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Force Distributions near Jamming and Glass Transitions

Corey S. O’Hern,'* Stephen A. Langer,> Andrea J. Liu,! and Sidney R. Nagel?
'Department of Chemistry and Biochemistry, University of California at Los Angeles,
Los Angeles, California 90095-1569
2Information Technology Laboratory, NIST, Gaithersburg, Maryland 20899-8910

3James Franck Institute, The University of Chicago, Chicago, Illinois 60637
(Received 2 May 2000)

We calculate the distribution of interparticle normal forces P(F) near the glass and jamming transitions
in model supercooled liquids and foams, respectively. P(F) develops a peak that appears near the glass
or jamming transitions, whose height increases with decreasing temperature, decreasing shear stress and
increasing packing density. A similar shape of P(F) was observed in experiments on static granular
packings. We propose that the appearance of this peak signals the development of a yield stress. The
sensitivity of the peak to temperature, shear stress, and density lends credence to the recently proposed

generalized jamming phase diagram.
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Granular materials can flow when shaken, but jam when
the shaking intensity is lowered [1]. Similarly, foams and
emulsions can flow when sheared, but jam when shear
stress is lowered [2]. These systems are athermal be-
cause thermal energy is insufficient to change the packing
of grains, bubbles, or droplets. When the external driv-
ing force is too small to cause particle rearrangements,
these materials become amorphous solids and develop a
yield stress. A supercooled liquid, on the other hand, is
a thermal system that turns, as temperature is lowered, into
a glass—an amorphous solid with a yield stress [3]. De-
spite significant differences between driven, athermal sys-
tems and quiescent, thermal ones, it has been suggested
that the process of jamming —developing a yield stress in
an amorphous state—may lead to common behavior, and
that these systems can be unified by a jamming phase dia-
gram [4]. This implies that there should be similarities in
these different systems as they approach jamming or glass
transitions. We test this speculation by measuring the dis-
tribution P(F) of interparticle normal forces F, in model
supercooled liquids and foams. We find that for glasses,
P(F) is quantitatively similar to experimental results on
granular materials [5].

When granular materials jam, the distribution of stresses
is known to be inhomogeneous [6,7]. As proposed in
Ref. [7], we quantify this effect by measuring P(F). Our
aim is to determine which feature in P(F) is associated
with development of a yield stress. Experiments [5,8]
and simulations [9,10] on static granular packings find that
P(F) has a plateau or small peak at small F and decays
exponentially at large F. We argue that the development
of a peak is the signature of jamming.

For supercooled liquids, equilibrium statistical mechan-
ics gives insight into the shape of P(F). Since forces
depend only on particle separations, P(F)dF = G(r)dr,
where G(r)dr is the probability of finding a particle be-
tween r and r + dr given a particle at the origin. Thus,
G(r) = p/(N — 1)SprP1g(r), where N is the number
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of particles, p is the number density, g(r) is the pair dis-
tribution function, and SprP~! is the surface area of a
D-dimensional sphere of radius r. Although it is well
known that g(r) does not change significantly as the tem-
perature is varied through the glass transition T,, we show
below that P(F) is quite sensitive and actually develops a
peak near T,. Physically, forces (or stresses [11,12]) are
crucial for understanding the slowing down of stress re-
laxation near the glass transition, or the development of a
yield stress. It is therefore not surprising that P(F), which
is a particular weighting of g(r), is much more sensitive
to the glass transition than g(r) itself.

In a jammed system like a granular material, an
analytic expression for g(r) is not known and P(F) must
be measured directly. However, in an equilibrium system
at temperature 7, the large-force behavior of P(F) can
be obtained from the small-separation behavior of g(r):
g(r) = y(r)exp[—V(r)/kpT], where V(r) is the pair
potential and y(r) depends relatively weakly on r at small
r [13]. This leads to

PLEM] ~ y ()P L expl=V ()T (1)

From our simulations, we compute the force distribu-
tions in systems that are out of equilibrium, such as glasses
and sheared foams, as well as systems in equilibrium, such
as supercooled liquids. We find that P(F') for supercooled
liquids (with sufficiently strong repulsive potentials) de-
cays approximately exponentially at large forces, as pre-
dicted by Eq. (1). Because this is true at all temperatures,
even those far above T, the exponential tail is not neces-
sarily a signature of an amorphous solid.

We perform constant-temperature molecular dynamics
simulations on binary mixtures in 2D, using the Gaussian
constraint thermostat and leapfrog Verlet algorithm [14].
The masses m of the particles are the same, but the ratio of
particle diameters, o,/0 = 1.4, ensures that the system
does not crystallize [12]. We confine N = 1024 particles
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(512 of each variety) to a square box and use periodic
boundary conditions. For each simulation, we choose one
of the following interparticle pair potentials:

Vs (r) = eloa/r)"?,
Viy(r) = 4el(oan/r)? = (o /r)°],
ViiR2(r) = del(aap /1) = (0ap/r)°] + €;
rloa = 2'°, 2)
28/3¢
3

r/a-ab = 2]/9’

Ve "4(r) = [(oan/r)** = (0un/P)] + €

where o, = (0, + 0p)/2 for a,b = 1,2. The poten-
tials LJR12 and LJR24 are zero above the specified cut-
offs. (The potentials SC and LJ are truncated at large r,
r/o. = 4.5.) Below, we measure time, force, tempera-
ture, and density in units of o;(m/€)'/?, €/o\, €/k;, and
o2, respectively. The simulations on purely repulsive po-
tentials SC, LJR12, and LJR24 simulations were carried
out at constant density p = 0.747; the simulations on LJ,
which include an attraction, were carried out at zero aver-
age pressure.

The hallmark of the glass transition is the extreme slow-
ing down of the dynamics as temperature is lowered to-
ward the glass transition. The pair potentials in Eq. (2)
all give rise to glass transitions as temperature is lowered
[12]. We determine T, by measuring the self-part of the
intermediate scattering function F5(k ), t) for the large par-
ticles at a wave vector k, corresponding to the first peak
of the static structure factor [12,15]. For high tempera-
tures, the liquid equilibrates quickly and F(k, r) decays
exponentially to zero. The relaxation time 7, is defined
as the time at which F,(k,,t) decays to 1/e; this is a
measure of the a-relaxation time [12,15]. Since 7, in-
creases so rapidly near the glass transition, simulations can
only reach equilibrium for temperatures 7 > T,, where
T, is determined when 7, exceeds a predetermined, large
value, which we take to be 7, > 1000. For our parameter
choices, the glass transition temperatures are TgSC = 0.38,
T;‘JRU = 1.1, T;‘JRZ“ = 3.0, and TgLJ = 0.17.

For T > T, we measure P(F) for all interparticle force
pairs from at least 250 configurations after equilibrating
each configuration for 10—1007,. The top frame of Fig. 1
shows P(F) plotted versus F/T for LJR12 for seven
temperatures above T, with temperature decreasing from
top to bottom. At high temperatures, we see in the top
frame of Fig. 1 that P(F) increases with decreasing F
over the entire range of F. However, as temperature is
lowered towards T,, a plateau in P(F) forms at forces
below the average (F). By shifting each curve vertically,
we have obtained collapse of the high-force data for
all of these equilibrium systems. From Eq. (1), we
expect that the large-force tail should scale asymptotically
as exp(—BF'?/13/T), where B is a constant and the
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FIG. 1. Top: P(F) for all interparticle force pairs versus F /T
for LJR12 (a purely repulsive potential) obtained for seven tem-
peratures above T, with T decreasing from top to bottom. Bot-
tom: P(F/{F)) versus F/{F) for LJR12 for two temperatures
above and three below T,.

power 12/13 derives from the 1/r'? repulsion. Thus,
for particles with harder cores (steeper repulsions), the
tail becomes closer to an exponential in F, as seen in
experiments on granular materials [5]. This explanation
for the exponential tail is different from that of the ¢
model [7] and its generalizations [16] based on stochas-
tic force propagation. Previous LJ simulations along
the liquid-vapor coexistence line [17] showed that the
Cartesian components of the force also have an exponen-
tial distribution. Our results are related to theirs: for high
forces, the total force on a particle, which is the vector
sum of the normal forces, will be dominated by the largest
normal force. This is why the distribution of Cartesian
components is also exponential.

We also study P(F) out of equilibrium by performing
thermal quenches from 7; > T, to Ty. The results
discussed below are relatively insensitive to changes in
T; or quench rate, but depend on whether T lies above
or below T,. For Ty > T,, P(F) initially develops a
region of lower (but still negative) slope at high forces,
which moves to lower forces and disappears as the system
equilibrates. In the bottom frame of Fig. 1, we show
the long-time behavior of P(F) for LIR12 following a
quench below T, = 1.1 to Ty = 0.6, 0.3, and 0.1. For
comparison, two equilibrium distributions at 7 = 1.5
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and 3.0 are also shown. We scaled the abscissa by (F)
(which increases with 7). There are two significant
features in P(F) for glasses. First, the slope of the expo-
nential tail increases as 7T is lowered. The temperature
corresponding to the tail Ti,;, however, is not the final
temperature Ty, but rather satisfies T, < Tyj < T
Thus, a fraction of the large thermal forces cannot re-
lax in the glassy state. The second significant feature
of P(F) for glasses is the formation of a peak near
(F), as shown in the bottom frame of Fig. 1. Thus, in
contrast to g(r), there is a significant change in P(F)
below T,. The behavior of P(F) for F > 0 when
quenched below T is qualitatively the same for all poten-
tials and densities studied, showing that the peak signals
the glass transition in a system with attractive interactions
and no applied pressure as well as systems with purely
repulsive interactions under pressure.

The potentials LJR12 and LJR24 in Eq. (2) are most
similar to granular materials since they produce purely re-
pulsive forces that vanish at small separation. We com-
pare P(F /(F)) in the glassy state for LJR12 and LJR24 to
P(F /{F)) for static granular packings in Fig. 2. Remark-
ably, it is possible to find a temperature (7y = 0.8 < T)
where the force distributions, when scaled by the average
force (F), are nearly identical for LJR12, LJR24, and ex-
periments on static granular packings [5] over the entire
range of forces. This implies that for sufficiently hard re-
pulsive potentials, the shape of the distribution is not sen-
sitive to the shape of the potential. In the limit of hard
spheres, where the power of the repulsive term in the po-
tential diverges, we expect similar behavior. In systems
with softer potentials, such as Hertzian or harmonic repul-
sive springs, we also find the same shape of P(F) as in
Fig. 2 over nearly the entire range of forces at very low
temperatures near the close-packing density [18]. These
results suggest that the slight peak or plateau at small forces
and exponential tail at large forces are generic features
of P(F) in athermal, experimental systems near the onset
of jamming.
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FIG. 2. P(F/{F)) versus F/{F) for both LJR12 and LJR24
after a quench to 7y = 0.8 (below T). Data from experiments
on static granular packings from [5] are also shown. Note that
all three sets of data have a plateau at small F and decay expo-
nentially at large F.

Is a peak or plateau in P(F) also observed in other
jammed systems? To answer this, we have studied model
two-dimensional foams [19,20], where bubbles are treated
as circles that can overlap and interact via two types of
pairwise interactions. The first is a harmonic repulsion
that is nonzero when the distance between centers of two
bubbles is less than the sum of their radii. The other is
a simple dynamical friction proportional to the relative
velocities of two neighboring bubbles. In foam, thermal
motion of bubbles is negligible. We simulate a 400-bubble
system at constant area with periodic boundary conditions
in the x direction and fixed boundaries in the y direction.
Bubble radii R; are chosen from a flat distribution with
02 < R;/{R) < 1.8.

At packing fractions ¢ above random close packing
(o = 0.84), quiescent foam is an amorphous solid with
a yield stress o,. However, when shear stress o, > o,
is applied, the foam flows. There are therefore two ways
to approach the amorphous solid. We can either increase
¢ towards ¢ at o,, = 0 (route 1), or we can decrease
oy, towards o at fixed ¢ > ¢ (route 2). In Fig. 3, we
show P(F/{F)) (only including harmonic elastic forces)
along these two routes. The distributions along route
1 in the top frame were measured after quenching 50
configurations from ¢; < ¢y to ¢ by increasing each
particle radius. When ¢ < ¢, P(F /(F)) increases mono-
tonically as F/(F) decreases. As ¢ increases above ¢, a
local maximum forms near (F). A similar trend is found
along route 2. To obtain these distributions, we averaged
over at least 500 configurations with each brought to steady
state for a strain of ~10. In all cases shown, o, exceeds
oy, so the systems are flowing. We find that at large o,
P(F /{F)) is nearly constant at small F. When o, is low-
ered towards o, = 0.10, a peak in P(F /(F)) forms near
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FIG. 3. Top: P(F/{F)) versus F /(F) for foams with o, = 0
for several ¢ near random close packing. Bottom: P(F/{F))
for foams with ¢ = 0.9 > ¢ and o, lowered towards o,.

113



VOLUME 86, NUMBER 1

PHYSICAL REVIEW LETTERS

1 JANUARY 2001

F/{F) ~ 1. Similar behavior is observed in P(F /(F)) as a
function of ¢ in experiments on sheared deformable disks
[21] and as a function of confining stress in simulations of
deformable spheres [10].

In this Letter, we have shown a connection between
development of a yield stress, either by a glass transition
or conventional jamming transition, and the appearance of
a peak in P(F). We have established that four different
model supercooled liquids develop first a plateau and then
a peak in P(F) as temperature is lowered below the glass
transition. We have also found (but not shown here) that
the LIR12 liquid displays identical results for P(F) as
shear stress is lowered from the flowing state or as density
is raised from the liquid state at fixed temperature [18]. For
monodisperse liquids, we find that the appearance of a peak
in P(F) is well correlated with the onset of crystallization
except at low densities where the yield stress is small [18].
The athermal foam likewise develops a peak in P(F) as
it approaches jamming along two different routes. Static
granular packings exhibit a plateau or small peak in P(F)
as well. Thus, a peak in P(F) appears as a wide variety of
systems jam along each of the axes of the jamming phase
diagram [4]. This suggests that jamming leads to common
behavior and that the glass transition may resemble more
conventional jamming transitions.

This still leaves the question of why formation of a peak
or plateau in P(F) appears to signal the development of
a yield stress. The presence of the peak or plateau im-
plies that there are a large number of forces near the av-
erage value. This is consistent with the existence of force
chains, since each particle within a force chain must have
roughly balanced forces on either side. We speculate that
systems jam when there are enough particles in a force
chain network to support the stress over the time scale of
the measurement. Forces at the peak of P(F) are among
the slowest to relax: these forces correspond to separations
near the first peak of g(r), which stem from wave vectors
near the first peak in the static structure factor, which are
among the most slowly relaxing modes [22]. This implies
that force chains observed in granular packings may also
be important to the glass transition. The fact that force
chains do not couple strongly to density fluctuations may
explain why they have not been observed directly. How-
ever, large kinetic heterogeneities that appear near T, [23]
may be linked to the formation of force chains. This inter-
pretation suggests that force chains may provide the key to
the elusive order parameter for the glass transition.
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