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Force, charge, and conductance of an ideal metallic nanowire
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The conducting and mechanical properties of a metallic nanowire formed at the junction between two
macroscopic metallic electrodes are investigated. Both two- and three-dimensional wires with a wide-narrow-
wide geometry are modeled in the free-electron approximation with hard-wall boundary conditions. Tunneling
and quantum-size effects are treated exactly using the scattering matrix formalism. Oscillations of orderEF /lF

in the tensile force are found when the wire is stretched to the breaking point, which are synchronized with
quantized jumps in the conductance. The force and conductance are shown to be essentially independent of the
width of the wide sections~electrodes!. The exact results are compared with an adiabatic approximation; the
latter is found to overestimate the effects of tunneling, but still gives qualitatively reasonable results for
nanowires of lengthL@lF , even for this abrupt geometry. In addition to the force and conductance, the net
charge of the nanowire is calculated and the effects of screening are included within linear response theory.
Mesoscopic charge fluctuations of ordere are predicted that are strongly correlated with the mesoscopic force
fluctuations. The local density of states at the Fermi energy exhibits nontrivial behavior that is correlated with
fine structure in the force and conductance, showing the importance of treating the whole wire as a mesoscopic
system rather than treating only the narrow part.@S0163-1829~99!05811-7#
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I. INTRODUCTION

Metallic nanowires may be formed at the junction b
tween two metallic electrodes that are pressed toge
and/or pulled apart in a controlled fashion.1–6 In a wire of
nanoscopic cross section, the transverse motion is quant
leading to a finite number of electronic modes below
Fermi energyEF which can be transmitted through the wir
A striking consequence of these discrete modes is the q
tization of the wire’s conductance at integer multiples
G052e2/h, a phenomenon first observed in tw
dimensional ~2D! semiconductor heterostructures,7–9 and
subsequently studied in detail in three-dimensional~3D! me-
tallic nanowires.1–3,6 A subtlety inherent in conductanc
quantization experiments is that even for a nearly id
nanowire, the presence of disorder in the electrodes far f
the region of interest leads to a suppression of the cond
tance plateaus below integer values. This suppression is
mally taken into account by subtracting a phenomenolog
series resistance,3,6–8 which allows one to shift the experi
mentally observed plateaus back to integer values. Theo
cal histograms10–12exhibit a similar shift towards lower val
ues of the conductance, though the precise form of
suppression is not equivalent to a simple series resista
due to quantum interference effects.13,14 These consider-
ations underline the importance of treating the nanowire
the electrodes connected to it as a single mesoscopic sys
rather than considering the nanowire in isolation.

The cohesive properties of good metals are also de
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mined to a large extent by the conduction electrons. Th
one may expect the mode quantization in a nanowire to h
a strong effect on its mechanical properties as well.15 In a
pioneering experiment published in 1996, Rubio, Agraı¨t, and
Vieira measured simultaneously the force and conducta
during the formation and rupture of an atomic-scale
nanowire.4 They observed oscillations in the tensile force
order 1 nN under deformation, which were synchroniz
with jumps of order 2e2/h in the conductance. Similar ex
perimental results were obtained independently by Sta
and Dürig.5 In a previous paper,15 it was shown that this
intriguing behavior can be understood quantitatively usin
simple free-electron jellium model for a metallic nanowir
The theoretical approach introduced by Stafford, Baerisw
and Bürki15 uses the electronic scattering matrix to descr
the coupling of the nanowire of interest to the macrosco
probes ~e.g., scanning tunneling microscopy/atomic for
microscopy! used to manipulate it; the correct treatment
this coupling is crucial for calculating the mesoscopic c
rections to the bulk electrical and mechanical properties
the previous paper, the scattering matrix was evaluated u
the adiabatic and WKB approximations, appropriate fo
smooth geometry in which the diameterD of the nanowire
varies slowly along its symmetry axisz, i.e., (dD/dz)2!1.
The qualitative picture that emerged from the analysis
Ref. 15 is that each quantized mode contributing 2e2/h to
the conductance of the nanowire also contributes an am
of order EF /lF to its cohesive force, wherelF is the de
Broglie wavelength of electrons at the Fermi energyEF .
7560 ©1999 The American Physical Society
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~For monovalent metals,EF /lF is of order 1 nN.! Under
elongation, the cross section of the nanowire narrows,
each time a transverse mode is cut off, both the conducta
and the cohesive force decrease abruptly. Using an ele
argument based on the technique of Ref. 15, Ho¨ppler and
Zwerger showed that the leading-order mesoscopic cor
tion to the tensile force depends only on the topology of
cross section of the nanowire.16 The scattering matrix for-
malism has also been used to study the effects of impu
scattering on the mechanical properties of nanowires.17

Independently, van Ruitenbeek, Devoret, Esteve,
Urbina18 considered wires with a special W~ide!–N~arrow!–
W~ide! geometry, with two wide outer sections, represent
the electrodes, and a narrow inner section of constant di
eter, representing the nanowire~see Fig. 1!. They considered
the limit ~cf. also Refs. 19 and 20! where the narrow section
is sufficiently long that the boundary effects at the junctio
of the wide and narrow sections give a negligible contrib
tion to the energetics of the nanowire. They also pointed
that screening should be included, and imposed a ch
neutrality constraint as a first approximation, determining
electrostatic potential self-consistently to enforce glo
charge neutrality. However, they neglected the interaction
the positive jellium background with the self-consistent p
tential, leading to a drastic overestimation of the effect
screening on the force oscillations. A local charge neutra
approximation was also employed by Cuevas and co-wor
in their treatment of the conductance channels of atom
scale contacts.21,22It was noted by Van Ruitenbeeket al. that
the assumption of local charge neutrality of a nanow
breaks down for very short wires, such as those investiga
in the experiments of Refs. 2–6, which are only on the or
of 1 nm in length. For such short wires, boundary effects
important.

In the present article, we investigate both 2D and

FIG. 1. Schematic diagram of the WNW geometry. In the up
part, the wire geometry is sketched.D andd are the diameters of the
wide and narrow parts of the wire, respectively. Under elongat
it is assumed that the area of the narrow part of the wire is c
served,Ld5L0D5A, whereL0 is the initial length. In the 3D case
the wire is assumed to have a square cross section, and the vo
of the narrow part is held constant during elongation,Ld25L0D2

5V. The lower part of the figure shows the scattering sche
scattering matrices (S(1) andS(2) at WN transitions andU for the
narrow part of the wire! characterize the transmission and reflecti
of current amplitudes denoted as arrows in the diagram. The toS
matrix relates the outgoing current amplitudesbS1

1 and bS2

2 to the

incoming current amplitudesaS1

1 andaS2

2 .
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wires with the WNW geometry, treating the boundary effe
arising from the connection of the nanowire to the electro
exactly via the scattering matrix approach. Our results for
force in the WNW geometry are qualitatively similar to th
results for smooth geometries presented in Ref. 15, altho
the presence of sharp corners is shown to lead to a no
neric correction to the force for small deformations from
ideal wire, due to the abrupt change in topology. The ex
results for the WNW geometry are compared with an ad
batic approximation, which is found to overestimate the
fects of tunneling, but still gives qualitatively reasonable
sults for the conductance and force of nanowires of len
L@lF , even for this abrupt geometry. The local density
states at the Fermi energy is also calculated, and is show
exhibit strong modulation on a length scale of orderlF . This
electronic structure of the scattering states gives vivid pic
rial support of the notion15 that conductance channels act
metallic bonds.

In addition to the force and conductance, the net charg
the nanowire is calculated, and the effects of screening
addressed by a linear response approach. We predict me
copic charge fluctuations on the order of the fundamen
charge quantume, which are synchronized with the quan
tized steps in the wire’s conductance, and strongly correla
with the mesoscopic force fluctuations. Similar charge flu
tuations are predicted in 2D and 3D nanowires; they sho
thus be present in quasi-two-dimensional quantum point c
tacts exhibiting conductance quantization7–9 as well. The
smallness of the predicted mesoscopic charge imbala
leads us to neglect electron-electron interactions in our tr
ment of the conducting and mechanical properties of
nanowire. Indeed, we find that the mesoscopic correction
the force for wires of lengthL;lF are large compared to th
corrections expected due to screening effects, justifying
approach.

The paper is organized as follows: In Sec. II, we revie
the scattering matrix formulation of electrical conduction a
statistical mechanics. General expressions for the fo
charge, and conductance of a mesoscopic conductor in te
of the electronic scattering matrix are derived. In Sec. III, t
scattering matrix for 2D and 3D wires with the WNW geom
etry is calculated. For simplicity, 3D wires with a squa
cross section are considered, but it is straightforward to
our method for wires of arbitrary cross section if the eige
functions and eigenvalues of the 2D Schro¨dinger equation
with Dirichlet boundary conditions for this shape are know
In Sec. IV, the results for the force, charge, and conducta
of a 2D nanowire are presented. The semiclassical appr
mation to the force and charge, and the topological contri
tion due to sharp corners are discussed. The exact result
compared to an adiabatic approximation, and the local d
sity of states at the Fermi energy is calculated. In Sec. V,
results for the force, charge, and conductance of 3D nan
ires are presented. The effects of screening are evalu
within linear response. The relevance of our results to
experiments of Refs. 4 and 5 is discussed. Some gen
conclusions are presented in Sec. VI, and a compariso
the jellium model used here to atomistic descriptions
nanowires based on classical molecular dynam
simulations23–25 is given.
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II. S MATRIX FORMALISM

A nanowire connecting two macroscopic electrodes~de-
picted schematically in Fig. 1! is an open quantum mechan
cal system. The Schro¨dinger equation for such an open sy
tem is most naturally formulated as a scattering proble
The fundamental quantity describing the properties of
system is the scattering matrixS(E) connecting incoming
and outgoing asymptotic states of conduction electrons in
electrodes.~The degrees of freedom corresponding to
metallic ions and core electrons will not be treated explicit
but will be assumed to give rise to a confinement poten
for the conduction electrons, i.e., to specify the geometry
the system. This should be a reasonable starting poin
describe simple monovalent metals.! The formulation of
electrical transport in terms of the scattering matrix was
veloped by Landauer26 and Büttiker,27 while the formulation
of the statistical mechanics of open quantum systems
terms of the scattering matrix was first given by Dashen, M
and Bernstein,28 and was recently revived in the context
the persistent current problem by Akkermanset al.29 A uni-
fied treatment of the electrical and mechanical propertie
metallic nanostructures in terms of the electronic scatte
matrix was given by Stafford, Baeriswyl, and Bu¨rki.15 In the
remainder of this section, we recapitulate the general form
ism of Ref. 15, which will serve as the starting point for t
present investigation.

The essential ingredient in the scattering matrix desc
tion of mesoscopic systems is that electrons are injected
the system frommacroscopicreservoirs in internal therma
equilibrium; any perturbation of the reservoirs due to t
mesoscopic current flowing from one to another is assum
to be negligible. The energy distribution of the electrons
jected from reservoira is thus given by the Fermi distribu
tion function f a(E)5$exp@b(E2ma)#11%21, wherema and
b51/kBT are the electrochemical potential and inverse te
perature, respectively, of reservoira.

The asymptotic scattering states of conduction electr
for the geometry depicted in Fig. 1 are described by a tra
verse quantum numbern and a wave numberk that is a
function of energyE andn:

kn~E!5A2m

\2
~E2en!, ~1!

whereen is the energy of the transverse modes. If the a
plitudes of incoming currents at energyE are given by a
vector with componentsan

1 ~currents from the left side! and
an

2 ~currents from the right side!, the outgoing current am
plitudesbn8

1 andbn8
2 are given by

S b1

b2D 5S~E!S a1

a2D . ~2!

The scattering matrix for a two-terminal conductor may
decomposed into four submatrices

S~E!5S S11 S12

S21 S22
D , ~3!
.
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where the submatricesSi j (E) contain transmission (iÞ j )
and reflection (i 5 j ) amplitudes. Each submatrixSi j (E) is a
matrix in the incoming and outgoing scattering channelsn
andn8.

The electrical conductance is given in terms of the sc
tering matrix by the well-known formula30,27

G5
2e2

h E dE
2] f ~E!

]E
Tr$S12

† ~E!S12~E!%, ~4!

where the factor of 2 accounts for spin degeneracy. Equa
~4! indicates thatG is proportional to the sum over the tran
mission probabilities of electrons incident in a window
width kBT about the Fermi energym. Equation~4! may be
modified by electron-electron interactions at finite tempe
tures, but has been shown31 to hold quite generally in the
limit T→0.

The quantity needed to investigate the statistical mech
ics of the nanowire is the electronic density of statesD(E).
The density of states can be expressed in terms of the s
tering matrix as28,32

D~E!5
1

2p i
TrS S†~E!

]S~E!

]E
2H.c.D . ~5!

This expression holds for an arbitrary interacting gas
particles.28 Given the density of states, the grand partiti
function may be evaluated, and the thermal expectation
ues of all observables may be calculated.

The net positive chargeQ1 associated with the positive
ions and their core electrons is assumed to be distribu
uniformly in the wire~jellium model!. The chargeQ2 asso-
ciated with the conduction electrons must, however, be
termined from a solution of the scattering problem. The e
pectation value ofQ2 is given by

^Q2&52eE dE f~E!D~E!. ~6!

Integrating by parts, and taking the limitT→0, one obtains
the simplified expression

^Q2&52
e

p
Im$ ln detS~EF!%. ~7!

The overall phase of the scattering matrix depends on
precise choice of the asymptotic states~their phase!. There-
fore the phase relation chosen between the amplitudesan

6

andbn8
6 is, in principle, free. Different choices correspond

the inclusion of various amounts of the constant asympt
charge density inQ2. However, the total chargeQ5^Q2&
1Q1 is independent of this choice of phase, provided
add the appropriate quantity of the constant positive ba
ground charge density.

The grand canonical potential is the relevant thermo
namic potential to describe the mechanical properties of
electron gas in the nanowire, and may be written

V52
1

bE dE D~E!ln~11e2b~E2m!!. ~8!

It should be noted that Eq.~8! only holds for noninteracting
electrons, since the thermal trace is taken assuming that
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fermionic mode is independent. A more general express
for V, valid within a self-consistent mean-field treatment
interactions, will be presented elsewhere.33 Here it is suffi-
cient to note that it will be argued below that the correctio
to Eq. ~8! due to charging effects are negligible.

Equations~6! and ~8! are deceptively simple, and it i
worth emphasizing thatm is theasymptoticelectrochemical
potential of electrons injected from the reservoirs,not a local
Fermi energy, as introduced by certain other authors.18,19

D(E) is the global energy density of eigenstates of the s
tering problem, and contains all effects of multiple scatt
ing, quantum interference, etc. These eigenstates are p
lated according to the Fermi distributions of the reservo
The occupation of a local basis of states, which are
eigenstates ofH, is in general quite complicated, and will b
discussed in detail in Sec. IV E.

The cohesive force of the nanowire is given by the deri
tive of the grand canonical potential with respect to the el
gation:

F52
]V

]L
. ~9!

The elongationL is a parameter controlled by an externa
applied force that balancesF. In principle, the shapeD(z) of
the nanowire as a function of elongation should be de
mined by minimizingV subject to this constraint. It is im
portant to recall that the complete grand canonical poten
of the nanowire includes terms stemming from the hard-c
repulsion of the core electrons as well as the exchange
ergy of the conduction electrons. It is the interplay of the
terms with the kinetic energy of the conduction electrons t
determines the equilibrium density of the bulk metal. We c
take these interactions into account, to lowest order, by
suming the system is incompressible, with the density fix
at the bulk value.

Determining the geometry of the wire that minimizesV
subject to these constraints is a well-posed problem, bu
unfortunately, outside the scope of the present investigat
Here we content ourselves to study the WNW geometry,
which the scattering matrix may be computed exactly. O
motivation to study an arbitrary geometry, such as the WN
geometry, which may not minimizeV subject to the above
constraints, is that both kinetic effects and nonisotropic io
interactions may lead to more complicated constraints on
geometry. The comparison of the present results for
abrupt geometry to previous results15 for smooth geometries
indicates that the precise form of the geometry is not cruc
justifying the present approach.

In the following, it will be assumed that the volumeLd2

of the nanowire~or the areaLd for 2D nanowires! remains
constant under elongation, i.e., we assume an ideal pla
deformation. It can be shown that relaxation of this co
straint, to include e.g., a small elastic deformation, does
modify the mesoscopic effects in an essential way.33 Differ-
entiating the above expression forV and performing a partia
integration overE, one obtains the general result

F5
1

pE dE f~E! ImH ]

]L
ln det@S~E!#J . ~10!
n
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We thus have relations which give us the conductan
charge, and force as a function of theS matrix.

III. S MATRIX OF THE WNW GEOMETRY

In order to obtain exact results for the tunneling a
finite-size corrections to the conducting and thermodyna
properties of metallic nanowires, we consider the spe
WNW geometry illustrated in Fig. 1, for which theS matrix
can be calculated exactly. The system consists of a nonin
acting electron gas confined by hard-wall boundary con
tions ~we will return to the question of electron-electron i
teractions in Sec. V B!. The wire cross section in the 3D cas
is assumed to be square. A generalization to an arbit
cross section is straightforward if the eigenfunctions and
genvalues of the 2D Schro¨dinger equation are known for tha
shape. The scattering problem for the 2D WNW geome
was solved by Szafer and Stone34 in connection with the
problem of conductance quantization in 2D semiconduc
quantum point contacts, and was further investigated
Weisshaaret al.35 In addition to the transmission coefficien
calculated in Refs. 34 and 35, we need the reflection coe
cients, i.e., the fullS matrix. The generalization of the
method of Refs. 34 and 35 to 3D nanowires and to calcu
the full S matrix is described below.

In order to calculate the elements of theS matrix, solu-
tions of the Schro¨dinger equation are matched at the tran
tions between wide and narrow parts of the wire. Let
regard the transition from wide to narrow first~cf. left part of
Fig. 1!. If the z coordinate is directed along the wire andx is
an abbreviation forx in the two-dimensional case and fo
(x1 ,x2) in the three-dimensional case, describing the dim
sion~s! perpendicular to thez axis, the wave functions are
given by

C~z,0,x!5eiK NzFN~x!1(
N8

r N8Ne2 iK N8zFN8~x!,

~11!

C~z.0,x!5(
n

tnN8 eiknzfn~x!, ~12!

where we have assumed an incoming wave from the lef
unit amplitude, andFN andfn are transverse eigenfunction
in the wide and narrow parts of the wire, respectively, a
are given by

FN~x!5A2

D
sinS Np

D
~x1D/2! D N51,2, . . . , ~13!

fn~x!5A2

d
sinS np

d
~x1d/2! D n51,2, . . . , ~14!

in the 2D case, and by an analogous expression consistin
a product of two sine functions for the 3D case. HereD is the
diameter of the wide part of the wire andd the diameter of
the narrow part. In the 3D case, the transverse modes ha
general two indices, e.g.,P and Q, but we can order the
states according to their energy and so characterize them
one quantum numberN; P andQ are then functions ofN.
The wave numbersKN andkn are
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KN5A2m

\2
E2

p2Ñ2

D2
, ~15!

kn5A2m

\2
E2

p2ñ2

d2
, ~16!

where Ñ5N for the 2D case andÑ25P(N)21Q(N)2 for
the 3D case.

The solution of the Schro¨dinger equation must obey tw
conditions at the transition pointz50:

~1! Continuity of the wave function forxP@2D/2,D/2#
in two dimensions (x1 ,x2P@2D/2,D/2# in three dimen-
sions!:

FN~x!1(
N8

r N8NFN8~x!5(
n

tnN8 fn~x!Q~d/22uxu!,

~17!

whereQ(x) is the Heavyside step function and is an abb
viation for the productQ(d/22ux1u)Q(d/22ux2u) in the 3D
case.

~2! Continuity of the first derivative of the wave functio
for xP@2d/2,d/2# in two dimensions (x1 ,x2P@2d/2,d/2#
in three dimensions!:

KNFN~x!2(
N8

r N8NKN8FN8~x!5(
n

tnN8 knfn~x!.

~18!

These equations can be transformed into matrix equation
r and t8 by multiplication with FM(x) and fm(x), respec-
tively, and integration over the appropriatex range. Using
the abbreviations

rNn5E
2d/2

d/2

dxFN~x!fn~x!, ~19!

KNN85dNN8KN , knn85dnn8kn , ~20!

two equations forr and t are obtained:

11r 5rt8, ~21!

rTK2rTKr 5kt8. ~22!

Note that ther matrix is not orthogonal. Equations~21! and
~22! can be solved, and we obtain

t852~k1rTKr!21rTK, ~23!

r 5rt821. ~24!

An exactly analogous calculation for an incoming wave fro
the right side gives

r 85~k1rTKr!21~k2rTKr!, ~25!
-

or

t5r1rr 8. ~26!

The scattering matrix is obtained by normalizing the wa
amplitudes with respect to current~the unitarity ofS reflects
current conservation!. With

t̄ nN5~kn /KN!1/2tnN , r̄ NN85~KN /KN8!
1/2r NN8 , etc.,

~27!

the scattering matrix is given by

S~1!5S r̄ t̄

t̄ 8 r̄ 8
D . ~28!

The S matrix for the combined WNW geometry may b
constructed from three scattering matricesS(1), U, andS(2),
describing the scattering at the WN boundary, the free pro
gation within the narrow section, and the scattering at
NW boundary, respectively~see Fig. 1!. The free propaga-
tion in the narrow section is described by the matrix

U5S 0 X

X 0 D ; Xnn85dnn8exp~ iknL !. ~29!

The NW transition is associated with a matrix

S~2!5S r̄ 8 t̄ 8

t̄ r̄
D , ~30!

which can be calculated likeS(1), or can be seen by symme
try considerations. To compute the fullS matrix, we use the
linear equations connecting the current amplitudes propa
ing between the individual scattering matrices~see Fig. 1 for
an explanation of the notation!:

S bS1

1

bS1

2 D 5S~1!S aS1

1

aS1

2 D ,

S aS1

2

aS2

1 D 5US bS1

2

bS2

1 D , ~31!

S bS2

1

bS2

2 D 5S~2!S aS2

1

aS2

2 D .

Eliminating the unwanted variables in this set of linear eq
tions, and rewriting the equations in the form

S bS1

1

bS2

2 D 5SS aS1

1

aS2

2 D , ~32!

relating ingoing and outgoing currents, the fullS matrix is
found to be
S5PS S11
~1!1S12

~1!~12U12S11
~2!U21S22

~1!!21U12S11
~2!U21S21

~1! S12
~1!~12U12S11

~2!U21S22
~1! !21U12S12

~2!

S21
~2!~12U21S22

~1!U12S11
~2!!21U21S21

~1! S22
~2!1S21

~2!~12U21S22
~1!U12S11

~2!!21U21S22
~1!U12S12

~2! D P. ~33!
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The operatorP is a projection operator onto the undamp
modes in the wide part of the wire. Note that the individu
matricesS(1), S(2), andU are infinite-dimensional matrice
describing scattering and propagation in all available mod
including the evanescent modes. The fullS matrix, on the
other hand, connects the incoming and outgoing asympt
states, and thus has a finite dimension for a given energE,
determined by the total number of transverse modesn with
en<E. The inclusion of the virtual intermediate state
which describe tunneling processes, is crucial to solve
Schrödinger equation accurately. However, the contribut
of the evanescent modes decreases exponentially with
creasing energy. In practice, we found numerical conv
gence of theS matrix if roughly 20 times more modes tha
the undamped modes in theW part were retained.

We remark that the elements of theS matrix can also be
found by considering e.g., the transmission matrixS12 as the
sum of the directly transmitted current amplitudes and
multiply backscattered current amplitudes. This results i
geometric series, which can be summed to obtain the re
~33!.

IV. 2D NANOWIRE

In this section, we investigate the properties of 2D nano
ires. There are several motivations to study 2D syste
First, a quasi-2D nanowire could be experimentally realiz
in a thin metallic film. Secondly, the characteristic electric
and mechanical properties of a nanowire, namely, cond
tance quantization and force oscillations, are already pre
in 2D systems, and it is worthwhile to investigate to wh
extent the universality of the mesoscopic force oscillatio
predicted in Ref. 15 depends on dimensionality. Further,
electronic structure is easier to visualize, making it simple
study the correlations between the measured quantities
the local electronic structure. Finally, and perhaps most
portantly, certain of the phenomena studied here are dire
applicable to 2D quantum point contacts formed in semic
ductor heterostructures.7–9 While the predicted mesoscop
force oscillations of orderEF /lF would be many orders o
magnitude smaller in doped semiconductors due to
smaller Fermi energy and correspondingly longer Fe
wavelength, and would likely be hidden by the much larg
cohesive forces associated with the covalently bonded e
trons of the valence band, the charge oscillations predicte
accompany the quantized steps in the conductance sh
have a comparable size in both metallic and semicondu
quantum point contacts, namely, of order the fundame
charge quantume.

A. Force and conductance

Once theS matrix ~33! is known, the conductance an
cohesive force can be calculated from Eqs.~4! and ~10!.
Figure 2 shows the behavior of the conductance and cohe
force as a function of the elongation of the wire. An ide
plastic deformation of the narrow part is assumed, wh
means that its areaA5Ld5L0D is held constant,L0 being
the initial length of the narrow section. The wide sections
the wire support five propagating modes at the Fermi ene
this fixes the conductance of the wire before deformation
be G55G0 . In Fig. 2~a!, the area of theN part is compara-
l
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tively large (3lF
2), while it is small in Fig. 2~b! (0.5lF

2). In
both cases, conductance quantization can be observed; w
ever a channel in theN part closes~as the diameter is de
creased!, the conductance decreases and reaches a plate
an integer multiple of 2e2/h. The conductance does no
show a perfect steplike structure, though: When the nar
part is short, there will be tunneling through the constricti
before a channel opens, and reflection above the thresh
This will smear out the steps, leading to a rather smo
transition between the plateaus@see Fig. 2~b!#. When the
narrow part is quite long, on the other hand, there is alm
no tunneling, but a resonant structure near the transi
points occurs@Fig. 2~a!#. This is due to the alternating con
structive and destructive internal reflection within th
constriction.34

The cohesive force is strongly correlated with the cond
tance. In Fig. 2~a!, the modulus of the force increases alo
the conductance plateaus, while it decreases sharply a
conductance steps. The behavior is qualitatively similar
the result for smooth 3D geometries presented in Ref.
and to the experimental results for 3D Au nanowires.4,5 Thus
we see that the essential correlations of the electrical
mechanical properties of nanowires are present even in
systems, and even for abrupt geometries. For the extrem
short nanowire considered in Fig. 2~b!, similar force oscilla-
tions correlated with the conductance steps are present~see
Fig. 4!, but they are superimposed on a much larger ba
ground force. The pronounced difference in the force in Fi
2~a! and 2~b! indicates a breakdown of the invariance ofF
under a stretching of the geometryd(z)→d(lz), which was

FIG. 2. Electrical conductance and tensile force for two diffe
ent 2D wires with WNW geometry as a function of the lengthL of
the narrow part. Assuming area conservation,L is varied from a
perfect wire~where narrow and wide parts have the same diame!
until the last conductance channel breaks.~a! A wire with a rela-
tively large area of the narrow part (A53.0lF

2) and~b! a wire with
a smaller area (A50.5lF

2) are shown. The diameter of the wide pa
is 2.9lF , fixing the total number of asymptotically propagatin
modes to be 5. The dotted curves show the adiabatic approxima
to conductance and force, the dashed curves give the surface
sion, the leading order contribution in a semiclassical expansio
the force. The arrows indicate the geometries used in Fig. 5.
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efound within the WKB approximation,15 due to strong tun-
neling effects in very short wires.

The cohesive force decays to zero as the wire is elong
past the point where the last conductance channel is cut
though rather more slowly than the conductance itselfF
remains noticeably finite even for the largest elongatio
shown in Figs. 2~a! and 2~b!, althoughG is exponentially
small. The force in this regime arises from the variation
the free energy due to a deformation of the geometry in
region classically forbidden to electrons, and is clearly lar
in the shorter wire@Fig. 2~b!#, where tunneling effects ar
more important. This effect is simple to understand: ev
when the probability to tunnel all the way through the n
row section is exponentially small, the probability toenter
the narrow section need not be small@see Fig. 5~d!#, so the
electron gas is still sensitive to its shape.

It is clear from Eq.~10! that all states with energy smalle
than the Fermi energy contribute to the total force. On
other hand, the graphs show that the force oscillations
correlated to the behavior of the conductance, and thus m
be due to states near the Fermi energy. In Fig. 2~a!, one can
see that even the resonant structure in the conductan
reflected in the force, leading to sudden changes in its
rivative.

Figure 3 shows the conductance and cohesive force
function of elongation for wires with different outer diam
eters. While the curves are distinct at the beginning of
elongation~where inner and outer parts have comparable
ameters!, there is almost no difference at higher elongatio
and this is not only valid for the conductance35 but also for
the force. This shows that even a narrow constrict
coupled to contacts with infinite width can be accurat
modeled by wires of the type we regard here.

FIG. 3. Electrical conductance and cohesive force for 2D wi
with various outer diametersD. The area of the narrow part wa
held constant, so the initial length~when D5d) of the wires is
different. The area of the narrow part is 3.0lF

2 as in Fig. 2~a!. The
curves are vertically offset.
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B. Mesoscopic force and charge fluctuations

In order to understand the overall behavior of the co
sive force, it is useful to consider a semiclassic
expansion15,16of Eq. ~8!. Formally, the density of states ma
be writtenD(E)5dN(E)/dE, whereN(E) is the total num-
ber of states with energy less thanE in the system. The
behavior ofN(E) for 2D domains with hard-wall boundar
conditions was first investigated by Weyl,36 and was further
developed by Kac and others.37,38 The Weyl expansion of
N(E) for a 2D domain with a polygonal boundary withn
corners is38

N~E!5
A

2p
kE

22
]A

2p
kE12C1dN~E!, ~34!

wherekE5A2mE/\2 is the wave vector associated with e
ergy E, A is the area of the domain,]A the circumference
of the domain, andC is a constant depending on the topo
ogy, in this case

C5(
i 51

n p22g i
2

24pg i
, ~35!

whereg i is the interior angle of corneri, and dN(E) is a
fluctuating term associated with the discreteness of the le
spectrum, the energy average of which is zero.16 Note that
Eq. ~34! includes a factor of 2 for spin. The shift in the tot
number of modes due to the presence of the sharp corne
given byC51/9 for the WNW geometry of Fig. 1.

Integrating Eq.~8! by parts and taking the limitT→0, one
finds

V52E
0

EF
N~E!dE52

pEF

lF
2

A1
2EF

3lF
]A22EFC1dV,

~36!

wheredV is a fluctuating mesoscopic correction. Differen
ating V with respect toL, subject to the constraintA
5const, yields a semiclassical expansion for the force,

F52
2EF

3lF

d

dL
]A1dF, ~37!

where dF52](dV)/]L. The leading-order term in the
semiclassical expansion of the force is the surface tens
Fsurf. For the WNW geometry, the circumference of th
nanowire is]A52L12(D2d)1const, and one obtains

Fsurf52
4EF

3lF
S 11

d2

A D . ~38!

This indicates that the surface tension increases with incr
ing conductance~the Sharvin formula readsG/G0;2d/lF
in 2D! and with decreasing areaof the wire. The surface
tension is plotted in Fig. 2 as a dashed curve. The exact fo
oscillates around it.

The Weyl expansion for the electronic charge of t
nanowire forT→0 is

^Q2&52eN~EF!52eS 2pA

lF
2

2
]A

lF
12CD 1dQ0 .

~39!

s
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In Fig. 4, the force fluctuationsdF, calculated by subtracting
the surface tension from the exact force, and the charge
tuationsdQ0 , calculated by subtracting the term in parenth
ses in Eq.~39! from the exact charge, determined from E
~7!, are shown for the nanowires considered in Fig. 2. T
scale of the force oscillations isEF /lF ~see Fig. 4!, similar
to the result for smooth 3D geometries presented in Ref.
Strongly correlated with the force oscillations are charge
cillations of order the fundamental charge quantume. The
charge fluctuationsdQ0 are calculated in the absence
screening. Screening will be considered in Sec. V B; her
suffices to note that the screening properties of the 2D e
tron gas in, e.g., GaAs are quite poor, so that the cha
fluctuations in small-conductance 2D quantum point conta
should be essentially unscreened. The predicted charge o
lations should be experimentally observable with a lo
probe, such as a single-electron transistor.

C. Topological force

A close examination of Fig. 2 indicates that the exa
force deviates significantly from the surface tension for v
small elongations: The discrepancy is roughly 3EF /lF in
Fig. 2~a! and 14EF /lF in Fig. 2~b! for L→L0 . This behavior
is to be contrasted with the results for smooth geometr
presented in Ref. 15, in which the mesoscopic deviati
from the semiclassical result were always found to
&EF /lF ~hence the termuniversal!. The nonuniversal cor-
rections to the force in the WNW geometry at small def
mations have a topological origin: Before deformation, t
perfect wire has a smooth boundary, but as the wire
stretched, eight sharp corners develop. The sharp cor
lead to a shift in the grand canonical potential,

DV top522EFC52 2
9 EF . ~40!

However, the electrons incident from the reservoirs can o
resolve the individual corners when they are separated

FIG. 4. Force and charge oscillations for two different 2
WNW wires as a function of elongation. Force oscillations a
shown in the upper and charge oscillations in the lower half. T
wire parameters are the same as in the preceding figures,~a! shows
a wire with a larger and~b! a wire with a smaller area of the narro
part.
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distance greater than or of orderlF . Thus one may expec
the topological correction toV due to the sharp corners t
evolve smoothly with the initial deformation, and to satura
when the corners become separated by an amount of o
lF . In order to see this explicitly, let us considerDV top as
the work done by a topological forceF top5F2Fsurf which is
present for small deformationsL'L0 . For infinitessimal de-
formations, the adiabatic approximation becomes exact,
gives F(L0)524EF/3lF . Thus F top(L0)54EFD/3lFL0 .
Estimating the work done byF top to be2F top(L0)DL/2, and
equating this to the change in the grand canonical poten
DV top, gives DL5lFL0/3D as the deformation regime
where the topological force is important. The correspond
change in diameter is

Dd52DDL/L052lF/3, ~41!

indicating that the shift in the free energy of the system d
to the introduction of sharp corners indeed saturates w
the separation between the corners becomes comparab
the Fermi wavelength. That the force associated with t
change of topology can be large compared toEF /lF is a
remarkable result.

D. Comparison with the adiabatic approximation

In previous theoretical investigations of the conductan
and cohesive force in metallic nanowires, an adiaba
approximation15 was employed. The WNW geometry clear
violates the conditions of validity of the adiabatic approx
mation; it is nonetheless instructive to compare our ex
results to those obtained within an adiabatic approximat
for this abrupt geomety, in order to evaluate the importan
of interchannel scattering.

The solution of the 2D Schro¨dinger equation can be writ
ten formally asC(x,z)5fz(x)c(z). The adiabatic approxi-
mation consists of neglecting the derivatives]fz(x)/]z and
]2fz(x)/]z2 @which would be justified ifu]D(z)/]zu!1#, so
that the Schro¨dinger equation decouples into separate tra
verse and longitudinal wave equations,

2
\2

2m

]2

]x2
fz

n~x!5En~z!fz
n~x!, ~42!

2
\2

2m

]2

]z2
c~z!5@E2En~z!#c~z!. ~43!

The 2D scattering problem then decouples into independ
one-dimensional scattering problems for each channel,
the scattering matrix reduces to a 232 matrix for each chan-
nel, which can be computed e.g., via the WK
approximation.15 It is then straightforward to calculate con
ductance and cohesive force using the formalism descr
in Sec. II.

While the adiabatic approximation should be a good
proximation for boundaries with smoothly varying diamete
this condition is certainly not fulfilled in the WNW geom
etry. Employing it nonetheless, the equation of motion
the longitudinal coordinate becomes just the 1D Schro¨dinger
equation for a square barrier:

e
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S 2
\2

2m

]2

]z2
1u~z!u~L2z!VnD c~z!5Ẽnc~z! ~44!

with Vn5EFp2n2/kF
2@(1/d2)21/D2# and Ẽn5E

2EF(p2n2/kF
2D2). The transmission and reflection coef

cients are simply calculated using the continuity of the wa
function and its derivative at the potential steps. We find

r n5
~12e2iknL!~kn

22Kn
2!

2kn
21e2iknLkn

222knKn22e2iknLknKn2Kn
21e2iknLKn

2
,

tn5
24eiknLknKn

2kn
21e2iknLkn

222knKn22e2iknLknKn2Kn
21e2iknLKn

2
,

~45!

whereKn5kFAẼn /EF andkn5kFA(Ẽn2Vn)/EF.
Inserting theS matrix elements~45! into Eqs. ~4! and

~10!, one obtains the adiabatic approximation for the cond
tance and force. These are shown as dotted curves in Fi
The adiabatic approximation captures some of the qualita
features of the exact solution~solid curves!, but is not quan-
titatively correct. Since the conductance is more or l
quantized, the discrepancy with respect to the exact solu
has to be small. Not so for the force; the adiabatic appro
mation clearly fails to describe correctly even the lead
order contribution to the force, the surface tension, wh
several channels are transmitted, especially for very s
nanowires. Interestingly, the adiabatic approximationoveres-
timates the effects of tunneling: both the conductance p
teaus and the force oscillations are better defined in the e
calculation than in the adiabatic approximation. Perhaps
most striking conclusion that one should draw from Fig. 3
that even for the worst-case scenario of an abrupt geom
the adiabatic approximation works remarkably well f
nanowires of lengthL@lF .

E. Local density of states

The correlations between the quantized steps in the c
ductance and the oscillations of orderEF /lF in the force
were interpreted in Ref. 15 in terms of a simple physi
picture, which was essentially the converse of the conv
tional interpretation. The conventional interpretation23–25 of
the experiments of Refs. 4 and 5 is that the jumps in
conductance are due to abrupt changes of the structure o
nanowire at the atomic level, e.g., through the breaking
bonds, and that these structural rearrangements manife
themselves as abrupt changes in the cohesive force. W
certainly a plausible viewpoint, the strong statistic
evidence2,3,6 for conductance quantizationhas no natural ex-
planation within this framework. In order to substantiate t
converse point of view, that the conductance channels th
selves can be interpreted as mesoscopic bonds providing
cohesion, it is worthwhile investigating the local electron
structure of a nanowire within the jellium model.

The electrical conductance is determined by the electro
structure of the nanowire in the vicinity of the Fermi energ
While the total force and charge clearly depend on all
states with energy belowEF @cf. Eqs.~6! and~10!#, the me-
soscopic force and charge oscillations, because they are
e
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related with the conductance steps, must also be essen
determined by the electronic states at the Fermi energy.
spatial character of the electronic wave functions associa
with scattering states of a given energyE is naturally repre-
sented through the local density of states~LDOS!, D(E,x,z).
The LDOS of 2D quantum point contacts with smoo
boundaries has recently been investigated by Ulreich
Zwerger.39

While Refs. 18–20 regarded the density of states to
independent of thez coordinate and to depend only on thex
coordinate in the narrow part of the wire, this is certainly n
the case for the full solution of the problem. Thez depen-
dence of the LDOS will be especially important when n
only the width but also the length of the nanowire are on
nanometer scale, as in the experimentally relevant geom
Since we know the exactSmatrix and the eigenfunctions fo
the WNW geometry, we can calculate the LDOS. The LDO
is obtained as a sum of the densities created by the diffe
incoming channels. Only reflected or transmitted waves fr
the same channel will superpose coherently. In the wide s
tion on the left side of the constriction, the LDOS at th
Fermi energy is given by

D~E,x,z,0!5
2

h (
N51

Nmax H U eiK Nz

A\KN /m
FN~x!

1 (
N851

`

~S11!N8N

e2 iK N8z

A\KN8 /m
FN8~x!U2

1U (
N851

`

~S12!N8N

e2 iK N8z

A\KN8 /m
FN8~x!U2J ,

~46!

where Si j are the submatrices of theS matrix ~3!, and we
have chosenz50 at the boundary between wide and narro
parts. For the calculation of the LDOS in the narrow part
the wire, we need the current amplitudesbS1

2 andbS2

1 in the

narrow section as a function of the incoming current amp
tudesaS1

1 andaS2

2 ~see Fig. 1!. In the system of linear equa

tions ~31!, the unwanted variables have to be eliminated, a
the remaining equations may be rewritten as

S bS1

2

bS2

1 D 5tS aS1

1

aS2

2 D . ~47!

We find

t5S t11 t12

t21 t22
D ~48!

with the components oft given by the known matricesS(1)

@Eq. ~28!#, S(2) @Eq. ~30!#, andU @Eq. ~29!# as

t115~12S22
~1!U12S11

~2!U21!
21S21

~1! , ~49!

t125S22
~1!U12~12S11

~2!U21S22
~1!U12!

21S12
~2! , ~50!

t215~12S11
~2!U21S22

~1!U12!
21S11

~2!U21S21
~1! , ~51!
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t225~12S11
~2!U21S22

~1!U12!
21S12

~2! . ~52!

The LDOS in the narrow part of the wire is obtained as

D~E,x,0,z,L !5
2

h (
N51

Nmax H U (
n851

` F ~ t11!n8N

eikn8z

A\kn8 /m
fn8~x!

1~ t21!n8N

e2 ikn8~z2L !

A\kn8 /m
fn8~x!GU2

1U (
n851

` F ~ t12!n8N

eikn8z

A\kn8 /m
fn8~x!

1~ t22!n8N

e2 ikn8~z2L !

A\kn8 /m
fn8~x!GU2J . ~53!

The LDOS is of course symmetric about the axisz5L/2.
Figure 5 shows the LDOS at the Fermi energy for fo

different elongations of a wire with a relatively longN part
@it has the same parameters as the wire in Fig. 2~a!, so one
can compare the conductance and force at these elonga
with the LDOS#. It can be seen immediately that the LDO
exhibits a highly nontrivial structure. The number of maxim
in thex direction in theN part of the wire reflects the numbe
of open channels transmitted through the constriction; in F
5~a! there are three open channels~and thusG'3G0 see Fig.
2!, in ~b! there are two open channels and in~c! only one
channel is left. Figure 5~d! shows the exponential dampin

FIG. 5. Local density of statesD(EF ,x,z) at the Fermi energy
in a 2D wire. The area of theN part and the diameter of theW part
have been chosen as in Fig. 2~a! (A53.0lF

2 and D52.9lF) to
make comparison with Fig. 2~a! possible. The diameter of theN
part is~a! 2.4lF , ~b! 1.9lF , ~c! 1.4lF , and~d! 0.9lF . The corre-
sponding elongations are marked as arrows in the upper part of
2~a!. Black areas correspond toD50.0/(EFlF

2), white areas toD
.1.0/(EFlF

2), contours are drawn at equally spaced values oD
between these two limits.
r

ons

.

of the wave function just after the last channel has closed
the highest open mode dominates the transverse structu
the LDOS in the narrow part of the wire; this can be und
stood considering that normalization of the wave functions
unit current implies that the wave functions are proportio
to 1/Ad2dn, wheredn is the wire diameter at which thenth
channel opens. Note that even in the tunneling regime@Fig.
5~d!#, the probability for an electron to enter the classica
forbidden region can be non-negligible.

As the conductance is a property of states at the Fe
energy, we should expect not only the number of transmit
channels to be reflected in the LDOS, but also the reson
structure exhibited by the conductance in Fig. 2~a!. This is
indeed the case; when we are at conductance maxima
LDOS inside theN part is much larger than that at th
minima, and is very strongly modulated in thez direction.
This is because constructive interference of the multi
backscattered waves leads to a quasibound standing-w
state at the conductance maxima, while the conducta
minima are associated with a condition of destructive int
ference@compare Fig. 5~b! ~conductance minimum! and Fig.
5~c! ~conductance maximum!#. For the first conductance
maximum after the channel opens as one widens the na
section, there is one maximum in the LDOS of theN part in
the longitudinal direction; for thenth conductance maximum
of the resonant structure, there aren longitudinal maxima of
the LDOS. We thus see five maxima in Fig. 5~c!.

The electronic structure of the nanowire shown in Fig
gives vivid pictorial support to the claim advanced in Ref.
that conductance channels should be interpreted as me
copic bonds, which provide the cohesion of the system. T
claim advanced here that the electronic structure in suc
nanowire is dominated by quantum-confinement effe
rather than by atomistic effects is in agreement with ST
studies of electron ‘‘corrals’’ on Cu surfaces.40

V. 3D NANOWIRE

While the results for 2D nanowires presented in the p
ceding section are interesting both in illustrating the gen
ality of the mesoscopic phenomena in question and for th
relevance to experiments on point contacts in quasi-2D e
tron gases, the only experiments to date on the mechan
properties of nanowires4,5 involve 3D metals. In this section
we consider a 3D wire with WNW geometry and squa
cross section. For a square cross section, many modes
doubly degenerate, as in the case of cylindrical symme
leading to conductance steps of both 2e2/h and 4e2/h. It
would be possible to lift this degeneracy by considering
wire with a rectangular rather than square cross section.
formalism to compute theSmatrix ~cf. Sec. III! and to obtain
the force, charge, and conductance~see Sec. II! is the same
as in the 2D case, although one needs to include more
nescent modes for an accurate computation of theS matrix
than in the 2D case. It is straightforward to extend t
present calculation to wires of arbitrary cross section, if
eigenfunctions and eigenvalues of the 2D Schro¨dinger equa-
tion are known for that cross section.

Although the exactly solvable geometry considered h
is somewhat special due to the presence of sharp edges
gross behavior of the conductance and force is similar to
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observed experimetally in 3D metallic nanowires4,5 and cal-
culated for smooth, adiabatic geometries.15 The agreement o
the present results for the WNW geometry with the expe
mental results of Ref. 4 is poorer than for the smooth geo
etries considered previously,15 indicating that the experimen
tal geometry is undoubtedly much smoother than t
considered here.

A. Force and conductance

Figure 6 shows the conductance and tensile force a
function of elongation for two model 3D wires. Under elo
gation, the narrow section is assumed to deform plastica
i.e., its volumeV5Ld25L0D2 is held constant, whereL0 is
the initial length of the narrow section. The inclusion of
additional, small elastic deformation can be shown not
modify the mesoscopic effects in an essential way.33 The
comparison of the exact results shown here to the result
an adiabatic approximation is similar to that in the 2D ca
~cf. Fig. 2!, so for clarity we have not shown them for the 3
case.

In Fig. 6~a!, a nanowire with a volume of 4lF
3 is shown,

while a shorter wire with a volume of 1.25lF
3 is shown in

Fig. 6~b!. The width of the wide sections isD51.76lF ,
which fixes the number of asymptotic propagating modes
be 6. In Fig. 6~a!, one sees conductance plateaus atG
51,3,4,63G0 , with a pronounced resonant structure sup
imposed due to multiple reflection at the abrupt junctio
between wide and narrow sections. The sequence of de
eracies corresponds to the square symmetry of the cross
tion ~cylindrical symmetry, on the other hand, givesG
51,3,5,6,•••3G0 , see Ref. 15!. Just as in the 2D case dis
cussed above, the force exhibits mesoscopic oscillation

FIG. 6. Electrical conductance and tensile force for two diff
ent 3D wires with WNW geometry and square cross section a
function of the lengthL of the narrow part. The width of the narrow
part is determined by a constant-volume constraintLd25L0D2

5V5const, whereL0 is the initial length of the constriction befor
deformation. In~a! the volume of the narrow part is given byV
54lF

3 while it is smaller (V51.25lF
3) in ~b!. The dimensions in~b!

are comparable with those of the Au wire studied experimentall
Ref. 4. The dashed curves give the force expected by the su
term plus topological correction.
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order EF /lF , which are correlated with the conductan
steps: uFu increases along the conductance plateaus,
drops abruptly at the conductance steps. The resonant s
ture in the conductance is also reflected in the first deriva
of the force, particularly on the last conductance plateau.
force is similar in magnitude to that calculated for a smoo
geometry in Ref. 15 and observed experimentally in
nanowires in Ref. 4: the forces required to cut off the la
two conductance eigenmodes are of order 1.25EF /lF and
2.5EF /lF , respectively~recall thatEF /lF'1.7 nN in Au!.

The surface tension has been plotted for comparison
dashed curve in Fig. 6. It has been computed analogous
the 2D case from the Weyl expansion15,16 of the grand ca-
nonical potential,

V52EFS 16p

15lF
3

V2
p

4lF
2

]V1
2

3lF
(

edgesi
CiLi D 1dV,

~54!

whereV is the volume and]V the surface area of the nano
wire; the topological terms are proportional to the lengths
the edgesLi , and the appropriate constants areCi51/4 for
an edge with an inner angle ofp/2 andCi525/36 for an
edge with an inner angle of 3p/2. The surface tension, o
semiclassical approximation to the force, is obtained fr
the derivative of the semiclassical approximation toV @the
term in parentheses in Eq.~54!# with respect toL, which
yields

Fsurf52
EF

lF
S pd

2lF
1

pd2

2LlF
2

2

3
2

d

2.7L D ~55!

for a 3D nanowire with WNW geometry and square cro
section. Aside from the initial deformation, where the top
logical force is important~cf. Sec. IV B!, the force exhibits
oscillations centered about the semiclassical result~dashed
curve!.

In Fig. 6~b!, a shorter wire whose conductance vers
elongation matches the experimental curve shown in Fig
of Ref. 4 is shown;L0 was chosen such that the elongati
required to decrease the conductance from 6G0 to 0 is 2lF
'1 nm. We see that the conductance and force are co
lated in a similar way. Due to the shorter length of the co
striction, the conductance steps are smeared out by tunne
and by above-threshold reflection; the plateau atG54G0
and the associated structure in the force are no longer vis
The resonant structure in the conductance is also suppre
except on the last plateau, where the narrow section is lo
est. The overall magnitude of the force is larger than
longer constrictions, due to the increased surface tens
and the total elongation required to break the nanowire
less.~Note that the effective surface tension can be redu
by up to a factor of 5 by including a small elast
deformation.33! However, the oscillations of the force aroun
the semiclassical approximation are of the same order a
the previous case~see Fig. 7!. The pronounced difference in
Figs. 6~a! and 6~b! indicates a breakdown of the invarianc
of F under a stretching of the geometryd(z)→d(lz), which
was found within the WKB approximation,15 due to strong
tunneling effects in very short wires.
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As in the 2D case, the force decays to zero with incre
ing elongation after the last conductance channel is cut
although more slowly than does the conductance itself~see
Sec. IV A for a discussion!. F remains non-negligible eve
for the largest elongations shown in Fig. 6, when the c
ductance is exponentially small.36 A similar effect was ob-
served experimentally~cf. Fig. 1 of Ref. 4!, although it is not
clear whether the effect was above the noise level.

B. Charge oscillations and screening

The charge on such a 3D nanowire may be calcula
from Eq. ~7!, as in the 2D case. The charge on the nanow
changes as the wire is elongated due to surface terms
mesoscopic oscillations. The Weyl expansion for the el
tronic charge of the nanowire is

^Q2&52eS 8p

3lF
3

V2
p

2lF
2

]V1
1

lF
(

edgesi
CiLi D 1dQ0 .

~56!

The term in parentheses in Eq.~56! varies smoothly as the
geometry of the wire is altered, whiledQ0 describes the
mesoscopic oscillations associated with the opening or c
ing of discrete transverse modes.

In Fig. 7, the mesoscopic charge oscillationsdQ0 , calcu-
lated by subtracting the term in parentheses in Eq.~56! from
the exact charge computed via Eq.~7!, and the force oscilla-
tions, calculated by subtracting the surface tension from
total force, are plotted for both wires shown in Fig. 6 as
function of elongation. As in the 2D case, there is a stro
correlation between the two quantities, and the charge o
lations are of order the fundamental quantum of chargee.
The force oscillations are, as in the case of an adiabatic
ometry studied in Ref. 15, of orderEF /lF , aside from the
nonuniversal topological correction occuring for small def
mations from an ideal wire, which was discussed in detail
the 2D case in Sec. IV C.

FIG. 7. Charge and force oscillations as a function of elonga
for two 3D wires with WNW geometry. The same parameters a
Fig. 6 have been used.
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In an interacting system, screening of the charge osc
tions will occur. The net chargedQ including screening can
be estimated within the Thomas-Fermi approximation41 as
follows:

dQ5dQ02e2D~EF!dV, ~57!

wheredQ0 are the charge oscillations in the noninteracti
case regarded above,D(E) is the density of states~integrated
over the length of the constriction! and the potentialdV due
to the charge imbalance on the wire can be estimated as

dV5
dQ

C
. ~58!

We have introduced a phenomenological quantityC corre-
sponding to the total capacitance of the inner part of the w
to its surroundings. Equations~57! and ~58! can be used to
compute self-consistently the charge on the wire within l
ear response:

dQ5
dQ0

11e2D~EF!/C
. ~59!

The denominator in Eq.~59! may be interpreted as th
Thomas-Fermi dielectric constant 11e2D(EF)/C5e. The
charge in the noninteracting casedQ0 has already been com
puted and discussed~see Fig. 7!.

On dimensional grounds, the capacitance obeysC5aL,
wherea is a geometrical constant of order 1 (a may de-
pend logarithmically on the ratioD/L). The density of states
can be computed by a spatial integral of the LDOS over
narrow section, or from the asymptotic scattering pha
shifts via Eq.~5!. The later definition includes the contribu
tion of the Friedel oscillations induced in the wide section
In Fig. 8, both densities of states are shown for wires w
the same parameters as above. They are approximately e
indicating that the excess chargedQ induced on the nano
wire under deformation resides mainly on the narrow s
tion. The intricate resonant structure inD(EF) occurs due to
the formation of quasibound states due to multiple reflect
at the junctions of the wide and narrow sections~see Fig. 5!,
and would not be present for a smooth geometry, such as
studied in Ref. 15. Aside from this resonant structure,
overall magnitude ofD(EF) can also be determined from

n
n

FIG. 8. Density of states at the Fermi surface as a function
elongation for 3D wires with parameters as in Fig. 6. The solid l
shows the LDOS integrated over the narrow part of the wire,
dotted line the DOS computed from Eq.~5!.
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Weyl expansion. To leading order, one findsD(EF)
;(4L/EFlF)G/G0 . Inserting this expression into Eq.~59!,
one finds

dQ;
dQ0

110.66r sG/G0a
, ~60!

were r s is the dimensionless electron gas parameter, wh
takes values between 2 and 6 in metals. This indicates
the screening of the mesoscopic charge fluctuations is p
for wires with small conductance. The screened mesosc
charge fluctuations should be measurable with a local pro
such as a single-electron transistor.

The screening of the predicted charge fluctuations sho
be even weaker in 2D GaAs quantum point contacts, du
the large dielectric constant, which enhances the capacita
In the 2D case, the constant 0.66 is replaced by 0.52 in
denominator of Eq.~60!, and the geometrical factora
→«a, where«'13. This indicates that the predicted char
fluctuations are essentially unscreened for small-conducta
QPC’s in GaAs.

Let us finally add a comment on the effect of screen
electron-electron interactions on the free energy.42 Within
linear response, the Coulomb energy associated with the
soscopic charge imbalance is given by

DVC5
dQ0

2

2eC
5

1

2

dQ0
2

C1e2D~EF!
. ~61!

The details of the derivation of Eq.~61! will be given
elsewhere.33 Equation ~61! indicates that the mesoscop
charge fluctuations of ordere lead to a negligible correction
to the free energy of the system, even in the limitC→0 of
perfect screening, justifying the independent-electron mo
of nanocohesion.

VI. CONCLUSIONS

In the present paper, we have investigated the conduc
and thermodynamic~including mechanical! properties of
metallic nanowires with a wide–narrow–wide geometry, u
ing a free-electron model with hard-wall boundary con
tions. All properties of the nanowire were related to the el
tronic scattering matrix, which was evaluated exac
including all effects of tunneling and interchannel scatteri
The present results confirm the central conclusion of Ref.
which was based on an evaluation of the scattering ma
within the adiabatic and WKB approximations, that closing
conductance channel by stretching a metallic nanowire
quires a force of orderEF /lF , or roughly a nano-Newton in
monovalent metals, independent of the total number of c
ducting channels.

In contrast to this ‘‘universal’’ behavior under a smoo
deformation of the geometry, we have shown that the fo
associated with a change in topology can be large comp
to EF /lF , and indeed comparable to the total~macroscopic!
cohesive force.

In addition, we predict that the net charge on a nanow
exhibits oscillations on the order of the fundamental cha
quantume, which are synchronized with the force oscill
tions and conductance steps. These charge oscillat
h
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should also be present in quasi-2D quantum point contac
GaAs heterostructures, and should be experimentally de
able using a local probe, such as a single-electron transi

A final word should be added by way of addressing t
central controversy of this field, which can be stated as
lows: Is it the atomic structure~i.e., the bonds! which deter-
mines the conductance,22–25or should the conductance cha
nels themselves be thought of as mesoscopic bonds
provide the cohesion, and thus determine the structure?

The conductance channels are the eigenstates of the
tronic scattering problem,43 and are thus the appropriat
states to describe both the transport and thermodyna
properties of a nanowire, which is an open quantu
mechanical system. These scattering states are linear co
nations of local bonding states, so there is no fundame
contradiction between the two viewpoints stated above:
is free to look at the problem in a localized basis of bonds
in a basis of extended electronic eigenstates.

However, since an exact solution of the many-bo
Schrödinger equation for a nanowire is beyond our curre
capabilities, one is forced to make certain approximatio
which are convenient in the basis of choice. Thus molecu
dynamics simulations23–25typically neglect any quantum co
herence between different bonds, and amount to a comp
tional version of the classical ball-and-stick model of atom
structure, where bonds are described by a short-range em
cal interatomic potential. This is an uncontrolled approxim
tion, which should be adequate to describe covalent bond
an insulator, but its applicability for monovalent metals wi
nearly spherical Fermi surfaces like Au and Na is questi
able.

The molecular-dynamics simulations involve empirica
determined short-range interatomic potentials whose cha
teristic length and energy scales mimic the quantum mech
ics of bonding. When playing classical mechanics with the
quantum forces, it is not too surprising if one obtains forc
of the right order of magnitude. Such models are of cou
inadequate to describe electrical conduction, so to exp
the observed correlations in the conductance and force
metallic nanowires, a quantum-mechanical model whose
ometry is fit to the results of the classical simulation
constructed.23–25 The cost of working in a localized basis
thus the necessity of usingdifferent physical lawsto describe
conductance and cohesion.

On the other hand, we have seen in the present paper~see
also Ref. 15! that the observed correlations in the conducti
and mechanical properties of metallic nanowires can be
counted for naturally in asinglequantum-mechanical mode
which treats the mechanical and electrical properties of
system on an equal footing. In order to solve the quant
scattering problem, we have neglected the discrete ato
structure, working in a jelliumlike model, which is equiva
lent to assuming that the only effect of the lattice is
modify the electron’s effective mass. This should be a rat
good approximation for simple metals like Na and adequ
for noble metals like Au. Defects in the atomic structure
the wire or roughness in its surface introduce additional s
tering, which can also be included in the jellium model in
natural way.12 A drawback of the jellium model, or at leas
of the assumption employed here and in Ref. 15, that
positive background deforms continuously as the nanowir
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elongated, is the inability to describe the hysteretic beha
found in the experiment of Ref. 4. The claim advanced h
that the electronic structure in such a nanowire is domina
by quantum-confinement effects rather than by atomistic
fects is in agreement with STM studies of electron ‘‘corral
on Cu surfaces.40

In the end, the merits of the jellium model vis a` vis an
atomistic description must be decided based on its predic
power. An interesting prediction of the jellium model di
cussed above is the existence of mesoscopic charge flu
tions of ordere, which are strongly correlated with the forc
fluctuations, and synchronized with the conductance st
These charge fluctuations are a collective effect, which c
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not be described in a ball-and-stick picture of bonding. I
incumbent on the experimenter to verify or falsify this cle
prediction of the jellium model.
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