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ABSTRACT
A force-feedback control system for VIV experiments

is designed and evaluated for the purpose of achieving hig
accuracy free vibration tests. Through an organized approac
this work details specific methods for minimizing the combined
effect of mass and damping using control system fundamenta
The dynamics of the closed-loop system are analyzed, a n
merical model constructed and a control scheme is chosen a
implemented in real-time. The control system performance
evaluated by performing frequency response tests in air.

Free vibrations of a smooth aluminum cylinder are per
formed at Reynolds number 19000. Test series with dampin
ratios of one, two and five percent are performed, all with
nondimensional mass four. A peak amplitude ratio of 1.15 i
observed for the case of lowest damping. Forced vibration tes
with the same setup are performed and compared to the fr
vibration results, giving consistent results.

Keywords: VIV, free vibrations, robotics.

INTRODUCTION
Flow around slender marine structures has been studi

over several decades, and a multitude of experimental setups
VIV testing have been constructed, giving extensive knowledg
on the details of vortex formations. Exhaustive information
on this may be found in for example Sarpkaya [11], Bearma
[2], Williamson and Roshko [14], Blevins [3], Gopalkrishnan
[8], Brika and Laneville [4], Khalak and Williamson [10] and
1
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Govardhan and Williamson [9].
The main purpose of the present work was to develop

tool for performing VIV experiments at a high level of fidelity.
The test apparatus is physically robust, and may be used in t
ways: 1) For performing free vibration tests, where the cylinde
is allowed to move freely in accordance with the fluid excitatio
forces. In this mode, the actual fluid forces on the cylinder a
measured and used to drive a simulated second order system
real time, and the cylinder displaced according to the simulatio
The focus of the current work is the control system designed f
this purpose. 2) For forced vibration tests, where the cylind
is given a prescribed motion. The choice between free a
forced vibration is made in software, and thus facilitates uniqu
possibilities for comparison of free and forced vibration data o
the exact same physical setup. Combining the real fluid forc
with a simulated system gives large flexibility in the paramete
space, as the damping ratio, natural frequency and mass ra
are chosenin software only, independent of the actual physical
setup. It also facilitates realization of systems not achievab
by a passive setup, and the ability to perform test series w
variation in any parameter. By this work, the authors hope th
the value of robotics in experimental hydrodynamics will ear
increased recognition, as the applications in the intersecti
of classic hydrodynamics and robotics are challenging and
multitude. The hydrodynamic results presented here are on
preliminary results with the newly developed control system
More exhaustive testing, encompassing a wider parameter sp
of for example varying mass ratios, varying Reynolds numbe
and different VIV-suppressing methods may be performe
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easily, due to the flexibility and robustness of the experiment
setup.

In a more general setting, the ability to control the natura
frequencies, mass and damping of a physical system means t
the ratio of structural modes to the fluid modes, e.g. Karma
vortex street formation or similar, can be controlled in real time
This has important applications in optimal thrust production
with foils, galloping and energy extraction.

EXPERIMENTAL SETUP AND DATA PROCESSING
The present work was performed at the MIT Towing Tank

with the “Virtual Cable Testing Apparatus”, VCTA. The VCTA
consists of a carriage running on steel rails at the length of th
tank, a linear drive with a table moving in the vertical direc-
tion, a drive system and brushless motor connected to the line
drive and a computer with motor control and A/D boards. A rig
consisting of a supporting beam, two struts with endplates and
test cylinder attached to the struts with load cells are mounted
the linear drive table. The tank dimensions are length 30 mete
width 2.5 meter and water depth 1.1 meter. The nominal vertic
cylinder position is close to half the water depth.

Hover et al. [6] performed free vibrations of a cylinder
at Reynolds number 3800, using a similar setup with force
feedback and a simulated system driving the cylinder in real tim
A refit of the system, giving capabilities for testing at higher
Reynolds numbers, has taken place since then. The current w
is a thorough redesign of the control system, further explorin
the capabilities of the VCTA.

Data postprocessing
The force coefficients are calculated in a postprocessing ro

tine written in MatLab. The data acquisition was run at 400Hz,
and the postprocessing filter cutoff frequency was set to give am
plitude distortions of less than 0.5 percent. The lift-force con
tains an inertial term due to the physical mass of the cylinde
This was corrected by twice differentiating the filtered position
signal, multiplying with the cylinder mass and subtracting this
from the measured force.

Motion and force are assumed to have a sinusoidal shap
with a phase lag of the force. The lift force is split in two: One
term in phase with acceleration and one in phase with velocity

y(t) = y0sin(ωt) (1)

F(t) = F0sin(ωt +φ) = Fasin(ωt)+Fvcos(ωt) (2)

Here, y0 and F0 are motion and force amplitudes respectively
To obtain the dimensionless force coefficientsCl , Clv andCla,
2
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the force amplitude can be divided by the dynamic pressure
pd = 0.5ρLDU2

0 , with ρ the density of water,L andD the cylin-
der length and diameter, andU0 the towing velocity. The time
dependent forceCf (t) can then be written dimensionless as:

Cf (t) =
F(t)
pd

= Cl sin(ωt +φ) =−Clasin(ωt)+Clvcos(ωt) (3)

The two coefficientsClv andCla are computed from the force
time series using inner products:

Clv =

√
2
T

< Cf (t), ẏ(t) >√
< ẏ(t), ẏ(t) >

(4)

Cla =

√
2
T

< Cf (t), ÿ(t) >√
< ÿ(t), ÿ(t) >

(5)

T represents the window length for the inner product. The win-
dow length is set equal to one oscillation period, and coefficients
calculated for each period in the test run. The final coefficient
values are are then given by mean and standard deviation o
these.

The added mass coefficientCm and the damping ratioζ may
be deduced from the coefficients defined above.Cm can be cal-
culated fromCla, ω, y0 andU0. The damping ratioζ is directly
related to the lift force in phase with velocityClv, and may also
be deduced from the force amplitudeF0 and phaseφ:

Cm =
−Cla

1
2ρLDU2

0

ω2y0ρ π
4D2L

=
−2ClaU2

0

πDω2y0
(6)

ζ =
LDU2

0Clv

4ωy0ωn∇m∗ =
F0sin(φ)

2y0ωωnρ∇m∗ (7)

SYSTEM IDENTIFICATION AND MODELLING
Controller and drive system

The computer running the real-time simulation is mounted
on the VCTA carriage. It is equipped with an A/D board and
a motor control board (later referenced as the MEI). The moto
is controlled by giving velocity commands, which are calculated
from the simulated dynamics. The command velocity is inte-
grated by the board controller, and the axis output voltageVc is
calculated from a PD servo control algorithm with parametersKp

andKdδt operating on the position errore= yd− y. The servo
loop on the MEI board runs at a much higher frequency than the
control loop, and is in the analysis viewed as continuous. The
commanded torque is given byQc = kvVc with kv the gain. The
Copyright c© 2003 by ASME
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drive system has a time constantTm, and is modelled as a first
order system. The linear drive has a gear ratiokm. The backlash
in the linear drive was found to be approximately1.0mm, but
analysis of the results indicated that the backlash did not have
significant effect on the dynamics. This may be due to the high
damping in the slide. The encoder count from the motor is used
as position feedback, with a gainkenc. The transfer function from
position error to motor forceFm can then be written:

Fm

e
=

kvkenc(Kp +Kdδts)
km(1+Tms)

(8)

The math and input/output operations in the control code give
rise to a computational delay between reading of the feedbac
force and the velocity command. The computational delayτ is
modelled together with the drive system time lag by a 2nd or-
der Pad́e-approximation after the controller outputŷd, giving the
actual desired positionyd.

yd

ŷd
=

s2 + 6
τ s+ 12

τ2

s2 + 6
τ s− 12

τ2

(9)

The rig
The rig is mounted to the linear slide, and consists of a

bracket holding a supporting beam, two struts with mounting
pins and the test cylinder. The rig is supported by a spring, so
that the sum force of gravityG and springFs can be written as
Fs+G = K0y, with K0 the spring constant andy the position.
A model of the rig, capturing the flexure in the supporting beam
and test cylinder, was established by using conventional beam
theory. The test cylinder is modelled as a simply supported beam
with massMc1, stiffnessKc1 and dampingBc1, and a uniform
load from inertial effects due to accelerations of the beam end
points. The supporting beam is modelled as a cantilever beam
with a point mass on the end with massMb1, stiffnessKb1 and
dampingBb1. Combining the above models into a complete rig
model was done by defining an equivalent mechanical system
The equivalent system consists of three masses connected
springs and dampers. The system has three degrees of freedo
one for each mass displacement:y,yc andyb. Figure 1 shows a
schematic of the rig and the equivalent system.

Omitting the arguments, the resulting transfer functions
from motor force to the positions are:

y
Fm

=
a2a3−b2

2

a1a2a3−a1b2
2−a3b2

1

(10)
3
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Figure 1. Rig schematic and equivalent mechanical system

yb

Fm
=

y
Fm

b1a3

a2a3−b2
2

=
b1a3

a1a2a3−a1b2
2−a3b2

1

(11)

yc

Fm
=

yb

Fm

b2

a3
=

b1b2

a1a2a3−a1b2
2−a3b2

1

(12)

a1 = M0s2 +(B0 +2Bb1)s+(K0 +2Kb1) (13)

a2 = 2Mb1s2 +(2Bb1 +Bc1)s+(2Kb1 +Kc1) (14)

a3 = Mc1s2 +Bc1s+Kc1 (15)

b1 = 2Kb1 +2Bb1s (16)

b2 = Kc1 +Bc1s (17)

The structural model predicts natural modes at 4, 158, 22
and 333rad/s. The modes at 4 and333rad/s are well damped,
and not possible to recognize in the dynamic response. The mo
important natural modes were found at∼ 140and∼ 240rad/s.
The model agrees fairly well, although the two modes at 158 an
226rad/sare closer together than the observed modes.

Force feedback
The force on the test cylinder is measured by two Kistler

piezo-electric quartz load cells. The dynamics of the force sen
sors are neglected in the model, but in modelling the system, th
introduction of structural inertia in the measurements must be ac
counted for. As the system is oscillating, the force sensors wil
pick up a force component due to accelerations of the cylinde
structural mass. This comes in addition to the fluid forces. The
inertial componentFi and transfer function from cylinder posi-
tion toFi is written as:

Fi(t) = −[M′
c1(ÿc− ÿb)+Mcÿb] (18)

Fi

y
=
−s2[(Mc−M′

c1)b1a3 +M′
c1b1b2]

a2a3−b2
2

(19)

Mc is the rigid-body cylinder mass andM′
c1 is a vibrational mass

of the same kind asMc1. If the vibrational modes are neglected
Copyright c© 2003 by ASME
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Figure 2. VCTA block diagram

by settingyc = yb = y, the remaining term corresponds to the in-
ertial term generated by the rigid-body cylinder due to the cylin
der motiony. The Kistler amplifiers of type 5010B convert the
sensor signal from charge to an analog voltage, and filter th
forces at33Hz. The frequency response of the amplifiers was
found to match that of a 3rd order Butterworth filter. The normal
ized transfer function for the Butterworth filter, from measured
force at the Kistlers,Fk, to the feedback forceFf , is given as:

Ff (s)
Fk(s)

=
1

f0s3 + f1s2 + f2s+ f3
(20)

Combined dynamics
Using the controllerC and the transfer functionsFf /Fk,

yd/ŷd, Fm/e, y/Fm and Fi/y defined in equations 20, 9, 8, 10
and 19, the dynamics can be expressed in a simple block di
gram. This can be found in Fig. 2.

A further simplification, which removes the MEI feedback
loop, can be made by establishing a transfer function includin
the whole drive system,y/yd(s):

y
yd

=
Fm
e

y
Fm

1+ Fm
e

y
Fm

(21)

The complete dynamics expressed in one transfer functio
from the water forcingFw to bracket positiony is written as:

y
Fw

=
Ff
Fk

Fm
e

y
Fm

yd
ŷd

1
sC

1+ Fm
e

y
Fm
− Ff

Fk

Fm
e

y
Fm

Fi
y

yd
ŷd

1
sC

=
Ff
Fk

y
yd

yd
ŷd

1
sC

1− Ff
Fk

y
yd

Fi
y

yd
ŷd

1
sC

(22)

This transfer function is of order 15.

The simulated system
For the current work, the desired system to be simulate

is chosen as a 2nd order mass-damper-spring system written
4
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Figure 3. Frequency response of the VCTA plant model. a: Only the

filter model, b: Filter and structural model, c: Filter, structural and drive

system model, d: Full model.

terms of the mass ratiom∗, commanded damping ratioζc, natu-
ral frequencyωn and displaced water volume∇, here given as a
transfer function from fluid forcingFw to cylinder positiony :

y
Fw

(s) =
1

ρ∇m∗

s2 +2ζcωns+ω2
n

(23)

Model verification and results
Figure 3 shows a Bode diagram of the plant model. Th

complete plant transfer function is from commanded velocityvc

to filtered inertial feedback forceFf i :

Ff i

vc
=

1
s

yd

ŷd

y
yd

Fi

y

Ff

Fk
(24)

This excludes the effect of fluid forcingFw, which is viewed as an
external perturbation of the system. The Bode diagram contai
five different systems marked “a” to “d”. “a” is the force filter
model alone, i.e.y/ŷ= 1, y/yd = 1 andFi/y=−Mcs2. “b” is the
force filter and structural model, i.e.y/ŷ = 1 andy/yd = 1. “c”
is the force filter, structural and drive system model, i.e.y/ŷ= 1.
“d” is the full plant model.

For evaluation of the closed-loop transfer function (CLTF
model given by Eq. 22, a control algorithm must be included
The control algorithm used models the dynamics given in Eq. 2
and accounts for the inertial term in the feedback force. By usin
an exact inertia correction, the discrepancy between the close
loop model and the desired dynamics will be given solely by th
Copyright c© 2003 by ASME
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Figure 4. Frequency response of the CLTF

modelled system dynamics. The dynamics presented here is
m∗ = 4, ωn = 5rad/s andζ = 0.05. Figure 4 shows a Bode dia-
gram with with five different systems marked “a” to “d” and “s”.
“s” is the desired dynamics, and “a” to “d” are the closed-loo
transfer functions when accounting for different elements of th
dynamics, as used in the plant description in Fig. 3.

Since the force filter is included in all the models, the cuto
frequency of at33Hz= 207rad/s is clearly seen in all the mag-
nitude plots, and also as the midpoint of a 270 degree phase l
for the “a” model in the phase plot. The addition of the structur
modes is seen as a small change in amplitude and phase ov
limited area from approximately 50 to 300rad/s. The magnitude
of the contribution is dependent on the structural mode dampi
ratio, which is a uncertainty in the model. The inclusion of th
drive system model does not give any significant contribution
the dynamics below 4000rad/s. This addition is seen as the “c”
model branching off from “a” and “b” in both magnitude and
phase. The addition of the time delay in drive and computatio
seen in line “d”, gives a clear contribution to the phase for all fre
quencies, but is not seen in the magnitude plot. Figure 5 sho
a detail of the experimental area, and reveals that only the
ter model and the time delay are contributing to any significa
change in phase.

CONTROLLER DESIGN AND TESTING
The purpose of the control design process was to creat

controller that would give the closed-loop system the properti
of a second-order mass-spring-damper system. Loopshaping
chosen as control design approach. This method is described
Åström and Wittenmark [1] and Doyle et al. [5], and was use
also by Hover and Triantafyllou [7]. The general idea of loop
shaping can be illustrated as follows: Given a closed-loop sy
tem transfer functionL(s) and a desired dynamic responseS(s),
5
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design the controllerC(s) so thatL(s) ' S(s) in the interesting
interval ofs.

For the system in question,L(s) is the closed-loop transfer
function from fluid forcingFw(s) to the cylinder positiony(s),
and S(s) can for the time being be defined as a second-order
mass-spring-damper system. Settingy

Fw
= Sand solving Eq. 22

for C gives:

C =
S

Ff
Fk

y
yd

1
s[1+SFi

y ]
(25)

The order of the controller will be the sum of the orders of the
dynamic model and the desired dynamics. The by far most sig-
nificant dynamic component for low frequencies is the force fil-
ter, so a compensation for this is a natural part of the controller.
The structural mode model has contributions located around 100
rad/s. The structural modes introduce no significant phase at
low frequencies, so in the light of the desired controller proper-
ties, they need not be included in the controller as long as they
no not interfere with the system stability. The motor and board
model give no significant contributions to the dynamics below
4000rad/s, and are naturally left out of the controller. The com-
putational delay is also neglected, since the phase introduced b
this is small compared to the filter phase. In a future refinement,
it is desired to include also this phase lag in the controller. The
controller transfer function then becomes:

y
yd

= 1

Ff

Fk
=

1
f0s3 + f1s2 + f2s+ f3

Fi

y
= −M̂cs

2

Copyright c© 2003 by ASME

ms



he
-

be

ar

cy
t of
r
r

nd
d to
en

nt

-
te
est

ine.

m-
are

Dow
C(s) =
f0s4 + f1s3 + f2s2 + f3s

1
S(s) − M̂cs2

(26)

If S(s) is specified as a second order mass-spring-damper syst
with parametersM, B andK, the controller becomes:

C(s) =
f0s4 + f1s3 + f2s2 + f3s

(M− M̂c)s2 +Bs+K
(27)

This controller polynomial has the expected form, consisting of
second order system with reduced simulated mass due to the
ertial compensation, and force filter inversion. Since the numer
tor is of higher order than the denominator, this transfer functio
is not proper, and hence not suitable as a controller. To ma
the transfer function proper, extra rolloff at high frequencies wa
added. This also aids in noise attenuation. To increase flexibili
and tuning options, two second order systems with independe
natural frequencies and damping ratios were added to the desi
dynamics, giving an additional fourth order rolloff. To avoid the
rolloff affecting the dynamics significantly, the natural frequen
cies should be as high as possible and the damping ratios lo
The rolloff polynomialsr i(s) (i = {1,2}) and the new controller
polynomial was specified as :

r i(s) =
s2

ω2
ri

+2ζri
s

ωri
+1 (28)

C(s) =
f0s4 + f1s3 + f2s2 + f3s

(Ms2 +Bs+K)r1(s)r2(s)− M̂cs2
(29)

This controller was chosen for implementation and testing. Th
rolloff natural frequenciesωri were chosen as 100 and120Hz,
and the damping ratiosζri chosen as 0.5 and 0.3.

The continuous time controller transfer function was dis
cretized by Tustin’s approximation and implemented in polyno
mial form. Care was taken to assure correct timing of the con
trol loop, as to not corrupt the performance of the control system
Error-checking throughout the control code was included, so th
desired real-time performance could be validated for each run.

Phase lag and damping
A phase lag in the system will effectively be seen as damp

ing. The phaseφ between force and position of a general second
order system can be written as:

φ = tan−1(
−2ζ ω

ωn

1− ω2

ω2
n

) (30)
6
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For frequencies below the natural frequency of the system, t
phase lag is small and approximately linear in the forcing fre
quency. If this phase is added to another system, it may
viewed as a phase lagδφ due to a pure time delayτ, giving rise
to the added damping ratioδζ. Combined with the small angle
identity for the tangent function this gives:

δζ≈
δφ(ω2

ω2
n
−1)

2 ω
ωn

=
τ
2

ωn(
ω2

ω2
n
−1) =

τ
2

ωmod (31)

This expression shows that the introduced damping ratio is line
in the modified frequencyωmod, given a linear phase.

Frequency response
Extensive tests were performed to determine the frequen

response characteristics of the system. To remove the effec
fluid forces, the tank was drained for water. With the cylinde
in air, the only term in the force feedback loop was the cylinde
inertial force. An external force was generated in software a
filtered to get the same phase lag as the actual force, and adde
the feedback force from the force sensors. This total force th
drove the system as in normal free vibrations.

Frequency response tests were performed for 5 differe
simulated systems:ωn = 5 with ζc=0.05, 0.01 and 0.00 and
ζc=0.01 withωn = 3 and 7. For each system, forcing frequen
cies from 2 to 8rad/s were tested and at least 50 steady-sta
oscillations included in the postprocessing. Figure 6 shows t
results for a simulated system withζc = 0.01andωn = 5 as stars,
with the desired second-order system drawn as a continuous l

The controller worked properly for varying damping and
natural frequency, and gave consistent results for very low co
manded damping. However, the desired system dynamics
Copyright c© 2003 by ASME
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not exactly met. The desired natural frequency and motion ma
nitude are achieved with high precision, but the phase deviate
little from that of the desired system. From the model results pr
sented above, this was to be expected, since the controller d
not account for the phase from the time lag. According to th
discussion on phase and damping, the phase discrepancy g
rise to a varying damping ratio. To investigate this, the syste
damping ratioζs was calculated from the lift force coefficient in
phase with velocity,Clv. Figure 7 shows the variation ofζs and
the damping ratio discrepancyδζ = ζs− ζc versus the modified
frequencyωmod for the same tests.
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Figure 7. System damping ratio ζsversus forcing frequency (left) and

damping ratio discrepancy ζs− ζcversus ωmod(right) for all frequency

response runs

It is clear thatζs varies with up to 2 percent for a givenζc

in the given frequency interval, and thatδζ line up nicely to a
straight line inωmod. As shown previously,this corresponds to
a time delay in the system. By including all the dynamics in the
system model, and using the controller defined in this chapt
the model may be used to predict the controller performanc
Figure 8 shows a detail of experimental results withζc = 0.01
compared to the model prediction and the desired system.

The model predicts the actual phase lag seen in the e
periments to a high degree. Using the model to predict t
introduced damping, the resulting correction line is almo
perfectly linear and agrees well with the experimental results.

Damping ratio correction
An attempt was made to correct the commanded damping

tio ζc in order to achieve a desired system damping ratioζs. For
a specific run, this involved assuming the forcing frequency
be known, finding the damping ratio correctionδζ from a curve
fit to the results in figure 7 and then subtractingδζ from ζs to
find ζc. To test the effect of making such a correction, runs wit
a desiredζs of 0.0018 were performed. The measured dampin
ratios were found to be within the interval0.018±0.003, which
is a large improvement over the constantζc runs.

The tradeoff in using the damping ratio correction is a sma
7
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magnitude distortion. In changing the commanded damping r
tio, the phase is changed to yield the desired system dampin
but in the same process the magnitude of the frequency respo
is changed.

For the frequency response tests,ωmod could easily be cal-
culated, since bothωn andω f are known. For free vibrations,
this is not so, and an alternative method had to be formulate
The chosen approach is to perform initial tests with constantζc,
and find the relation ofωn to ω f for the range of reduced veloc-
ities to be tested with constantζs. This can be done because the
natural frequency changes very little with the change in dampin
in question here. Having established an experimental curve
the relationship betweenωn andω f , ωmod may be calculated for
anyVrn covered by the span inωn. The damping ratio correc-
tion δζ is then used to findζc from ζs. This approach assumes
that the fluid forcing is mainly sinusoidal, and of consistent fre
quency between runs. In reality the forcing is broadband, so it
only at the main frequency the damping ratio will be exactly cor
rect. The variation is however small, as shown in the frequenc
response tests earlier.

Pluck tests

Pluck tests in air were performed to further validate the sys
tem performance. The system was run in free vibration mod
and perturbed by displacing the cylinder. The decay of the cylin
der was logged and analyzed. For zero commanded damping,
actual damping ratio calculated from the logarithmic decay wa
found to be approximately 0.002, which in this case is also equ
to δζ. This result agrees fairly well with the expected damp
ing ratio from the frequency response tests, which was approx
mately 0.003. Pluck tests with other commanded damping rati
gave the same damping ratio discrepancy as the zero case.
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Suggestion for an improved controller
The performance of the controller used in this work is good

but further improvements may be possible. The discrepancy fro
the desired performance has been shown to be due to a time
in the system, of which the controller is not compensating for
If the controller could compensate for this time lag, the system
phase would be exactly that of the desired system, and no ad
tional damping ratio would be introduced. Two possible ways o
achieving this are presented here.

Additional lead compensation may be added to the con
troller in form of a first-order system. The controller transfer
function would then have the following form:

C(s) =
( f0s4 + f1s3 + f2s2 + f3s)

(Ms2 +Bs+K)r1(s)r2(s)− M̂cs2

s+W
W

(32)

WhereW is the tuning parameter for the lead compensation. I
was found thatW = 180rad/s would cancel out the phase from
the time lag for low frequencies. The magnitude is unaffected
This controller has the same order numerator and denominato

Another way of modifying the controller is to change the
butterworth filter model. If the cutoff frequency in the filter com-
pensation is decreased from33Hz, more phase will be taken out
at low frequencies. Setting cutoff at23.5Hz will cancel out the
phase from the time lag for low frequencies. This approach give
no change to the controller transfer function, but will affect phas
and magnitude of the closed loop around the cutoff frequenc
This may lead to problems, since the affected frequency is clos
to the natural modes of the structure.

Even with the phase from the time lag being compensate
for, some phase is still introduced in the controller due to th
added rolloff-terms. Since the rolloff was chosen as high as po
sible without giving problems with stability, it is doubtful that
more phase may be compensated for without affecting the stab
ity. If any of the above modifications were to be tried out, carefu
tuning of the system would be necessary. Using the current co
trol system design (i.e. loopshaping), we believe that the syste
is being pushed close to the limit of its capabilities.

RESULTS
The towing speed for the tests was chosen as0.25m/s,

which with a cylinder diameter of0.0762m givesRe≈ 19000.
The kinematic viscosityν has been estimated to1E− 6m2/s.
Tests were run for system natural frequencies from 2 to 8rad/s,
which corresponds to nominal reduced velocitiesVrn from 2.6 to
10.3

49 test runs were performed withζc of 5 and 2 percent for
the whole range of natural frequencies. From these results, a t
matrix for constantζs of 5, 2 and 1 percent was established, and
8
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tests were again run forVrn from 2.6 to 10.3. In total, 75 new
runs were done.

Processing of the free vibration data showed the larges
amplitudes forVr from 5.50 to 6.25. 10 forced vibration runs
each atVr 5.50, 5.75, 6.00 and 6.25 were done for comparison
with the free vibrations.

Lock-in and oscillation frequencies
Figures 9 and 10 shows the relationships between main forc

ing frequencyω f , motion frequencyω, system natural frequency
ωn and actual natural frequency included added massωa.

ωa can be found fromωn by using the experimentally deter-
mined added mass coefficient:

ωa = ωn

√
m∗

m∗+Cm
(33)

Lock-in is shown as a horizontal line ofωa/ω f = 1. For
lower frequencies (highVrn), the calculations are more uncertain,
and the data points are scattered.

Standard deviations for ζs = 0.01
The test series with constant system damping ratio of 1 per

cent has been used as an indication of the standard deviation f
the rest of the results, with plus/minus one standard deviation
plotted as vertical lines for all data points.
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Figure 11 shows the total lift coefficientCl and phaseφ. The
standard deviation of the phase for low frequencies is large. Th
is because the time series for these runs were irregular, and
proper steady-state sinusoidal oscillation was reached, giving u
certain coefficient calculations. This can also be seen by the r
peated tests, which turn out somewhat dissimilar for highVrn.
For the rest of theVrn span, the standard deviations are reason
able, and the repeated tests show good repeatability. In the loc
in region the standard deviations are small, and repeated te
almost identical.

Figure 12 shows lift coefficients in phase with velocity and
acceleration:Clv andCla. The standard deviation ofClv is large,
but the repeated tests show good agreement. Standard deviati
of Cla are of the same magnitude.

The cases ζs = 0.01, 0.02 and 0.05
Figure 13 shows amplitude ratioA/D (a), drag coefficient

Cd (b), lift in phase with velocityClv (c), lift in phase with accel-
erationCla (d), phase angleφ (e) and force correlation coefficient
Fc (f) versusVrn for ζs = 0.01, 0.02 and 0.05. A few wild points
for φ at highVrn have been removed from the plot. Figure 14
shows the same results plotted versusVr .

The phase exhibits the expected behavior, with a shift at a
approximatelyVrn ≈ 6. This corresponds to a natural frequency
of 3.4 rad/s. Cla lies approximately on the same curve for all
damping ratios, reaching a minimum of -3 forVrn just below
5. The plot ofClv shows large differences between the damp
ing ratios. The shapes of the curves are approximately the sam
reaching maximum atVrn ≈ 5. The peaks seems to be shifted a
little up in Vrn with increasing damping ratio. The peak values
for damping ratios 0.05, 0.02 and 0.01 are respectively 0.75, 0.3
9
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Figure 13. Free vibration results versus Vrn for ζs = 0.01, 0.02 and 0.05

and 0.21. TheCd plot is more irregular than the other plots, but
shows the same general shape as the lift force plots. The ma
mum drag occurs atVrn = 5 for all damping ratios. The amplitude
ratio reaches maximum a little aboveVrn = 5. The maximum val-
ues forζs = 0.05, 0.02 and 0.01 are 0.85, 1.1 and 1.15.Fc is
exactly 1 forVrn from 3.7 to 5.5. Between 5.5 and 6.5, the corre-
lation drops suddenly, but increases again forVrn up to 8. Here it
drops off again, showing no clear pattern for any of the dampin
ratios. Viewed together with the standard deviation, which wa
discussed in the previous section, this is consistent with resu
from Hover et al. [6].

The results from the test series with constantζs were com-
pared to the results from the correspondingζc series. The dif-
ferences between the runs are small, but some observations m
be made. The values ofClv for the lower range ofVrn are larger
Copyright c© 2003 by ASME
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Figure 14. Free vibration results versus Vr for ζs = 0.01, 0.02 and 0.05

for the constantζc runs. This is consistent with the actual sys-
tem damping ratio being higher than desired. The peak amp
tudes are slightly larger for the constantζs runs. This consistent
with the amplitude distortion introduced by modifying the com-
manded damping ratio.

Forced vibration results
The peak oscillation amplitudes in free vibrations occur fo

reduced velocitiesVr between 5.75 and 6. To test the free vibra-
tion results, a set of forced vibration tests were run forVr = 5.5,
5.75, 6.0 and 6.25 with varying amplitude. Figure 15 showsClv

versusA/D for all values ofVr . It it interesting to notice that
the curves forVr 5.75 and 6.00 cross zero forA/D 1.1 - 1.15.
The zero-crossing ofClv marks the point at which the fluid nei-
10
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results

ther gives or takes energy from the system; for positive values
absorbs energy from the system (thus damping it), whereas fo
negative values it helps excite the system. This point should the
correspond to the point of maximum amplitude in free vibrations
which is exactly what is seen here. This is a convenient confir
mation of the free vibration results, and also shows that force
vibrations is a good model for predicting free vibrations. The
picture is not so clear for theVr cases of 5.5 and 6.25. The first
of these lines predict no motion aboveA/D = 0.1, but in free
vibration approximately 0.2 is found. The second line predicts
a maximumA/D of 0.9, whereas the free vibrations gave 1.0.
There are clearly some uncertainties in the experiments, but i
total the forced vibration results agree fairly well with the free
vibrations. A further comparison between forced and free vibra
tion results was made by extracting values ofClv andA/D for
constantVr of 5.75, 6.00 and 6.25. The three damping ratios thus
yielded three points for each value ofVr . These points are plotted
with Clv from the forced vibrations in Fig. 15. The points forVr

= 6 shows excellent agreement, whereas the points forVr = 5.75
and 6.25 are less accurate, though still in reasonable agreemen

COMPARISON WITH PREVIOUS RESULTS
Previous free vibration results with a similar test setup were

performed by Hover et al. [6]. An interesting discrepancy from
the current data can be found forVr from 6 to 8. In the data from
Hover et al., there is here clearly an area of almost constant am
plitude, or “knee”, which is not seen in the present data. Simila
differences between apparently similar experimental setups hav
been noticed before, and are discussed in Khalak and Williamso
[10].

Khalak and Williamson [10] and Govardhan and Williamson
[9] have performed extensive tests using a cantilever cylinder i
a flow channel. Their results indicate two types of response, de
pending on the magnitude of the combined mass-damping pa
rameter (m∗ζ). For high (m∗ζ), two amplitude branches are dis-
tinguished, separated by a discontinuous mode transition, whi
low (m∗ζ) gives an additional branch and two mode transitions.

The results presented here do not show any clear respon
branches or discontinuous mode transitions. This also applie
Copyright c© 2003 by ASME
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to the results by Hover et al. [6]. A passive setup describe
in Vikestad [13] and Skaugset and Larsen [12] produces resu
similar to the ones described here. Vikestad used a light cylind
with mass ratio 1.66 and damping ratio approximately 0.8, g
maximum amplitude ratios of approximately 1.15 forVrn 6 and
observed a slight “knee” in the response, although much sma
than the one observed by Hover et al. Skaugset and Larsen
a mass ratio of 2.96 and damping ratio 1.9 percent. They g
slightly smaller amplitudes and a did not see the “knee”. The
results agree well with the ones presented here for the wh
range of reduced velocities. The reason for these discrepanc
between experimental setups is unclear, and should be subjec
further investigation.

CONCLUSIONS
An essential conclusion of this work is the usefulness o

applied robotics in fluid mechanics. It has been shown that
force-feedback control system using a robust mechanical se
can achieve remarkably low levels of mass-damping, compa
ble to the lowest achieved by any passive system presented in
erature. Compared to a passive system, the complexity increa
due to the force-feedback loop and control system. The mo
important gain is however the flexibility in changing the system
parameters at will, and that the verification of the system perfo
mance may be done in general terms, covering a wide parame
space. The ability of changing the system natural frequency a
enables free vibration tests over a range of reduced velocities
constant Reynolds number, as the flow velocity is kept consta
between runs.

The focus of the present work has been on design and eva
ation of the feedback control system, and the free vibration te
were only extensive enough to give preliminary conclusions. T
results show that further testing with the system should be c
ried out, covering a wider parameter space and investigating
Reynolds-number dependability of the results. This might als
shed some light on the different responses experienced with d
ferent experimental setups.
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