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Abstract — This work focuses on the load balancing 

and scheduling problem for batch jobs considering a cloud 
system comprised of geographically dispersed, 
heterogeneous datacenters. Each batch job is modeled using 
a directed acyclic graph of heterogeneous tasks. Load 
balancing and scheduling of batch jobs with loose deadlines 
results in operational cost reduction in the cloud system due 
to availability of renewable energy sources in datacenters’ 
site and time of use dependent energy pricing in utility 
companies. A solution for load balancing and scheduling 
problem based on the force-directed scheduling approach is 
presented that considers the online application workload 
and limited resource and peak power capacity in each 
datacenter. The simulation results demonstrate significant 
operational cost decrease (up to 40%) using the proposed 
algorithm with respect to a greedy solution.  

I. INTRODUCTION AND RELATED WORK 

Availability of affordable and sustainable electrical energy 
is the key to prosperity and continued socio-economic growth 
of nations and the world. Dynamic energy pricing [1] and 
demand response are the most effective ways to avoid 
expending large amount of capital for the expansion of the 
power generation capacity and distribution network.    

Demand response can be described as the changes in the 
electric power usage in response to changes in energy price 
over the time. Based on dynamic energy pricing, electricity 
consumers are encouraged to consume electricity more 
prudently in order to minimize their electric bill. For this 
reason, the design of scheduling algorithms considering the 
energy price has attracted researchers in recent years, see for 
example [2, 3]. 

Demand for computing power has been increasing due to 
the penetration of information technologies in our daily 
interactions with the world. Datacenters provide the computing 
needs to clients with thousands to tens of thousands of server 
machines, see for example [4] and [5]. Resource management 
and scheduling problems in datacenters and server clusters 
have attracted a lot of attention in recent years, see for example 
[6, 7, 8, 9].  

The energy consumption of datacenters is increasing and 
covers up to 2% of the total electrical energy consumption in 
the US in 2010 [10]. To reduce the reliance on brown sources 
of electricity and supplement/diversify the power generation 
sources for a datacenter, there is a trend to generate electricity 
from renewable sources such as wind and solar at the 

datacenters’ site [11, 12].  
Processing jobs in datacenter can be classified in to two 

categories: online or interactive applications and offline or 
batch jobs. In contrast to online applications which are 
response time sensitive and needs to be processed as soon as 
they arrive, batch jobs are usually schedulable and have loose 
deadline. Scheduling batch jobs in datacenters increases the 
chance of utilizing the power generated in renewable power 
plants and may decrease the electricity cost of the datacenter by 
using cheaper energy. Scheduling batch jobs is an example of 
demand response in datacenters [13]. 

Datacenters associated with a cloud system are typically 
geographically distributed, yet connected together with 
dedicated high-bandwidth communication links. This helps 
reduce the peak power demand of the datacenters on the local 
power grid, allows for more fault tolerant and reliable operation 
of the IT infrastructure, and even, lowers the cost of ownership.  

Energy prices at different sites of a geographically 
distributed cloud system can be different due to local time 
differences and differences in local utility company’s energy 
prices [14]. Geographically distributed datacenters associated 
with a cloud system create load balancing opportunities that 
can result in lowering the operational cost of each datacenter by 
purchasing cheaper electrical energy (considering dynamic 
energy prices at each site depending on the local time) and 
increasing the utilization of the renewable power generated in 
datacenters. 

Geographical load balancing and scheduling (GLBS) for 
batch jobs can be defined as series of decisions about 
assignment of tasks (smaller components of jobs) to 
geographically distributed datacenters and scheduling the tasks 
with the goal of decreasing the operational cost of the cloud 
system while meeting the task dependencies and job deadlines.  

Effectiveness of the geographical load balancing is shown 
in previous work in case of batch job load balancing and 
scheduling and online application load balancing. 

Some of the prior work has focused on reducing the 
operational cost of the cloud system considering the online 
application load balancing opportunity – see [15, 16, 17, 18, 
19, 20]. For instance, reference [19] proposes dynamic 
algorithms for load balancing of online applications in 
heterogeneous distributed datacenters.  

There are some work that has focused on batch job load 
balancing and scheduling – see [21, 22]. Reference [21] solves 
the GLB problem considering online service and batch 
applications and cooling supply selection in datacenters. To 
model the batch jobs, the authors consider a constant maximum 
parallelization factor for each job but ignore the task 



 

 

dependency graph. Reference [22] focuses on computation 
deferral to minimize the energy cost in datacenters. In this 
reference, authors simplify the scheduling problem by 
dividing the gap between start time and deadline of the job by 
the depth of the job’s task graph and assigning each part to 
one task. 

In this work, we focus on geographical load balancing and 
scheduling of large-scale computation jobs such as scientific 
computing and data mining. To the best of our knowledge, 
this is the first work that considers simultaneous batch job 
load balancing and scheduling considering a task dependency 
graph for each job.  

In this work, we focus on the GLBS problem considering 
heterogeneous datacenters and jobs with heterogeneous task 
dependency graph and task specifications. The capacity of 
different resource types, peak power capacity, and power usage 
effectiveness are considered in modeling each datacenter. The 
GLBS problem is formulated and a static solution based on the 
force-directed scheduling approach [23] is proposed. This 
solution simultaneously determines the scheduling and 
placement solution for every task. Moreover, a dynamic 
solution is proposed by extending the static solution 
considering the prediction error for input parameters. The 
effectiveness of the proposed algorithms in reducing the 
operational cost of the cloud system is demonstrated by 
comparing the results of the proposed algorithms with the 
results of a greedy load balancing and scheduling method from 
prior work. The proposed solution results in significant 
operational cost reduction (up to 46%) with respect to the 
greedy approach.  

This paper is organized as follows. Parameter definitions 
are given in section  II. The problem formulation is presented in 
section  III. The proposed static solution is presented in 
section  IV. The dynamic solution is presented in section  V. 
Simulation results are presented in section  VI and paper is 
concluded at section  VII.   

II. PARAMETER DEFINITION AND PROBLEM FORMULATION 

Workload in datacenters can be classified into two 
categories: i. online or interactive service applications, e.g. web 
services and ii. offline or batch jobs, e.g. scientific computation 
and data mining. Online service applications are usually I/O-
intensive and response time-sensitive. Due to sensitivity of 
these applications to response time, their requests are processed 
as soon as possible. Moreover, to reduce the impact of the 
communication latency on the response time, these applications 
are typically assigned to the nearest datacenter with available 
resources. In contrast, offline applications (batch jobs) are 
compute or memory-intensive applications. The run-time of 
batch jobs can be in the order of hours. Batch jobs are usually 
flexible in time and location of the execution. This fact creates 
an opportunity for demand response within each datacenter and 
between geographically distributed datacenters. In this work, 
we focus on scheduling batch jobs in geographically distributed 
datacenters and consider the workload of the online 
applications as the background workload. 

An exemplary figure for a geographically distributed 
datacenter is shown in Figure 1.  

Time axis in the GLBS problem is divided into time slots 
called epochs. Each epoch is identified by a unique id, denoted 

by ߬ ߠ .  denotes the duration of each epoch, which is in the 
order of a few minutes to as much as one hour. 

The solution to the GLBS problem involves information 
about (or prediction of) the dynamic energy prices, renewable 
power generation and online application workload. The quality 
of these predictions determines the quality of the load 
balancing and scheduling solution. In the static version of the 
problem, we consider prediction of these parameters in a long 
period of time in order to determine a complete batch job 
placement and scheduling for that period e.g., a full day. ࣮ 
denotes the set of consecutive epochs that we consider for the 
static version of the GLBS. In contrast, the dynamic version of 
the problem deals with placement and scheduling of the tasks at 
the beginning of each epoch based on the inexact prediction 
about the future parameters.  

A time-of-use (TOU) dependent energy pricing scheme is 
considered for each utility company. The energy price is 
assumed to be fixed for at least one epoch. Ψௗሺ߬ሻ denotes the 
energy price in datacenter d during epoch ߬. TOU-dependent 
energy pricing scheme (in contrast to peak-power dependent 
energy pricing) enables one to ignore the time variation of 
renewable power generated in local renewable power facilities 
during an epoch and model the amount of generated renewable 
power by the average generated power in that epoch, which is 
denoted by ܩௗሺ߬ሻ. The allowed peak power consumption of a 
datacenter is determined by the power delivery network in the 
datacenter and is denoted by ܲௗ,௠௔௫. To translate the average 
power consumption to peak power consumption, peak to 
average power ratio ( ௗሺ߬ሻܴܣܲ ) is used. This parameter 
depends on the resource capacity of the datacenter and the type 
of the workload assigned to the datacenter.  

The PUE factor of a datacenter, which is defined as the 
ratio between total power consumption of the datacenter to the 
power consumed by the IT equipment in the datacenter, is 
captured by a constant factor (ܷܲܧௗ), which accounts for the 
uninterrupted power supply inefficiencies within the datacenter 
and the power consumption of the air conditioning units in the 
datacenter.  

We consider only the processing capacity as the resource in 
each datacenter (consideration of other resource types such as 
the storage or network bandwidth falls outside the scope of 
present paper). To model each datacenter more accurately, we 
consider datacenters with heterogeneous servers. Each server 
type is identified by a unique id ݏ in each datacenter and the set 
of server types in each datacenter is shown by ܵௗ. ܥௗ,௦ denotes 
the number of servers of type ݏ  in datacenter ݀ . Different 

Figure 1 – An exemplary figure for a geographically distributed cloud system 



 

 

server types have different characteristics in terms of their 
processing speed (CPU cycles per second) and power 
consumption. Operation frequency (݂) of a server from server 
type ݏ can be selected from a finite set of frequency ܨ௦. The 
background workload in each datacenter and server type is 
captured by the computation capacity needs for the online 
applications in time ߬, which is denoted by parameter ߶෠ௗ,௦,௙ሺ߬ሻ. 

Due to non-energy proportional behavior of the servers 
[24], it is important to translate the amount of resources 
required in the server pool to the number of active servers. To 
capture the packing effect, we assume that any active server of 
type s, is utilized by an average value (smaller than one, e.g., 
0.8) denoted by ߶ത௦ . The rationale is that considering any 
resource requirement value, server-level power management 
strategies including server consolidation or dynamic voltage 
and frequency scaling methods are employed in the datacenter 
ensuring that an active server is utilized at a high level so that 
we avoid having to pay the penalty associated with the non-
energy proportionality behavior of the servers. This average 
utilization level for different server types may not be the same 
because the characteristics and configuration of each server 
type in terms of its power consumption vs. utilization level 
curve as well as the amount of memory, local disk size, 
network interface bandwidth are generally different.  

The average power consumption of each of these resource 
types in datacenter can be found by multiplying the average 
power consumption of a typically utilized server of given type 
(߶ത௦ ௦ܲ

௙ ൅ ௦ܲ
଴) by the number of servers in that frequency needed 

to support the workload in the datacenter. In this formula,  ௦ܲ
଴ 

and ௦ܲ
௙ denote the idle and frequency and utilization-dependent 

power consumption of a server of type 	s . Even though the 
number of instructions per second executed in a server is 
linearly related to the server frequency, dependency of ௦ܲ

௙  to 
frequency is non-linear (between ݂ଶ and ݂ଷ); e.g., see reference 
[25] for more details. 

Each batch job is identified by a unique id, denoted by j. 
Each batch job has an earliest start time (ݏ௝) and latest end time 
or deadline ( ௝݁ ). Each job can be decomposed to smaller 
computational tasks denoted by t . We consider this 
decomposition to be fixed and well-characterized before the 
scheduling problem. The complete set of tasks for each job is 
denoted by ௝ܶ . Data and control signal dependency between 
tasks in a job can be captured by a Directed Acyclic Graph 
(DAG). We consider the same data and control dependency 
between tasks in each DAG. An exemplary DAG for a map 
reduce job is shown in Figure 2. 

Figure 2 – An exemplary figure for a map-reduce task graph 

Each task can be defined by the parent task set ( ௝ܲ,௧ ), 
amount of produced data by processing ( ݐܽ݀ ௝ܽ,௧

௢௨௧ ) and 

execution latency ( ௝݈,௧
௦,௙ ) depending on the server type and 

operation frequency. Moreover, child task set (ܥ௝,௧ ) can be 
defined as the set of tasks which have task ݐ as one of their 
parents. Note that due to long execution latency for each task, 
we do not consider the effect of data transfer latency, but in 
order to consider the overhead of transferring data from one 
geographical location to another, we consider a data transfer 
cost in the cost function.  

The scheduling parameter ௝݁,௧ denotes the end time of task ݐ 
from job ݆. The precision of ௝݁,௧  is one epoch. To be able to 
schedule a task to be completed by the end of an epoch, tasks in 
parent task set need to be scheduled in the previous epochs or 
in the same epoch with the condition that the remaining time in 
the epoch from the end of the last parent task to be executed 
should be greater or equal to the latency of the child task in the 
selected server and frequency. Selected datacenter, server and 
frequency for each task is determined by resource allocation 
parameter ߶௝,௧

ௗ,௦,௙ሺ߬ሻ. For each task in a job, this parameter is 

only non-zero for one combination of ሺ݀, ,ݏ ݂ሻ when ߬ ൌ ௝݁,௧. 
We consider the input parameters to be fixed during an 

epoch. Making this assumption means that the frequency of 
drastic changes in the system is considered to be greater than 
the frequency of applying the optimization solution.  

III. GLBS PROBLEM FORMULATION 

The role of the load balancing and scheduling is to 
determine the placement (datacenter, server type and frequency) 
and scheduling for each task to minimize the operational cost in 
distributed datacenters subject to the resource availability in 
each datacenter, task dependency and job deadline constraints.  

The geographical load balancing and scheduling problem 
for batch jobs can be formulated as follows:  

෍Ψௗሺ߬ሻ൫ܲௗሺ߬ሻߠ෍		݊݅ܯ െ ௗሺ߬ሻ൯ܩ
ା

ௗ∈஽ఛ∈࣮

൅ ࣝ෍෍ ௝,௧ݖ
௢௨௧݀ܽݐ ௝ܽ,௧

௢௨௧

௧∈்ೕ௝

 

subject to: 

ܲௗሺ߬ሻ ൌ ௗܧܷܲ ∑ ∑ ൬൫߶ത௦ ௦ܲ
௙ ൅ ௦ܲ

଴൯ሺ߶෠ௗ,௦,௙ሺ߬ሻ ൅௙∈ிೞ௦∈ௌ೏

∑ ∑ ߶௝,௧
ௗ,௦,௙ሺ߬ሻ௧∈்ೕ௝ ሻ/߶ത௦൰  

(1) 

௝ݏ ൑ ௝݁,௧ ൑ ௝݁         ∀ݐ ∈ ௝ܶ (2) 

௝݁,௧ ൒ ௝݁,௧ᇲ              ∀ݐ
ᇱ ∈ ௝ܲ,௧  (3) 

௝,௧ܮ ൌ ∑ ሺ߶௝,௧݊݃݅ݏ
ௗ,௦,௙ሺ ௝݁,௧ሻሻ ௝݈,௧

௦,௙
ሺௗ,௦,௙ሻ   (4) 

∑ ௝,௧ሺ௧∈௣௔௧௛ܮ & ௘ೕ,೟ୀఛሻ ൑ ݄ݐܽ݌∀ and ߬∀        ߠ ⊂ ௝ܶ (5) 

௝,௧ݕ
ௗ ൌ ∑ ൫߶௝,௧݊݃݅ݏ

ௗ,௦,௙ሺ ௝݁,௧ሻ൯ሺ௦,௙ሻ   (6) 

∑ ௝,௧ݕ
ௗ

ௗ ൌ 1  (7) 

௝,௧ݖ
௢௨௧ ൌ ቊ

0 ௝݁,௧ᇲ െ ௝݁,௧ ൑ 1 & ௝,௧ݕ
ௗ ൌ ௝,௧ᇲݕ

ௗ 			 ᇱݐ∀ ∈ ௝,௧ܥ
1 ൅ หܥ௝,௧ห 																											 ݁ݏ݅ݓݎ݄݁ݐ݋

 (8) 

∑ ሺ߶෠ௗ,௦,௙ሺ߬ሻ ൅ ∑ ∑ ߶௝,௧
ௗ,௦,௙ሺ߬ሻ௧∈்ೕ௝ ሻ௙∈ிೞ ൑ ,ௗ,௦   ∀ሺ݀ܥ ,ݏ ߬ሻ (9) 

ܲௗሺ߬ሻܴܲܣௗሺ߬ሻ ൑ ܲௗ,௠௔௫   ∀ሺ݀, ߬ሻ (10) 
The input parameters in this problem are online application 

workload in each epoch, energy price and generated power in 



 

 

renewable power plant for each datacenter. The optimization 
parameters in this problem include scheduling ( ௝݁,௧ ) and 

allocation (߶௝,௧
ௗ,௦,௙ሺ߬ሻ) parameters for each task in each batch 

job. Other parameters can be derived from these two 
parameters. There are two terms in the objective function: (i) 
Energy cost paid to the utility companies, (ii) Communication 
cost. The communication cost can be seen as the energy of 
storing and retrieving the data or the data transfer charge of the 
storage cloud used to keep the data. Parameter ࣝ denotes the 
communication cost per unit of data transfer.  

Constraint (1) determines the average power consumption 
in each datacenter in each epoch. Constraint (2) determines the 
earliest start time and latest finish time of each job. Constraint 
(3) determines the data and control flow in each job DAG. 
Constraint (4) determines the latency of each task based on the 
type and amount of resource allocated to it. Constraint (5) 
makes sure that the latency of the task(s) assigned to one epoch 
belonging to a path is less than the length of the epoch. A path 
is defined as a subset of ௝ܶ  in which every node except one 
(starting node) has only one of its parent nodes available in the 
set. Constraint (6) determines the pseudo-Boolean placement 
parameter ݕ௝,௧

ௗ  which determines the task to datacenter 
assignment (if task ݐ is assigned to datacenter ݀, ݕ௝,௧

ௗ  is equal to 
one, otherwise zero). Constraint (7) makes sure that the task is 
only assigned to one datacenter and resource type in its 
execution time. Constraint (8) determines whether the produced 
data from executing task ݐ needs to be stored in the storage part 
of the cloud system and retrieved by the child tasks or not. 
Constraint (9) and (10) determines the resource capacity and 
peak power capacity in each datacenter. 

The GLBS problem for batch jobs is an NP-hard problem. 
The work focused on load balancing and scheduling of the 
batch jobs [21, 22] ignored the task dependency graph to 
simplify the proposed solutions.  

In static version of the GLBS problem, a complete 
placement and scheduling solutions for tasks belonging to the 
job set is determined. In dynamic cloud management scenario, 
considering highly accurate prediction of workload, energy 
price and renewable energy generation for a long period of time 
is not realistic. The dynamic version of the problem deals with 
placement and scheduling of the tasks at the beginning of each 
epoch. In this version of the problem, the input parameters for 
the current epoch is considered to be accurate but inexact 
prediction of the parameters for the future epochs is used in 
order to decide about placement and scheduling solution for the 
current epoch. A solution for static GLBS problem is presented 
in section  IV. This solution is extended to a dynamic cloud 
management solution in section  V.   

IV. STATIC SOLUTION 

The most important challenge in minimizing the operational 
cost in the GLBS problem is to consider the concurrency 
between different jobs. For example, if we do not consider the 
concurrency between jobs, resource and peak power pressure in 
datacenters may force some critical tasks (in terms of deadline) 
to be scheduled at datacenters and times with high energy price 
even with the possibility of deferring non-critical tasks. So the 
proposed solution for the GLBS problem needs to consider the 
concurrency between tasks from different jobs in order to 

decide which tasks to schedule and which ones to defer to 
reach the lowest operational cost. 

We propose Force-Directed Load Balancing and 
Scheduling (FLBS) algorithm which determines task 
scheduling and placement solution based on the Force-Directed 
Scheduling (FDS) approach [23]. FDS is one of the significant 
scheduling techniques in high-level synthesis. It is a technique 
used to schedule directed acyclic task graphs so as to minimize 
the resource usage under a latency constraint. This technique 
maps the scheduling problem to the problem of minimizing 
forces in a physical system which is subsequently solved by 
iteratively reducing the total force by task movements between 
time slots. In reference [3], this technique has been applied to 
the household task scheduling in demand response problem. 

Possible execution times of a task can be determined by As 
Soon As Possible (ASAP) and As Late As Possible (ALAP) 
schedules of the DAG. As the names indicate, ASAP and 
ALAP schedules are the task schedules without any gap 
starting at ݏ௝ or ending at ௝݁, respectively. For these schedules, 

minimum ௝݈,௧
௦,௙ value for each task is considered as the latency of 

executing the task. Each task can only be executed from its 
ASAP schedule time to its ALAP schedule time. Figure 3 
shows an example of the ASAP and ALAP schedules for 
Figure 2 DAG in which ௝݁ െ ௝ݏ ൌ 3 and minimum ௝݈,௧

௦,௙ is equal 
to ߠ for every task. 

Figure 3 – ASAP and ALAP schedules for Figure 2 DAG with ௝݁ െ ௝ݏ ൌ 3 

In order to solve the GLBS problem using FDS technique, 
|࣮| instances of each datacenter (one for each epoch) and an 
instance of each task is created. Force in this system is defined 
between each task and datacenter instance that the task is 
assigned to and the parent and child tasks (if they exist). Each 
task needs to be assigned to one of the datacenter instances 
between ASAP and ALAP schedule of the task. These 
assignments are made in order to satisfy scheduling constraints 
for each job (constraint (2) to (5)). 

In this setting, assigning a task to a datacenter instance 
creates a force with three terms. These terms represent the 
objective function and capacity constraints in the GLBS 
problem. The first term of the force represents the energy cost 
of the assignment. The second term of the force is between the 
task and dependent (child and parent) tasks and represents the 
communication cost between the tasks. The third term of the 
force represents the resource pressure in the assigned server 
type and power pressure in the assigned datacenter instance. 
This force term is captured by multiplying the allocated 
resource amount and power consumption of that assignment by 
negative exponential functions (݁ି௫) of the remaining resource 
capacity in the selected server type and remaining peak power 
capacity in the assigned datacenter instance. Considering these 



 

 

forces, minimizing the total force in FLBS setting is equivalent 
to minimizing the objective function of the GLBS problem 
subject to satisfying the resource and scheduling constraints. 

Starting from any feasible solution, we can identify the 
legal task instance movements (from an epoch and server type 
in a datacenter to another epoch and server type in a datacenter 
without violating the scheduling constraints) that results in 
reducing the force and execute them to reach a lower 
operational cost. The order to perform these movements affects 
the final results because changing a task assignment may 
change the forces applied to other task instances.  

The initial solution has a significant impact on the quality 
of the final solution in the FLBS setting. To be able to perform 
gradual task movements to reduce the total force, we consider 
an initial solution in which, each task instance is cloned and 
uniformly distributed between possible resource types in 
different datacenters related to the possible execution times. To 
avoid multiple instances of a task on one resource type in a 
datacenter, the highest frequency for each server type is 
selected for the initial solution. Let ௝ܰ,௧ denote the number of 
instances associated with task ݐ , the amount of resource 
allocated to each instance is equal to the amount of resource 
allocated to the original task divided by ௝ܰ,௧ . Moreover, the 
second term of the force related to the communication cost can 
be replaced by the communication cost between two tasks 
multiplied by the size of both instances. Figure 4 shows an 
example of the initial solution for Figure 2 DAG in two 
datacenters and one server type setting in which ݏ௝ ൌ 0  and 

௝݁ ൌ 3. In this figure, we assumed that ௝݈,௧ ൌ  for every task. It ߠ
can be seen that ௝ܰ,௧ for each task in this setting is equal to 4. 

Figure 4 – FLBS initial solution for Figure 2 DAG in a two datacenter and 
four epoch setting in which ݏ௝ ൌ 0 and ௝݁ ൌ 3. 

Starting from the initial solution, instances associated with 
each task needs to be merged to reduce the number of instances 
related to each task to one ( ௝ܰ,௧ ൌ 1). Merging task instances 
changes the force in the datacenter instances hosting the task 
instances and may change the placement (scheduling) of the 
instances related to the dependent tasks (parent and child tasks) 
due to scheduling constraints. For example in Figure 4, if all 
instances for task 1 is merged to datacenter 0 in epoch 1, task 
instances related to task 5 and 7 must be merged at datacenter 
instances in epoch 2 and 3, respectively. Based on the FDS 
terms, the force change (future force minus current force) 
generated from dependent task instance movements is called 
dependent-force and the force change directly related to the 
task movement is called self-force. Task instance merging 
force (change) is defined as the summation of self-force and 
dependent-force. Given any task, the task instance merging 
with minimum force is executed to reduce the total force in the 
system. Moreover, to determine the order of task instance 

merging execution, tasks are sorted (non-decreasing) based on 
their minimum task instance merging force.  

Task instance merging is performed in multiple stages in 
order to decrease the complexity of selecting the new host for 
task instances and avoid drastic changes in the assignment 
solution. For this reason, first the number of task instances in 
each epoch is gradually reduced to one (only self-force) and 
then number of epochs for each task is reduced one by one 
(self-force plus dependent-force). At the end of the second 
stage, the schedule of each task is determined. The pseudo-
code for task instance merging having at most one task instance 
per epoch per task is shown in Algorithm 1. In this pseudo-
code, ܨఛே denotes the force related to task instance in epoch ߬ 
having ௝ܰ,௧ ൌ ܰ.   

Algorithm 1: FLBS algorithm for task instance merging  

Inputs: Task instances placed on datacenter and server types (at most one 
task instance per epoch per task) 
Outputs: One instance for each task to determine scheduling solution 
 

1 Foreach (Job ݆) 
௝ܨ 2

௠௜௡ ൌ ௝ܨ process of updating//                          ݕݐ݂݅݊݅݊݅
௠௜௡ starts here 

3 Foreach (ݐ ∈ ௝ܶ) 
4 Let ߬௦ and ߬௘ denote first and last epoch with instances of task ݐ  
5 ܰ ൌ ߬௘ െ ߬௦ ൅ 1                            //number of task instances 
6 If (ܰ ൌൌ 1)       Continue 
௧ܨ 7

௥,௦௘௟௙ ൌ ∑ ఛேିଵܨ
ఛ೐
ఛೞାଵ

െ ∑ ఛேܨ
ఛ೐
ఛೞ       //Self-force shift to right 

௧ܨ 8
௥,ௗ௘௣ ൌ ∑ ሺܨ௧ᇲ

௥,௦௘௟௙ ൅ ௧ᇲܨ
௥,ௗ௘௣ሻ௧ᇲ∈஼ೕ,೟  //dependent-force shift to right 

௧௥ܨ 9 ൌ ௧ܨ
௥,௦௘௟௙ ൅ ௧ܨ

௥,ௗ௘௣ 

௧ܨ 10
௟,௦௘௟௙ ൌ ∑ ఛேିଵܨ

ఛ೐ିଵ
ఛೞ െ ∑ ఛேܨ

ఛ೐
ఛೞ       //Self-force shift to left 

௧ܨ 11
௟,ௗ௘௣ ൌ ∑ ሺܨ௧ᇲ

௟,௦௘௟௙ ൅ ௧ᇲܨ
௟,ௗ௘௣ሻ௧ᇲ∈௉ೕ,೟   // dependent-force shift to left 

௧ܨ 12
௟ ൌ ௧ܨ

௟,௦௘௟௙ ൅ ௧ܨ
௟,ௗ௘௣ 

௝ܨ 13
௠௜௡ ൌ min	ሺܨ௝

௠௜௡, ,௧௥ܨ ௧ܨ
௟ሻ 

14 End 
15 End 
16 Sort jobs based on ܨ௝

௠௜௡ (non-decreasing) 
17 While (max number of instance per task>1) 
18 Select the job ݆ with minimum ܨ௝

௠௜௡ 
19 Select the task ݐ from job ݆ with minimum task instance merging force 
20 Perform task instance merging (right or left) 
21 Perform dependent task movements 
22 Update resource utilization 
23 Update ܨ௝

௠௜௡ 
24 Update forces for affected tasks //can be performed less-frequently 
25 End 

After fixing the schedule for each task, each task instance is 
cloned to possible server types and datacenters in the selected 
execution epoch and gradual instance merging is performed 
again to determine the final placement for each task. After 
finalizing the task scheduling and placement solution, based on 
the scheduling solution (multiple dependent tasks in one epoch 
or not) and power consumption vs. latency tradeoff in each 
server type, the frequency of the resource assigned to each task 
is determined.  

In case of resource or peak power capacity constraint 
violation in datacenters, the task instance movement is 
continued until a feasible solution is reached. In addition to this 
stage, even without any resource constraint violations, the task 
movement can be continued to further reduce the total cost with 
the restriction that no task movement that results in any 
constraint violations should be tried.  



 

 

V. DYNAMIC SOLUTION 

The static solution to GLBS problem determines the task 
placement and scheduling solution for a big set of batch jobs in 
a long period of time, e.g. one day. This solution is based on 
the prediction of online application workload in each 
datacenter, energy price and green power generation in each 
epoch. These predictions are not 100% accurate. So, the static 
solution to GLBS problem is not the best way of dealing with a 
dynamic system.  

The implemented static solution has short run-time (in the 
order of a few minutes) with respect to practical duration of an 
epoch. Based on this observation, we propose a dynamic 
solution based on iteratively applying the static solution in the 
beginning of each epoch and scheduling the tasks in the first 
epoch and ignoring the placement and scheduling solution for 
the next epochs. 

This approach is reasonable considering highly-accurate 
prediction of parameters in near-future which results in small 
probability of changes in task scheduling in current epoch. 
Moreover, due to less-accurate prediction of parameters in 
distant-future, it is not reasonable to apply the decision made in 
the current epoch to the distant-future epochs.    

VI. SIMULATION RESULTS      

To show the effectiveness of the proposed solutions for the 
GLBS problem, a simulation framework is implemented. 

In this simulation framework, we considered a US-based 
cloud system that has five datacenters in California, Texas, 
Michigan, New York, and Florida. An arbitrary ܷܲܧ  factor 
between 1.1 and 1.3 is considered for each datacenter. Size of 
these datacenters ranges from 4,000 to 1,600 servers belonging 
to four different server types, selected from HP server types. 
Duration of epoch is set to one hour. The average utilization of 
servers is assumed to be 70%. A limited frequency set for each 
server type is considered and ௦ܲ

௙  in each server type is 
considered to be proportional to ݂ଶ.ସ [25]. Peak power capacity 
for each datacenter is set to 80% of the peak power 
consumption of the deployed servers. Based on the weather 
patterns, each datacenter has a combination of solar and wind 
power plant with power generation capacity of up to 20% of its 
peak power consumption. The renewable power generation 
changes during the day based on type of the power plant.  

The average energy price in one day for each datacenter is 
set based on the reported average energy price [14] in 
datacenter’s location. Dynamic energy price for each one of the 
datacenters is assumed to follow the dynamic energy pricing 
pattern in reference [26] related to 5/23/2013 with appropriate 
time shift and average energy price. Figure 5 shows the energy 
price pattern for the California datacenter with average energy 
price of 15.2 ¢ per KWhr.  

Figure 5 – Energy price in California datacenter (time in PST) 

We consider 24-hour long decision making in static GLBS 
problem. Based on population distribution in US, 100K online 
applications are created in different time horizons and 
geographical locations. Application workload is changed 
according to the local time of its origination point. The 
application lifetime is set arbitrarily based on uniform 
distribution between one and 16 hours. The online application 
workload intensity, which is obtained by summing the resource 
requirement for the active online applications, is reported in 
Figure 6. Each online application is assigned to the nearest 
datacenters to its origination point. Moreover, online 
application workload is fairly distributed between server types 
in each datacenter considering the CPU cycles as the weight of 
each server type.   

Figure 6 – The intensity of the online application workload as a function of 
time of the day  

Batch jobs with different DAG and task characteristics are 
created to evaluate the proposed solutions. Depth of the created 
DAG for each job is between 3 and 5 and each DAG has 6 to 
10 tasks. For each task, CPU cycle requirement and 
parallelization factor is generated arbitrarily. Moreover, an 
arbitrary ((0,1]) compatibility factor is generated for each task 
and server type. ௝݈,௧

௦,௙ is linearly proportional to CPU cycles and 
inversely proportional to compatibility factor, frequency and 
parallelization factor. Compatibility factor, CPU cycles and 
parallelization factor for each task is selected based on a rule 
that the latency of completing the task in at least one of the 
server types should be less than ߠ. The amount of produced 
data for each task is also generated arbitrarily between 0 and 
1GB. Communication cost parameter is set to 2¢ per GB data 
transfer based on Amazon EC2 pricing for data transfer 
between Amazon EC2 or S3 sites [27]. Start time for each batch 
job is selected arbitrarily between the first epoch and the last 
epoch minus the depth of the selected DAG for the job. End 
time is also arbitrarily selected between start time plus the 
depth of the selected DAG and the last epoch. 

Figure 7 – The average workload intensity of the batch jobs as a function 
of time of the day  

Different number of batch jobs is created for different parts 
of the simulation. To illustrate the workload intensity of 
generated batch jobs in this simulation setup, average resource 
requirement of 10K batch jobs as a function of time is shown in 
Figure 7. The average resource requirement for each batch job 
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in its active epoch (from ݏ௝ to ௝݁) is calculated by dividing the 
summation of minimum resource requirement for its tasks by 
the number active epoch ( ௝݁ െ ௝ݏ ൅ 1). 

The baseline in our simulation for static solution is a greedy 
task placement and scheduling solution. In this solution, batch 
jobs are sorted (non-increasing) based on the summation of 
minimum resource requirement to perform all of the tasks 
belonging to ௝ܶ. Starting from the job with the biggest resource 
requirement, the gap between start and end time is distributed 
evenly between the tasks and each task is assigned to the best 
available server type and datacenter in its scheduling window. 
This greedy static solution is also extended to a dynamic 
solution using a similar approach to the one presented in 
section  V. Each comparison between FLBS and baseline 
method is the average results of at least ten tries of the same 
scenario with different randomly generated setup parameters. 

Figure 8 shows the normalized operational cost of applying 
FLBS algorithm and baseline method to the static problem with 
24 epochs (one day) with different number of batch jobs. Note 
that the operational cost is the part of the operational cost of the 
cloud system that is related to energy and communication cost 
of the batch jobs.  

Figure 8 – Normalized operational cost of the system using FLBS and 
baseline method in the static setting 

As can be seen, the FLBS algorithm performs 8% to 46% 
better than the baseline algorithm which greedily optimizes the 
task placement solution. The baseline method results improve 
by increasing the number of batch jobs due to exhausting the 
renewable energy generation and cheaper resources in peak 
times. This trend can also be seen in Table I.  

TABLE I. ENERGY AND COMMUNICATION COST PER BATCH JOBS (FLBS 
RESULTS)  

# of batch 
jobs 

Energy cost per batch job 
(¢) 

Communication cost per 
batch job (¢) 

10000 35.72 3.50
8000 34.82 3.41
5000 31.75 3.40
4000 30.90 3.26
2000 27.37 2.90
1000 24.82 2.72

As can be seen, by increasing the number of batch jobs, the 
effective energy cost per job is increasing due to exhausting the 
renewable energy sources and resources in datacenters with 
lower energy price. This trend will result in smaller 
improvement from FLBS algorithm w.r.t. baseline method 
having big number of jobs for a limited time. 

The run-time of the static FLBS algorithm on a 2.66GHz 
quad-core HP server for 4000 batch jobs is 9.4 minutes on 
average. To reduce the run-time of FLBS algorithm, the task 
instance movement in each stage can be performed in parallel. 

This approach may results in small performance loss due to 
not-updating force elements after each task movement. 

To more clearly illustrate the effect of resource availability 
on the performance of FLBS solution, Figure 9 shows the 
operational cost of the system in static setting with 4000 batch 
jobs in one day with varying peak renewable power generation 
capacity in each datacenter. As can be seen, the FLBS 
improvements w.r.t. baseline method increases by increasing 
the peak power generation capacity in datacenters’ site. 

Figure 9 – Normalized operational cost of the system in the static setting 
with different renewable energy generation capacities 

To evaluate the proposed algorithm for dynamic task 
scheduling and placement in a cloud system, we used the static 
setting and added random prediction error to the input 
parameters (renewable green power generation, energy price 
and online application workload). In each decision epoch, the 
predicted input parameters related to future epochs are deviated 
from their real values. The average introduced error in future 
epoch (ݐ) is between േ

௘

ଵଶ
ሺݐ െ ߬ሻ , where ߬  and ݁  denote the 

current epoch and the average prediction error applied to the 
input parameters in different epochs, respectively. Using this 
model implies that the prediction in near-future is assumed to 
be more accurate than the prediction in distant-future.  

In addition to applying dynamic FLBS and baseline method 
to the problem, we also captured the results of applying the 
decisions made in static FLBS solution in the first epoch. 
Figure 10 shows the normalized operational cost of the system 
by applying dynamic FLBS, baseline and static FLBS 
algorithms. Average added prediction error in this scenario is 
equal to 10%.    

Figure 10 – Normalized operational cost of the system using FLBS and 
baseline method in the dynamic setting 

 As can be seen, the performance of the dynamic FLBS is 
11% to 44% better than the performance of the dynamic 
baseline method. Similar to the static case, reduction in 
performance gap between dynamic FLBS and baseline methods 
can be seen by increasing the number of batch jobs. Moreover, 
by increasing the number of batch jobs, the difference between 
the results of static and dynamic solution of FLBS algorithm is 
decreasing.   
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Figure 11 shows the normalized operational cost of the 
system using FLBS and baseline method with different 
prediction error having 8000 batch jobs. As expected, 
increasing the prediction error increases the gap between the 
results of the dynamic FLBS and static FLBS algorithms. 
Moreover, the performance gap between the dynamic FLBS 
and baseline method does not drastically change by increasing 
the prediction error. 

Figure 11 – Normalized operational cost of the system using FLBS and 
baseline method in the dynamic setting with different prediction error 
having 8000 batch jobs 

VII. CONCLUSIONS 

This work focused on the load balancing and scheduling 
problem for batch jobs considering a distributed cloud system 
comprised of geographically dispersed, heterogeneous 
datacenters. Each batch job was modeled using a directed 
acyclic graph of heterogeneous tasks. A solution for load 
balancing and scheduling problem based on force-directed 
scheduling approach was presented that considers the online 
application workload and limited resource and peak power 
capacity in each datacenter. The simulation results 
demonstrated significant improvement using the proposed 
algorithm with respect to a greedy load balancing and 
scheduling method from the literature. The effects of resource 
availability and input prediction error on the result of the 
proposed algorithms were demonstrated. 

As expected, the average cost of processing each batch job 
is increasing by increasing the number of batch jobs due to 
exhausting free (renewable power) and less-costly resources in 
datacenters. This results in reduction in the performance gap 
between the proposed solution and the greedy one. The 
proposed solution also shows resiliency to the introduced 
prediction error. Reducing the complexity of the proposed 
solution is one of the most important directions of the future 
work. Moreover, combining the online application load 
scheduling and batch job scheduling and load balancing can be 
another future research direction. 
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