spherical
harmonics satisfy the orthogonality relation

[+1 I'* Y?{u,cp)Y™ {u,f)d<pdu = 5l rSm m„ (104)
J-i Jo

Based on a result for Legendre functions [14] an upper bound for the spherical har-
monics reads

\Y?(u,q>)\ (105)

The relation between P"' and P[m [13] implies that

Y-m{u,(p) = (-\)mY™\u,<p). (106)

The generating function of the spherical harmonics [13]

i OO +/ A1 4n= EE
1=0 m=—l

/ '\l(r )
;/+i

r>
(r')M

for r > r ,

(107)
for r < r

converges uniformly for fixed r and r , if r / r .
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