

*This research is sponsored in part by a grant from the Division of Computing
and Communication Foundations of the National Science Foundation.

Force-directed Geographical Load Balancing and
Scheduling for Batch Jobs in Distributed Datacenters

Hadi Goudarzi and Massoud Pedram
University of Southern California

Department of Electrical Engineering - Systems
{hgoudarz, pedram}@usc.edu

Abstract — This work focuses on the load balancing

and scheduling problem for batch jobs considering a cloud
system comprised of geographically dispersed,
heterogeneous datacenters. Each batch job is modeled using
a directed acyclic graph of heterogeneous tasks. Load
balancing and scheduling of batch jobs with loose deadlines
results in operational cost reduction in the cloud system due
to availability of renewable energy sources in datacenters’
site and time of use dependent energy pricing in utility
companies. A solution for load balancing and scheduling
problem based on the force-directed scheduling approach is
presented that considers the online application workload
and limited resource and peak power capacity in each
datacenter. The simulation results demonstrate significant
operational cost decrease (up to 40%) using the proposed
algorithm with respect to a greedy solution.

I. INTRODUCTION AND RELATED WORK

Availability of affordable and sustainable electrical energy
is the key to prosperity and continued socio-economic growth
of nations and the world. Dynamic energy pricing [1] and
demand response are the most effective ways to avoid
expending large amount of capital for the expansion of the
power generation capacity and distribution network.

Demand response can be described as the changes in the
electric power usage in response to changes in energy price
over the time. Based on dynamic energy pricing, electricity
consumers are encouraged to consume electricity more
prudently in order to minimize their electric bill. For this
reason, the design of scheduling algorithms considering the
energy price has attracted researchers in recent years, see for
example [2, 3].

Demand for computing power has been increasing due to
the penetration of information technologies in our daily
interactions with the world. Datacenters provide the computing
needs to clients with thousands to tens of thousands of server
machines, see for example [4] and [5]. Resource management
and scheduling problems in datacenters and server clusters
have attracted a lot of attention in recent years, see for example
[6, 7, 8, 9].

The energy consumption of datacenters is increasing and
covers up to 2% of the total electrical energy consumption in
the US in 2010 [10]. To reduce the reliance on brown sources
of electricity and supplement/diversify the power generation
sources for a datacenter, there is a trend to generate electricity
from renewable sources such as wind and solar at the

datacenters’ site [11, 12].
Processing jobs in datacenter can be classified in to two

categories: online or interactive applications and offline or
batch jobs. In contrast to online applications which are
response time sensitive and needs to be processed as soon as
they arrive, batch jobs are usually schedulable and have loose
deadline. Scheduling batch jobs in datacenters increases the
chance of utilizing the power generated in renewable power
plants and may decrease the electricity cost of the datacenter by
using cheaper energy. Scheduling batch jobs is an example of
demand response in datacenters [13].

Datacenters associated with a cloud system are typically
geographically distributed, yet connected together with
dedicated high-bandwidth communication links. This helps
reduce the peak power demand of the datacenters on the local
power grid, allows for more fault tolerant and reliable operation
of the IT infrastructure, and even, lowers the cost of ownership.

Energy prices at different sites of a geographically
distributed cloud system can be different due to local time
differences and differences in local utility company’s energy
prices [14]. Geographically distributed datacenters associated
with a cloud system create load balancing opportunities that
can result in lowering the operational cost of each datacenter by
purchasing cheaper electrical energy (considering dynamic
energy prices at each site depending on the local time) and
increasing the utilization of the renewable power generated in
datacenters.

Geographical load balancing and scheduling (GLBS) for
batch jobs can be defined as series of decisions about
assignment of tasks (smaller components of jobs) to
geographically distributed datacenters and scheduling the tasks
with the goal of decreasing the operational cost of the cloud
system while meeting the task dependencies and job deadlines.

Effectiveness of the geographical load balancing is shown
in previous work in case of batch job load balancing and
scheduling and online application load balancing.

Some of the prior work has focused on reducing the
operational cost of the cloud system considering the online
application load balancing opportunity – see [15, 16, 17, 18,
19, 20]. For instance, reference [19] proposes dynamic
algorithms for load balancing of online applications in
heterogeneous distributed datacenters.

There are some work that has focused on batch job load
balancing and scheduling – see [21, 22]. Reference [21] solves
the GLB problem considering online service and batch
applications and cooling supply selection in datacenters. To
model the batch jobs, the authors consider a constant maximum
parallelization factor for each job but ignore the task

dependency graph. Reference [22] focuses on computation
deferral to minimize the energy cost in datacenters. In this
reference, authors simplify the scheduling problem by
dividing the gap between start time and deadline of the job by
the depth of the job’s task graph and assigning each part to
one task.

In this work, we focus on geographical load balancing and
scheduling of large-scale computation jobs such as scientific
computing and data mining. To the best of our knowledge,
this is the first work that considers simultaneous batch job
load balancing and scheduling considering a task dependency
graph for each job.

In this work, we focus on the GLBS problem considering
heterogeneous datacenters and jobs with heterogeneous task
dependency graph and task specifications. The capacity of
different resource types, peak power capacity, and power usage
effectiveness are considered in modeling each datacenter. The
GLBS problem is formulated and a static solution based on the
force-directed scheduling approach [23] is proposed. This
solution simultaneously determines the scheduling and
placement solution for every task. Moreover, a dynamic
solution is proposed by extending the static solution
considering the prediction error for input parameters. The
effectiveness of the proposed algorithms in reducing the
operational cost of the cloud system is demonstrated by
comparing the results of the proposed algorithms with the
results of a greedy load balancing and scheduling method from
prior work. The proposed solution results in significant
operational cost reduction (up to 46%) with respect to the
greedy approach.

This paper is organized as follows. Parameter definitions
are given in section II. The problem formulation is presented in
section III. The proposed static solution is presented in
section IV. The dynamic solution is presented in section V.
Simulation results are presented in section VI and paper is
concluded at section VII.

II. PARAMETER DEFINITION AND PROBLEM FORMULATION

Workload in datacenters can be classified into two
categories: i. online or interactive service applications, e.g. web
services and ii. offline or batch jobs, e.g. scientific computation
and data mining. Online service applications are usually I/O-
intensive and response time-sensitive. Due to sensitivity of
these applications to response time, their requests are processed
as soon as possible. Moreover, to reduce the impact of the
communication latency on the response time, these applications
are typically assigned to the nearest datacenter with available
resources. In contrast, offline applications (batch jobs) are
compute or memory-intensive applications. The run-time of
batch jobs can be in the order of hours. Batch jobs are usually
flexible in time and location of the execution. This fact creates
an opportunity for demand response within each datacenter and
between geographically distributed datacenters. In this work,
we focus on scheduling batch jobs in geographically distributed
datacenters and consider the workload of the online
applications as the background workload.

An exemplary figure for a geographically distributed
datacenter is shown in Figure 1.

Time axis in the GLBS problem is divided into time slots
called epochs. Each epoch is identified by a unique id, denoted

by ߬ ߠ . denotes the duration of each epoch, which is in the
order of a few minutes to as much as one hour.

The solution to the GLBS problem involves information
about (or prediction of) the dynamic energy prices, renewable
power generation and online application workload. The quality
of these predictions determines the quality of the load
balancing and scheduling solution. In the static version of the
problem, we consider prediction of these parameters in a long
period of time in order to determine a complete batch job
placement and scheduling for that period e.g., a full day. ࣮
denotes the set of consecutive epochs that we consider for the
static version of the GLBS. In contrast, the dynamic version of
the problem deals with placement and scheduling of the tasks at
the beginning of each epoch based on the inexact prediction
about the future parameters.

A time-of-use (TOU) dependent energy pricing scheme is
considered for each utility company. The energy price is
assumed to be fixed for at least one epoch. Ψௗሺ߬ሻ denotes the
energy price in datacenter d during epoch ߬. TOU-dependent
energy pricing scheme (in contrast to peak-power dependent
energy pricing) enables one to ignore the time variation of
renewable power generated in local renewable power facilities
during an epoch and model the amount of generated renewable
power by the average generated power in that epoch, which is
denoted by ܩௗሺ߬ሻ. The allowed peak power consumption of a
datacenter is determined by the power delivery network in the
datacenter and is denoted by ܲௗ,௠௔௫. To translate the average
power consumption to peak power consumption, peak to
average power ratio (ௗሺ߬ሻܴܣܲ) is used. This parameter
depends on the resource capacity of the datacenter and the type
of the workload assigned to the datacenter.

The PUE factor of a datacenter, which is defined as the
ratio between total power consumption of the datacenter to the
power consumed by the IT equipment in the datacenter, is
captured by a constant factor (ܷܲܧௗ), which accounts for the
uninterrupted power supply inefficiencies within the datacenter
and the power consumption of the air conditioning units in the
datacenter.

We consider only the processing capacity as the resource in
each datacenter (consideration of other resource types such as
the storage or network bandwidth falls outside the scope of
present paper). To model each datacenter more accurately, we
consider datacenters with heterogeneous servers. Each server
type is identified by a unique id ݏ in each datacenter and the set
of server types in each datacenter is shown by ܵௗ. ܥௗ,௦ denotes
the number of servers of type ݏ in datacenter ݀ . Different

Figure 1 – An exemplary figure for a geographically distributed cloud system

server types have different characteristics in terms of their
processing speed (CPU cycles per second) and power
consumption. Operation frequency (݂) of a server from server
type ݏ can be selected from a finite set of frequency ܨ௦. The
background workload in each datacenter and server type is
captured by the computation capacity needs for the online
applications in time ߬, which is denoted by parameter ߶෠ௗ,௦,௙ሺ߬ሻ.

Due to non-energy proportional behavior of the servers
[24], it is important to translate the amount of resources
required in the server pool to the number of active servers. To
capture the packing effect, we assume that any active server of
type s, is utilized by an average value (smaller than one, e.g.,
0.8) denoted by ߶ത௦ . The rationale is that considering any
resource requirement value, server-level power management
strategies including server consolidation or dynamic voltage
and frequency scaling methods are employed in the datacenter
ensuring that an active server is utilized at a high level so that
we avoid having to pay the penalty associated with the non-
energy proportionality behavior of the servers. This average
utilization level for different server types may not be the same
because the characteristics and configuration of each server
type in terms of its power consumption vs. utilization level
curve as well as the amount of memory, local disk size,
network interface bandwidth are generally different.

The average power consumption of each of these resource
types in datacenter can be found by multiplying the average
power consumption of a typically utilized server of given type
(߶ത௦ ௦ܲ

௙ ൅ ௦ܲ
଴) by the number of servers in that frequency needed

to support the workload in the datacenter. In this formula, ௦ܲ
଴

and ௦ܲ
௙ denote the idle and frequency and utilization-dependent

power consumption of a server of type 	s . Even though the
number of instructions per second executed in a server is
linearly related to the server frequency, dependency of ௦ܲ

௙ to
frequency is non-linear (between ݂ଶ and ݂ଷ); e.g., see reference
[25] for more details.

Each batch job is identified by a unique id, denoted by j.
Each batch job has an earliest start time (ݏ௝) and latest end time
or deadline (௝݁). Each job can be decomposed to smaller
computational tasks denoted by t . We consider this
decomposition to be fixed and well-characterized before the
scheduling problem. The complete set of tasks for each job is
denoted by ௝ܶ . Data and control signal dependency between
tasks in a job can be captured by a Directed Acyclic Graph
(DAG). We consider the same data and control dependency
between tasks in each DAG. An exemplary DAG for a map
reduce job is shown in Figure 2.

Figure 2 – An exemplary figure for a map-reduce task graph

Each task can be defined by the parent task set (௝ܲ,௧),
amount of produced data by processing (ݐܽ݀ ௝ܽ,௧

௢௨௧) and

execution latency (௝݈,௧
௦,௙) depending on the server type and

operation frequency. Moreover, child task set (ܥ௝,௧) can be
defined as the set of tasks which have task ݐ as one of their
parents. Note that due to long execution latency for each task,
we do not consider the effect of data transfer latency, but in
order to consider the overhead of transferring data from one
geographical location to another, we consider a data transfer
cost in the cost function.

The scheduling parameter ௝݁,௧ denotes the end time of task ݐ
from job ݆. The precision of ௝݁,௧ is one epoch. To be able to
schedule a task to be completed by the end of an epoch, tasks in
parent task set need to be scheduled in the previous epochs or
in the same epoch with the condition that the remaining time in
the epoch from the end of the last parent task to be executed
should be greater or equal to the latency of the child task in the
selected server and frequency. Selected datacenter, server and
frequency for each task is determined by resource allocation
parameter ߶௝,௧

ௗ,௦,௙ሺ߬ሻ. For each task in a job, this parameter is

only non-zero for one combination of ሺ݀, ,ݏ ݂ሻ when ߬ ൌ ௝݁,௧.
We consider the input parameters to be fixed during an

epoch. Making this assumption means that the frequency of
drastic changes in the system is considered to be greater than
the frequency of applying the optimization solution.

III. GLBS PROBLEM FORMULATION

The role of the load balancing and scheduling is to
determine the placement (datacenter, server type and frequency)
and scheduling for each task to minimize the operational cost in
distributed datacenters subject to the resource availability in
each datacenter, task dependency and job deadline constraints.

The geographical load balancing and scheduling problem
for batch jobs can be formulated as follows:

෍Ψௗሺ߬ሻ൫ܲௗሺ߬ሻߠ෍		݊݅ܯ െ ௗሺ߬ሻ൯ܩ
ା

ௗ∈஽ఛ∈࣮

൅ ࣝ෍෍ ௝,௧ݖ
௢௨௧݀ܽݐ ௝ܽ,௧

௢௨௧

௧∈்ೕ௝

subject to:

ܲௗሺ߬ሻ ൌ ௗܧܷܲ ∑ ∑ ൬൫߶ത௦ ௦ܲ
௙ ൅ ௦ܲ

଴൯ሺ߶෠ௗ,௦,௙ሺ߬ሻ ൅௙∈ிೞ௦∈ௌ೏

∑ ∑ ߶௝,௧
ௗ,௦,௙ሺ߬ሻ௧∈்ೕ௝ ሻ/߶ത௦൰

(1)

௝ݏ ൑ ௝݁,௧ ൑ ௝݁ ∀ݐ ∈ ௝ܶ (2)

௝݁,௧ ൒ ௝݁,௧ᇲ ∀ݐ
ᇱ ∈ ௝ܲ,௧ (3)

௝,௧ܮ ൌ ∑ ሺ߶௝,௧݊݃݅ݏ
ௗ,௦,௙ሺ ௝݁,௧ሻሻ ௝݈,௧

௦,௙
ሺௗ,௦,௙ሻ (4)

∑ ௝,௧ሺ௧∈௣௔௧௛ܮ & ௘ೕ,೟ୀఛሻ ൑ ݄ݐܽ݌∀ and ߬∀ ߠ ⊂ ௝ܶ (5)

௝,௧ݕ
ௗ ൌ ∑ ൫߶௝,௧݊݃݅ݏ

ௗ,௦,௙ሺ ௝݁,௧ሻ൯ሺ௦,௙ሻ (6)

∑ ௝,௧ݕ
ௗ

ௗ ൌ 1 (7)

௝,௧ݖ
௢௨௧ ൌ ቊ

0 ௝݁,௧ᇲ െ ௝݁,௧ ൑ 1 & ௝,௧ݕ
ௗ ൌ ௝,௧ᇲݕ

ௗ 			 ᇱݐ∀ ∈ ௝,௧ܥ
1 ൅ หܥ௝,௧ห 																											 ݁ݏ݅ݓݎ݄݁ݐ݋

 (8)

∑ ሺ߶෠ௗ,௦,௙ሺ߬ሻ ൅ ∑ ∑ ߶௝,௧
ௗ,௦,௙ሺ߬ሻ௧∈்ೕ௝ ሻ௙∈ிೞ ൑ ,ௗ,௦ ∀ሺ݀ܥ ,ݏ ߬ሻ (9)

ܲௗሺ߬ሻܴܲܣௗሺ߬ሻ ൑ ܲௗ,௠௔௫ ∀ሺ݀, ߬ሻ (10)
The input parameters in this problem are online application

workload in each epoch, energy price and generated power in

renewable power plant for each datacenter. The optimization
parameters in this problem include scheduling (௝݁,௧) and

allocation (߶௝,௧
ௗ,௦,௙ሺ߬ሻ) parameters for each task in each batch

job. Other parameters can be derived from these two
parameters. There are two terms in the objective function: (i)
Energy cost paid to the utility companies, (ii) Communication
cost. The communication cost can be seen as the energy of
storing and retrieving the data or the data transfer charge of the
storage cloud used to keep the data. Parameter ࣝ denotes the
communication cost per unit of data transfer.

Constraint (1) determines the average power consumption
in each datacenter in each epoch. Constraint (2) determines the
earliest start time and latest finish time of each job. Constraint
(3) determines the data and control flow in each job DAG.
Constraint (4) determines the latency of each task based on the
type and amount of resource allocated to it. Constraint (5)
makes sure that the latency of the task(s) assigned to one epoch
belonging to a path is less than the length of the epoch. A path
is defined as a subset of ௝ܶ in which every node except one
(starting node) has only one of its parent nodes available in the
set. Constraint (6) determines the pseudo-Boolean placement
parameter ݕ௝,௧

ௗ which determines the task to datacenter
assignment (if task ݐ is assigned to datacenter ݀, ݕ௝,௧

ௗ is equal to
one, otherwise zero). Constraint (7) makes sure that the task is
only assigned to one datacenter and resource type in its
execution time. Constraint (8) determines whether the produced
data from executing task ݐ needs to be stored in the storage part
of the cloud system and retrieved by the child tasks or not.
Constraint (9) and (10) determines the resource capacity and
peak power capacity in each datacenter.

The GLBS problem for batch jobs is an NP-hard problem.
The work focused on load balancing and scheduling of the
batch jobs [21, 22] ignored the task dependency graph to
simplify the proposed solutions.

In static version of the GLBS problem, a complete
placement and scheduling solutions for tasks belonging to the
job set is determined. In dynamic cloud management scenario,
considering highly accurate prediction of workload, energy
price and renewable energy generation for a long period of time
is not realistic. The dynamic version of the problem deals with
placement and scheduling of the tasks at the beginning of each
epoch. In this version of the problem, the input parameters for
the current epoch is considered to be accurate but inexact
prediction of the parameters for the future epochs is used in
order to decide about placement and scheduling solution for the
current epoch. A solution for static GLBS problem is presented
in section IV. This solution is extended to a dynamic cloud
management solution in section V.

IV. STATIC SOLUTION

The most important challenge in minimizing the operational
cost in the GLBS problem is to consider the concurrency
between different jobs. For example, if we do not consider the
concurrency between jobs, resource and peak power pressure in
datacenters may force some critical tasks (in terms of deadline)
to be scheduled at datacenters and times with high energy price
even with the possibility of deferring non-critical tasks. So the
proposed solution for the GLBS problem needs to consider the
concurrency between tasks from different jobs in order to

decide which tasks to schedule and which ones to defer to
reach the lowest operational cost.

We propose Force-Directed Load Balancing and
Scheduling (FLBS) algorithm which determines task
scheduling and placement solution based on the Force-Directed
Scheduling (FDS) approach [23]. FDS is one of the significant
scheduling techniques in high-level synthesis. It is a technique
used to schedule directed acyclic task graphs so as to minimize
the resource usage under a latency constraint. This technique
maps the scheduling problem to the problem of minimizing
forces in a physical system which is subsequently solved by
iteratively reducing the total force by task movements between
time slots. In reference [3], this technique has been applied to
the household task scheduling in demand response problem.

Possible execution times of a task can be determined by As
Soon As Possible (ASAP) and As Late As Possible (ALAP)
schedules of the DAG. As the names indicate, ASAP and
ALAP schedules are the task schedules without any gap
starting at ݏ௝ or ending at ௝݁, respectively. For these schedules,

minimum ௝݈,௧
௦,௙ value for each task is considered as the latency of

executing the task. Each task can only be executed from its
ASAP schedule time to its ALAP schedule time. Figure 3
shows an example of the ASAP and ALAP schedules for
Figure 2 DAG in which ௝݁ െ ௝ݏ ൌ 3 and minimum ௝݈,௧

௦,௙ is equal
to ߠ for every task.

Figure 3 – ASAP and ALAP schedules for Figure 2 DAG with ௝݁ െ ௝ݏ ൌ 3

In order to solve the GLBS problem using FDS technique,
|࣮| instances of each datacenter (one for each epoch) and an
instance of each task is created. Force in this system is defined
between each task and datacenter instance that the task is
assigned to and the parent and child tasks (if they exist). Each
task needs to be assigned to one of the datacenter instances
between ASAP and ALAP schedule of the task. These
assignments are made in order to satisfy scheduling constraints
for each job (constraint (2) to (5)).

In this setting, assigning a task to a datacenter instance
creates a force with three terms. These terms represent the
objective function and capacity constraints in the GLBS
problem. The first term of the force represents the energy cost
of the assignment. The second term of the force is between the
task and dependent (child and parent) tasks and represents the
communication cost between the tasks. The third term of the
force represents the resource pressure in the assigned server
type and power pressure in the assigned datacenter instance.
This force term is captured by multiplying the allocated
resource amount and power consumption of that assignment by
negative exponential functions (݁ି௫) of the remaining resource
capacity in the selected server type and remaining peak power
capacity in the assigned datacenter instance. Considering these

forces, minimizing the total force in FLBS setting is equivalent
to minimizing the objective function of the GLBS problem
subject to satisfying the resource and scheduling constraints.

Starting from any feasible solution, we can identify the
legal task instance movements (from an epoch and server type
in a datacenter to another epoch and server type in a datacenter
without violating the scheduling constraints) that results in
reducing the force and execute them to reach a lower
operational cost. The order to perform these movements affects
the final results because changing a task assignment may
change the forces applied to other task instances.

The initial solution has a significant impact on the quality
of the final solution in the FLBS setting. To be able to perform
gradual task movements to reduce the total force, we consider
an initial solution in which, each task instance is cloned and
uniformly distributed between possible resource types in
different datacenters related to the possible execution times. To
avoid multiple instances of a task on one resource type in a
datacenter, the highest frequency for each server type is
selected for the initial solution. Let ௝ܰ,௧ denote the number of
instances associated with task ݐ , the amount of resource
allocated to each instance is equal to the amount of resource
allocated to the original task divided by ௝ܰ,௧ . Moreover, the
second term of the force related to the communication cost can
be replaced by the communication cost between two tasks
multiplied by the size of both instances. Figure 4 shows an
example of the initial solution for Figure 2 DAG in two
datacenters and one server type setting in which ݏ௝ ൌ 0 and

௝݁ ൌ 3. In this figure, we assumed that ௝݈,௧ ൌ for every task. It ߠ
can be seen that ௝ܰ,௧ for each task in this setting is equal to 4.

Figure 4 – FLBS initial solution for Figure 2 DAG in a two datacenter and
four epoch setting in which ݏ௝ ൌ 0 and ௝݁ ൌ 3.

Starting from the initial solution, instances associated with
each task needs to be merged to reduce the number of instances
related to each task to one (௝ܰ,௧ ൌ 1). Merging task instances
changes the force in the datacenter instances hosting the task
instances and may change the placement (scheduling) of the
instances related to the dependent tasks (parent and child tasks)
due to scheduling constraints. For example in Figure 4, if all
instances for task 1 is merged to datacenter 0 in epoch 1, task
instances related to task 5 and 7 must be merged at datacenter
instances in epoch 2 and 3, respectively. Based on the FDS
terms, the force change (future force minus current force)
generated from dependent task instance movements is called
dependent-force and the force change directly related to the
task movement is called self-force. Task instance merging
force (change) is defined as the summation of self-force and
dependent-force. Given any task, the task instance merging
with minimum force is executed to reduce the total force in the
system. Moreover, to determine the order of task instance

merging execution, tasks are sorted (non-decreasing) based on
their minimum task instance merging force.

Task instance merging is performed in multiple stages in
order to decrease the complexity of selecting the new host for
task instances and avoid drastic changes in the assignment
solution. For this reason, first the number of task instances in
each epoch is gradually reduced to one (only self-force) and
then number of epochs for each task is reduced one by one
(self-force plus dependent-force). At the end of the second
stage, the schedule of each task is determined. The pseudo-
code for task instance merging having at most one task instance
per epoch per task is shown in Algorithm 1. In this pseudo-
code, ܨఛே denotes the force related to task instance in epoch ߬
having ௝ܰ,௧ ൌ ܰ.

Algorithm 1: FLBS algorithm for task instance merging

Inputs: Task instances placed on datacenter and server types (at most one
task instance per epoch per task)
Outputs: One instance for each task to determine scheduling solution

1 Foreach (Job ݆)
௝ܨ 2

௠௜௡ ൌ ௝ܨ process of updating// ݕݐ݂݅݊݅݊݅
௠௜௡ starts here

3 Foreach (ݐ ∈ ௝ܶ)
4 Let ߬௦ and ߬௘ denote first and last epoch with instances of task ݐ
5 ܰ ൌ ߬௘ െ ߬௦ ൅ 1 //number of task instances
6 If (ܰ ൌൌ 1) Continue
௧ܨ 7

௥,௦௘௟௙ ൌ ∑ ఛேିଵܨ
ఛ೐
ఛೞାଵ

െ ∑ ఛேܨ
ఛ೐
ఛೞ //Self-force shift to right

௧ܨ 8
௥,ௗ௘௣ ൌ ∑ ሺܨ௧ᇲ

௥,௦௘௟௙ ൅ ௧ᇲܨ
௥,ௗ௘௣ሻ௧ᇲ∈஼ೕ,೟ //dependent-force shift to right

௧௥ܨ 9 ൌ ௧ܨ
௥,௦௘௟௙ ൅ ௧ܨ

௥,ௗ௘௣

௧ܨ 10
௟,௦௘௟௙ ൌ ∑ ఛேିଵܨ

ఛ೐ିଵ
ఛೞ െ ∑ ఛேܨ

ఛ೐
ఛೞ //Self-force shift to left

௧ܨ 11
௟,ௗ௘௣ ൌ ∑ ሺܨ௧ᇲ

௟,௦௘௟௙ ൅ ௧ᇲܨ
௟,ௗ௘௣ሻ௧ᇲ∈௉ೕ,೟ // dependent-force shift to left

௧ܨ 12
௟ ൌ ௧ܨ

௟,௦௘௟௙ ൅ ௧ܨ
௟,ௗ௘௣

௝ܨ 13
௠௜௡ ൌ min	ሺܨ௝

௠௜௡, ,௧௥ܨ ௧ܨ
௟ሻ

14 End
15 End
16 Sort jobs based on ܨ௝

௠௜௡ (non-decreasing)
17 While (max number of instance per task>1)
18 Select the job ݆ with minimum ܨ௝

௠௜௡
19 Select the task ݐ from job ݆ with minimum task instance merging force
20 Perform task instance merging (right or left)
21 Perform dependent task movements
22 Update resource utilization
23 Update ܨ௝

௠௜௡
24 Update forces for affected tasks //can be performed less-frequently
25 End

After fixing the schedule for each task, each task instance is
cloned to possible server types and datacenters in the selected
execution epoch and gradual instance merging is performed
again to determine the final placement for each task. After
finalizing the task scheduling and placement solution, based on
the scheduling solution (multiple dependent tasks in one epoch
or not) and power consumption vs. latency tradeoff in each
server type, the frequency of the resource assigned to each task
is determined.

In case of resource or peak power capacity constraint
violation in datacenters, the task instance movement is
continued until a feasible solution is reached. In addition to this
stage, even without any resource constraint violations, the task
movement can be continued to further reduce the total cost with
the restriction that no task movement that results in any
constraint violations should be tried.

V. DYNAMIC SOLUTION

The static solution to GLBS problem determines the task
placement and scheduling solution for a big set of batch jobs in
a long period of time, e.g. one day. This solution is based on
the prediction of online application workload in each
datacenter, energy price and green power generation in each
epoch. These predictions are not 100% accurate. So, the static
solution to GLBS problem is not the best way of dealing with a
dynamic system.

The implemented static solution has short run-time (in the
order of a few minutes) with respect to practical duration of an
epoch. Based on this observation, we propose a dynamic
solution based on iteratively applying the static solution in the
beginning of each epoch and scheduling the tasks in the first
epoch and ignoring the placement and scheduling solution for
the next epochs.

This approach is reasonable considering highly-accurate
prediction of parameters in near-future which results in small
probability of changes in task scheduling in current epoch.
Moreover, due to less-accurate prediction of parameters in
distant-future, it is not reasonable to apply the decision made in
the current epoch to the distant-future epochs.

VI. SIMULATION RESULTS

To show the effectiveness of the proposed solutions for the
GLBS problem, a simulation framework is implemented.

In this simulation framework, we considered a US-based
cloud system that has five datacenters in California, Texas,
Michigan, New York, and Florida. An arbitrary ܷܲܧ factor
between 1.1 and 1.3 is considered for each datacenter. Size of
these datacenters ranges from 4,000 to 1,600 servers belonging
to four different server types, selected from HP server types.
Duration of epoch is set to one hour. The average utilization of
servers is assumed to be 70%. A limited frequency set for each
server type is considered and ௦ܲ

௙ in each server type is
considered to be proportional to ݂ଶ.ସ [25]. Peak power capacity
for each datacenter is set to 80% of the peak power
consumption of the deployed servers. Based on the weather
patterns, each datacenter has a combination of solar and wind
power plant with power generation capacity of up to 20% of its
peak power consumption. The renewable power generation
changes during the day based on type of the power plant.

The average energy price in one day for each datacenter is
set based on the reported average energy price [14] in
datacenter’s location. Dynamic energy price for each one of the
datacenters is assumed to follow the dynamic energy pricing
pattern in reference [26] related to 5/23/2013 with appropriate
time shift and average energy price. Figure 5 shows the energy
price pattern for the California datacenter with average energy
price of 15.2 ¢ per KWhr.

Figure 5 – Energy price in California datacenter (time in PST)

We consider 24-hour long decision making in static GLBS
problem. Based on population distribution in US, 100K online
applications are created in different time horizons and
geographical locations. Application workload is changed
according to the local time of its origination point. The
application lifetime is set arbitrarily based on uniform
distribution between one and 16 hours. The online application
workload intensity, which is obtained by summing the resource
requirement for the active online applications, is reported in
Figure 6. Each online application is assigned to the nearest
datacenters to its origination point. Moreover, online
application workload is fairly distributed between server types
in each datacenter considering the CPU cycles as the weight of
each server type.

Figure 6 – The intensity of the online application workload as a function of
time of the day

Batch jobs with different DAG and task characteristics are
created to evaluate the proposed solutions. Depth of the created
DAG for each job is between 3 and 5 and each DAG has 6 to
10 tasks. For each task, CPU cycle requirement and
parallelization factor is generated arbitrarily. Moreover, an
arbitrary ((0,1]) compatibility factor is generated for each task
and server type. ௝݈,௧

௦,௙ is linearly proportional to CPU cycles and
inversely proportional to compatibility factor, frequency and
parallelization factor. Compatibility factor, CPU cycles and
parallelization factor for each task is selected based on a rule
that the latency of completing the task in at least one of the
server types should be less than ߠ. The amount of produced
data for each task is also generated arbitrarily between 0 and
1GB. Communication cost parameter is set to 2¢ per GB data
transfer based on Amazon EC2 pricing for data transfer
between Amazon EC2 or S3 sites [27]. Start time for each batch
job is selected arbitrarily between the first epoch and the last
epoch minus the depth of the selected DAG for the job. End
time is also arbitrarily selected between start time plus the
depth of the selected DAG and the last epoch.

Figure 7 – The average workload intensity of the batch jobs as a function
of time of the day

Different number of batch jobs is created for different parts
of the simulation. To illustrate the workload intensity of
generated batch jobs in this simulation setup, average resource
requirement of 10K batch jobs as a function of time is shown in
Figure 7. The average resource requirement for each batch job

0

5

10

15

20

25

E
ne

rg
y

pr
ic

e
(¢

 p
er

 K
W

hr
)

Time

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T
ot

al
 r

es
ou

rc
e

re
q

ui
re

m
en

t
(#

 o
f

se
rv

er
s)

Time (EST)

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
ve

ra
ge

 b
at

ch
 j

ob
 w

or
kl

oa
d

(#
 o

f
se

rv
er

s)

Time (EST)

in its active epoch (from ݏ௝ to ௝݁) is calculated by dividing the
summation of minimum resource requirement for its tasks by
the number active epoch (௝݁ െ ௝ݏ ൅ 1).

The baseline in our simulation for static solution is a greedy
task placement and scheduling solution. In this solution, batch
jobs are sorted (non-increasing) based on the summation of
minimum resource requirement to perform all of the tasks
belonging to ௝ܶ. Starting from the job with the biggest resource
requirement, the gap between start and end time is distributed
evenly between the tasks and each task is assigned to the best
available server type and datacenter in its scheduling window.
This greedy static solution is also extended to a dynamic
solution using a similar approach to the one presented in
section V. Each comparison between FLBS and baseline
method is the average results of at least ten tries of the same
scenario with different randomly generated setup parameters.

Figure 8 shows the normalized operational cost of applying
FLBS algorithm and baseline method to the static problem with
24 epochs (one day) with different number of batch jobs. Note
that the operational cost is the part of the operational cost of the
cloud system that is related to energy and communication cost
of the batch jobs.

Figure 8 – Normalized operational cost of the system using FLBS and
baseline method in the static setting

As can be seen, the FLBS algorithm performs 8% to 46%
better than the baseline algorithm which greedily optimizes the
task placement solution. The baseline method results improve
by increasing the number of batch jobs due to exhausting the
renewable energy generation and cheaper resources in peak
times. This trend can also be seen in Table I.

TABLE I. ENERGY AND COMMUNICATION COST PER BATCH JOBS (FLBS
RESULTS)

of batch
jobs

Energy cost per batch job
(¢)

Communication cost per
batch job (¢)

10000 35.72 3.50
8000 34.82 3.41
5000 31.75 3.40
4000 30.90 3.26
2000 27.37 2.90
1000 24.82 2.72

As can be seen, by increasing the number of batch jobs, the
effective energy cost per job is increasing due to exhausting the
renewable energy sources and resources in datacenters with
lower energy price. This trend will result in smaller
improvement from FLBS algorithm w.r.t. baseline method
having big number of jobs for a limited time.

The run-time of the static FLBS algorithm on a 2.66GHz
quad-core HP server for 4000 batch jobs is 9.4 minutes on
average. To reduce the run-time of FLBS algorithm, the task
instance movement in each stage can be performed in parallel.

This approach may results in small performance loss due to
not-updating force elements after each task movement.

To more clearly illustrate the effect of resource availability
on the performance of FLBS solution, Figure 9 shows the
operational cost of the system in static setting with 4000 batch
jobs in one day with varying peak renewable power generation
capacity in each datacenter. As can be seen, the FLBS
improvements w.r.t. baseline method increases by increasing
the peak power generation capacity in datacenters’ site.

Figure 9 – Normalized operational cost of the system in the static setting
with different renewable energy generation capacities

To evaluate the proposed algorithm for dynamic task
scheduling and placement in a cloud system, we used the static
setting and added random prediction error to the input
parameters (renewable green power generation, energy price
and online application workload). In each decision epoch, the
predicted input parameters related to future epochs are deviated
from their real values. The average introduced error in future
epoch (ݐ) is between േ

௘

ଵଶ
ሺݐ െ ߬ሻ , where ߬ and ݁ denote the

current epoch and the average prediction error applied to the
input parameters in different epochs, respectively. Using this
model implies that the prediction in near-future is assumed to
be more accurate than the prediction in distant-future.

In addition to applying dynamic FLBS and baseline method
to the problem, we also captured the results of applying the
decisions made in static FLBS solution in the first epoch.
Figure 10 shows the normalized operational cost of the system
by applying dynamic FLBS, baseline and static FLBS
algorithms. Average added prediction error in this scenario is
equal to 10%.

Figure 10 – Normalized operational cost of the system using FLBS and
baseline method in the dynamic setting

 As can be seen, the performance of the dynamic FLBS is
11% to 44% better than the performance of the dynamic
baseline method. Similar to the static case, reduction in
performance gap between dynamic FLBS and baseline methods
can be seen by increasing the number of batch jobs. Moreover,
by increasing the number of batch jobs, the difference between
the results of static and dynamic solution of FLBS algorithm is
decreasing.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1000 2000 4000 5000 8000 10000

N
or

m
al

iz
ed

 o
pe

ra
ti

on
al

 c
os

t

Number of batch jobs

FLBS Baseline

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0% 4% 10% 16% 20%N
or

m
al

iz
ed

 o
p

er
at

io
n

al
 c

os
t

Peak renewable power generation capacity
peak power capacity of datacenter

FLBS Baseline

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1000 2000 4000 5000 8000 10000

N
or

m
al

iz
ed

 o
pe

ra
ti

on
al

 c
os

t

Number of batch jobs

FLBS-Static FLBS-Dynamic Baseline

Figure 11 shows the normalized operational cost of the
system using FLBS and baseline method with different
prediction error having 8000 batch jobs. As expected,
increasing the prediction error increases the gap between the
results of the dynamic FLBS and static FLBS algorithms.
Moreover, the performance gap between the dynamic FLBS
and baseline method does not drastically change by increasing
the prediction error.

Figure 11 – Normalized operational cost of the system using FLBS and
baseline method in the dynamic setting with different prediction error
having 8000 batch jobs

VII. CONCLUSIONS

This work focused on the load balancing and scheduling
problem for batch jobs considering a distributed cloud system
comprised of geographically dispersed, heterogeneous
datacenters. Each batch job was modeled using a directed
acyclic graph of heterogeneous tasks. A solution for load
balancing and scheduling problem based on force-directed
scheduling approach was presented that considers the online
application workload and limited resource and peak power
capacity in each datacenter. The simulation results
demonstrated significant improvement using the proposed
algorithm with respect to a greedy load balancing and
scheduling method from the literature. The effects of resource
availability and input prediction error on the result of the
proposed algorithms were demonstrated.

As expected, the average cost of processing each batch job
is increasing by increasing the number of batch jobs due to
exhausting free (renewable power) and less-costly resources in
datacenters. This results in reduction in the performance gap
between the proposed solution and the greedy one. The
proposed solution also shows resiliency to the introduced
prediction error. Reducing the complexity of the proposed
solution is one of the most important directions of the future
work. Moreover, combining the online application load
scheduling and batch job scheduling and load balancing can be
another future research direction.

References
[1] A. Ipakchi and F. Albuyeh, "Grid of the future," IEEE Power and Energy

Magazine, vol. 7, no. 2, pp. 52-62, 2009.

[2] P. Samadi, H. Mohsenian-Rad, R. Schober, V. Wong and J. Jatskevich,
"Optimal real-time pricing algorithm based on utility maximization for
smart grid," in Smart Grid Communications (SmartGridComm)
Conference, 2010.

[3] H. Goudarzi, S. Hatami and M. Pedram, "Demand-side load scheduling
incentivized by dynamic energy prices," in IEEE International
Conference on Smart Grid Communications, 2011.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinsk, G.
Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, "A view of cloud
computing," Commun ACM, vol. 53, no. 4, pp. 50-58, 2010.

[5] R. Buyya, "Market-oriented cloud computing: Vision, hype, and reality of
delivering computing as the 5th utility," in 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID, 2009.

[6] A. Verrna, P. Ahuja and A. Neogi, "pMapper: Power and migration cost
aware application placement in virtualized systems," in
ACM/IFIP/USENIX 9th International Middleware Conference, 2008.

[7] H. Goudarzi and M. Pedram, "Multi-dimensional SLA-based resource
allocation for multi-tier cloud computing systems," in proceeding of 4th
IEEE conference on cloud computing (CLOUD 2011), 2011.

[8] H. Goudarzi, M. Ghasemazar and M. Pedram, "SLA-based Optimization
of Power and Migration Cost in Cloud Computing," in 12th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing
(CCGrid), 2012.

[9] W.-H. Hsu, C.-F. Wang, K.-L. Ma, H. Vu and J. Chen, "A Job Scheduling
Design for Visualization Services Using GPU Clusters," in IEEE
International Conference on Cluster Computing (CLUSTER), 2012.

[10] J. G. Koomey, "Growth in data center electricity use 2005 to 2010," 2011.

[11] "http://www.google.com/green/energy/," [Online].

[12] R. Miller, "Facebook installs solar panels at new data center,"
DatacenterKnowledge, 16 April 2011. [Online].

[13] C. Wang and M. de Groot, "Demand Response aware cluster resource
provisioning for parallel applications," in IEEE Third International
Conference on Smart Grid Communications (SmartGridComm), 2012.

[14] "Electric Power Monthly," US energy information administration, 2013.

[15] K. Le, R. Bianchini, M. Martonosi and T. D. Nguyen, "Cost and energy-
aware load distribution across data centers," in HotPower’09, Big Sky,
MT, 2009.

[16] L. Rao, X. Liu, L. Xie and W. Liu, "Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity
market environment," in IEEE INFOCOM, 2010.

[17] R. Stanojevic and R. Shorten, "Distributed dynamic speed scaling," in
IEEE INFOCOM, 2010.

[18] Z. Liu, M. Lin, A. Wierman, S. H. Low and L. L. H. Andrew, "Greening
geographical load balancing," in Proc. ACM SIGMETRICS, San Jose, CA,
2011.

[19] M. Lin, Z. Liu, A. Wierman and L. L. Andrew, "Online algorithms for
geographical load balancing," in Proc. Int. Green Computing Conf., San
Jose, CA, 2012.

[20] H. Goudarzi and M. Pedram, "Geographical Load Balancing for Online
Service Applications in Distributed Datacenters," in IEEE international
conference on cloud computing (CLOUD 2013), Santa Clara, 2013.

[21] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang and C. Hyser,
"Renewable and cooling aware workload management for sustainable data
centers," ACM SIGMETRICS Performance Evaluation Review, vol. 40,
no. 1, 2012.

[22] M. A. Adnan, R. Sugihara and R. Gupta, "Energy Efficient Geographical
Load Balancing via Dynamic Deferral of Workload," in proceeding of 5th
IEEE conference on cloud computing (Cloud 2012), Honolulu, HI, 2012.

[23] P. Paulin and J. Knight, "Force-directed scheduling for the behavioral
synthesis of ASICs," IEEE TRansaction on Computer-Aided Design of
Integrated Circuits and Systems, 1989.

[24] L. A. Barroso and U.Hölzle, "The Case for Energy-Proportional
Computing," IEEE Computer, vol. 40, 2007.

[25] M. Ghasemazar, H. Goudarzi and M. Pedram, "Robust Optimization of a
Chip Multiprocessor's Performance under Power and Thermal
Constraints," in International Conference in Computer Design (ICCD),
Montreal, 2012.

[26] "Power Smart Pricing," [Online]. Available:
http://www.powersmartpricing.org/tools/.

[27] "http://aws.amazon.com/ec2/#pricing," [Online].

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5% 10% 20% 30%

N
or

m
al

iz
ed

 o
pe

ra
ti

on
al

 c
os

t

Average prediction error

FLBS-Static FLBS-Dynamic Baseline

