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model: for shared human-robot control of a
virtual percussion instrument
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Abstract

A study on force-feedback interaction with a model of a neural oscillator provides insight into enhanced human-

robot interactions for controlling musical sound. We provide differential equations and discrete-time computable

equations for the core oscillator model developed by Edward Large for simulating rhythm perception. Using a

mechanical analog parameterization, we derive a force-feedback model structure that enables a human to share

control of a virtual percussion instrument with a “robotic” neural oscillator. A formal human subject test indicated

that strong coupling (STRNG) between the force-feedback device and the neural oscillator provided subjects with

the best control. Overall, the human subjects predominantly found the interaction to be “enjoyable” and “fun” or

“entertaining.” However, there were indications that some subjects preferred a medium-strength coupling (MED),

presumably because they were unaccustomed to such strong force-feedback interaction with an external agent.

With related models, test subjects performed better when they could synchronize their input in phase with a

dominant sensory feedback modality. In contrast, subjects tended to perform worse when an optimal strategy was

to move the force-feedback device with a 90° phase lag. Our results suggest an extension of dynamic pattern

theory to force-feedback tasks. In closing, we provide an overview of how a similar force-feedback scenario could

be used in a more complex musical robotics setting.
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1 Introduction
1.1 Interactive music

Although any perceivable sound can be synthesized by a

digital computer [1], most sounds are generally consid-

ered not to be musically interesting, and many are even

unpleasant to hear [2]. Hence, it can be argued that new

music composers and performers are faced with a com-

plex control problem–out of the unimaginably large

wealth of possible sounds, they need to somehow specify

or select the sounds they desire. Historically the selec-

tion process has been carried out using acoustic musical

instruments, audio recording, direct programming, input

controllers, musical synthesizers, and combinations of

these.

One particularly engaging school of thought is that

music can be created interactively in real time. In other

words, a human can manipulate input controllers to a

“virtual” computer program that synthesizes sound

according to an (often quite complicated) algorithm.

The feedback from the program influences the inputs

that the human provides back to the program. Conse-

quently, the human is part of the feedback control loop.

Figure 1 depicts one example, in which a human plays a

virtual percussion instrument using a virtual drumstick

via an unspecified input coupling. The human receives

auditory, visual, and haptic feedback from a virtual

environment (see Figure 1). In an ideal setting, the feed-

back inspires the human to experiment with new inputs,

which cause new output feedback to be created, for

example for the purpose of creating new kinds of art [3].

The concept of interactive music has also been

explored in the field of musical robotics. Human musi-

cians perform with musical instruments and interact
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with robotic musicians, who also play musical instru-

ments (not shown). For example, Ajay Kapur has

designed a robotic drummer that automatically plays

along with real human performers, such as sitar players

[4]. Similarly, researchers at the Georgia Institute of

Technology have been studying how robots can be pro-

grammed to improvise live with human musicians [5].

As the community learns how to design robots that

behave more like humans, more knowledge is created

about human-computer interaction, human-robot inter-

action, new media art, and the human motor control

system.

Our study focuses specifically on force-feedback

robotic interactions. For our purposes, it is sufficient for

a human to interact with a virtual robot as depicted in

Figure 2, which simplifies the experimental setup. The

key research question motivating this particular article

is, “How can we implement shared human-robot control

of a virtual percussion instrument via a force-feedback

device?” More specifically, “How can these agents be

effectively linked together (see the ?-box in Figure 2) in

the context of a simple rhythmic interaction?” The

study is part of a larger research project on studying

new, extended interaction paradigms that have become

possible due to advances in force-feedback interaction

technology and virtual reality simulation [6].

We believe that the interaction can be more effective

if the human is able to coordinate with the virtual

robot. In the human-robot interaction literature, Ludo-

vic et al. suggest that if robots are designed to make

motions in the same ways that humans make motions,

humans will be able to coordinate more easily with the

motion of the robots [7]. For this reason, we seek to

endow our virtual robot with some kind of humanlike

yet very elementary rhythm perception ability, which

can be effectively employed in a force-feedback context.

There is evidence that neural oscillators are involved in

human rhythm perception [8], so we will use one in our

model. Future study will involve extending the virtual

robot to incorporate multiple coupled neural oscillators

to enhance its abilities, but the challenge in the present

study lies in implementing high-quality force-feedback

interaction with a single neural oscillator.

It is desirable to prevent force-feedback instability in

this context. One approach is to employ mechanical

analog models when designing robotic force feedback so

that the interactions preserve energy [9]. This is one

reason why our laboratory has been employing mechani-

cal analog models since as early as 1981 in our designs

[10,11]. In the present study, we employ a computable

mechanical analog model of a neural oscillator for

implementing force-feedback interaction.

A linear-only version of the mechanical analog model

was proposed earlier by Claude Cadoz and Daniela

Favaretto. They presented an installation documenting

the study at the Fourth International Conference on

Enactive Interfaces in Grenoble, France in 2007 [12]. In

the present study, we relate interaction scenarios within

the framework of human-robot shared control in Sec-

tion 1, we review prior research on neural oscillators to

form a basis for the model in Section 2, we develop a

mechanical analog for the “Large” neural oscillator in

Section 3, we calibrate six versions of the model and we

perform two human subject tests to evaluate them in

Section 4. Finally, following the conclusions in Section

5, the appendices provide some additional details as well

as a motivating introduction into how the model can be

applied to robotic musicianship and force-feedback

conducting.

2 Related evidence of neural oscillation and
coordination
2.1 Perception of rhythm

The reaction time of the human motor system lies

approximately in the range 120-180 ms [13]; however,

by predicting the times of future events, humans are

able to synchronize their motor control systems to

external periodic stimuli with much greater temporal

Figure 1 Interactive scenario enabling a performer to play a

virtual percussion instrument.

Figure 2 Scenario for shared human-robot control of a virtual

percussion instrument via an unspecified coupling.
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accuracy, for example as is necessary during musical

performance or team rowing. Humans can even track

rhythms despite changes in tempo, perturbations, and

complex syncopation, and humans can maintain a pulse

even after the external stimulus ceases [14]. Brain ima-

ging studies reveal neural correlates of rhythm percep-

tion in the brain. In particular, musical rhythms trigger

bursts of high-frequency neural activity [8].

2.2 Central pattern generators (CPGs) for locomotion

Animals operate their muscles in rhythmic patterns for

fundamental tasks such as breathing and chewing and

also for more strongly environment-dependent tasks

such as locomotion. Neural circuits responsible for gen-

erating these patterns are referred to as central pattern

generators (CPGs) and can operate without rhythmic

input. The CPGs located in the spines of vertebrates

produce basic rhythmic patterns, while parameters for

adjusting these patterns are received from higher-level

centers such as the motor cortex, cerebellum, and basal

ganglia [15]. This explains why, with some training, a

cat’s hind legs can walk on a treadmill with an almost

normal gait pattern after the spine has been cut [16]. In

fact, the gait pattern (for instance, run vs. walk) of the

hind legs can be caused to change depending on the

speed of the treadmill for decerebrated cats [17].

Similar experiments have been carried out with other

animals. However, it should be noted that in reality,

higher cognitive levels do play a role in carrying out peri-

odic tasks [18]. For example, humans do not exhibit loco-

motion after the spine has been cut–it is argued that the

cerebrum may be more dominant compared to the spine

in humans compared to cats [17]. Nonetheless, in some

animals, the CPG appears to be so fundamental that gait

transitions can be induced via electrical stimulation [15].

CPGs can be modeled for simulating locomotion of

vertebrates and controlling robots. Figure 3 depicts a

model of a Salamander robot with a CPG consisting of

ten neural oscillators, each controlling one joint during

locomotion. The figure presents one intriguing scenario

that could someday be realized in multiple degree-of-

freedom extensions of this study. Imagine if a human

could interact using force-feedback with the state vari-

ables of a Salamander robot CPG. For example, in an

artistic setting, the motion of the joints could be soni-

fied, while a live human could interact with the model

to change the speed of its motion, change the direction,

and or gait form.

2.3 Motor coordination in animals

CPGs could also provide insight into motor coordina-

tion in animals. For example, humans tend to coordi-

nate the movement of both of the hands, even if

unintended. Bimanual tasks which do not involve basic

coordination of the limbs tend to be more difficult to

carry out, such as

• patting the head with one hand while rubbing the

stomach in a circle with the other hand, or

• performing musical polyrhythms [13], such as play-

ing five evenly spaced beats with one hand while

playing three evenly spaced beats with the other

hand.

Unintended coordinations can also be asymmetric. For

example, humans tend to write their name more

smoothly in a mirror image with the non-dominant

hand if the dominant hand is synchronously writing the

name forwards [13].

The theory of dynamic patterns suggests that during

continuous motion, the motor control system state

evolves over time in search of stable patterns. Even

without knowledge of the state evolution of microscopic

quantities, more readily observable macroscopic quanti-

ties can clearly affect the stability of certain patterns.

When a macroscopic parameter change causes an

employed pattern to become unstable, the motor control

system can be thought to evolve according to a self-

organized process to find a new stable pattern [13].

For example, consider the large number of micro-

scopic variables necessary to describe the state evolution

of a quadruped in locomotion. Gait patterns such as

trot, canter, and gallop differ significantly; however, the

macroscopic speed parameter clearly affects the stability

of these patterns. For example, at low speeds, trotting is

the most stable, and at high speeds galloping is the

most stable [13].

Dynamic patterns in human index finger motion can

be similarly analyzed. For example, Haken, Kelso, and

Figure 3 Intriguing scenario: force-feedback interaction with a

neural oscillator in a Salamander CPG.
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Bunz describe dynamic patterns made by test subjects

when asked to oscillate the two index fingers back and

forth simultaneously. At low frequencies, both the sym-

metric (0°) and anti-symmetric (180°) patterns appear to

be stable. However, at higher frequencies, the symmetric

(0°) pattern becomes significantly more stable. As a con-

sequence, when subjects begin making the anti-sym-

metric (180°) pattern at low frequencies, they eventually

spontaneously switch to the symmetric (0°) pattern after

being asked to gradually increase the frequency of the

oscillation. Thus, the frequency of oscillation is a macro-

scopic parameter [19]. The theory of dynamic patterns

can also be employed to describe human coordination

with external agents, which we describe next.

2.4 Coordination with external agents

2.4.1 Unintended coordination

Humans tend to coordinate motion automatically with

external agents, even when not intended. For example,

pairs of test subjects completing rhythmic tasks were

found to coordinate with one another when provided

with visual information about each others’ movements

despite being given no instructions to coordinate. Sub-

jects showed some tendency toward moving in either a

0° or 180° phase relationship [20]. In fact, even when

explicitly instructed not to coordinate, test subject pairs

still showed a statistical tendency toward 0° phase-align-

ment of arm motions [21].

Unintended interpersonal coordination is related to

the theory of motor resonance. This theory argues that

similar parts of the brain are activated when a human

makes a movement as when an external agent makes

the same movement [7,22]. Motor resonance could also

be involved with social behaviors such as the chameleon

effect, which describes the

“nonconscious mimicry of the postures, mannerisms,

facial expressions, and other behaviors of one’s inter-

action partners, such that one’s behavior passively

and unintentionally changes to match that of others

in one’s current social environment [23].”

There are some indications that the strength of motor

resonance may depend on whether the external agent is

perceived to be more or less human [24]. Consequently,

Marin et al. argue that the motor response of humanoid

robots should mimic that of humans to promote bidir-

ectional unintentional motor coordination between

robots and humans [7]. We assume a similar approach

in Sections 3 and 4, where we design a force feedback

system for coordinating with a human.

2.4.2 Intended coordination

Of course interpersonal coordinations can also be

intended. Many researchers seek to fit dynamical models

to human coordination of simple motor tasks. In the

case of bidirectional interpersonal coordination between

two humans swinging pendulums, a neuro-mechanical

dynamical model can be fit to the performance of parti-

cipants, which shows that participants meet both in

phase and at a frequency which lies in between their

own natural frequencies [25].

We briefly point out how that model could be adopted

to this article’s context. Figure 4 depicts two humans

playing percussion instruments with drumsticks.

Because they coordinate their motions using auditory,

visual, and haptic feedback (not shown), the humans

behave as if a weak coupling spring were effectively con-

nected between their drumsticks to exert a synchroniz-

ing influence (see Figure 4).

3 Neural oscillator model
3.1 The Large oscillator

In the present study, we employ the “Large” neural

oscillator introduced to the literature by Edward Large

[26]. With no inputs, the Large oscillator in its most

basic nonlinear form can be written as the following

[26]:

ż = z (α + iω + b| z |2) (1)

The variable z (t) Î ℂ rotates about the origin of the

complex plane at radial frequency ω Î ℝ. The damping

parameter a Î ℝ is chosen positive to cause the equili-

brium point at the origin of the complex plane to be

unstable, so that when subjected to some perturbations,

the Large oscillator will self-oscillate.

The parameter b Î ℝ causes the system to tend to a

limit cycle with magnitude rlim =
√

−α /b for b <0 as

can be shown by transforming into polar coordinates

using the identity z (t) = r(t)ei j (t). The system can then

be decoupled into the following two independent differ-

ential equations [26]:

ṙ = r(α + br2) (2)

Figure 4 Two human percussionists coordinating in playing a

steady beat at approximately the same frequency–when asked

to coordinate, two humans will synchronize the motion of the

drumsticks as if a coupling spring were effectively linking

them together.
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and

φ̇ = ω. (3)

More complex terms can also be incorporated into (1),

for which the nonlinear differential equation can also be

separated into two real parts, but this more complicated

work is not necessary for the present study [27].

Because the phase, as described by (3), evolves inde-

pendently of the amplitude (see (2)), the output position

of the Large oscillator tends to be approximately sinu-

soidal, even if the amplitude is changing relatively

quickly. This characteristic is especially useful for our

musical application as explained in Appendix C. In con-

trast, many other commonly employed neural oscillator

models have a complex interaction between the magni-

tude and phase [19,25,28,29]. Furthermore, we employ

the Large oscillator in this study also because it is a key

part of a model for human perception of rhythm [26],

implying that a robot incorporating Large oscillators

could theoretically perceive rhythm similarly to a

human.

3.2 Mechanical analog of Large oscillator

In order to facilitate robust force-feedback interaction

with the Large oscillator, we obtain mechanical analog

parameters for it. The easiest way to do so is to tem-

porarily linearize the Large oscillator by setting b = 0

and relating its differential equation to the following dif-

ferential equation for a damped harmonic oscillator:

mDẅ + Rẇ + kw = Fext, (4)

with mass mD in kg, stiffness k in N/m, and damping

R in N/(m/s), with an external force Fext in Newtons

acting on the mass.

Then for the Large oscillator, we incorporate a general

input term x Î ℂ:

ż = z (α + iω) + x. (5)

By separating the equation into its real w Î ℝ and

imaginary uÎ ℝ parts such that z = w + iu and x = x1 +

ix2, we can write

ẇ = αw − ωu + x1 (6)

u̇ = αu + ωw + x2, (7)

which results in the following after taking the deriva-

tive of both sides of (6) and substituting using (7):

mDẅ − 2αmẇ + m(α2 + ω2)w = mD(ẋ1 − αx1 − ωx2), (8)

where we have also multiplied both sides by the vir-

tual mass mD.

Comparing with (4), we have that the equivalent mass

is mD, the equivalent damping R = -2amD, and the

equivalent stiffness k = (a2 + ω2). Fext can be implemen-

ted by choosing inputs x1 and x2 such that

mD(ẋ1 − αx1 − ωx2) = Fext.

3.3 Force-feedback interaction

We focus now on designing the lowest-order virtual model

that can provide a human with high quality force, auditory,

and visual feedback. The simplest design involves making

the virtual robot incorporate only one neural oscillator–in

this case, the robot is the neural oscillator.

Then for simplicity, the drumstick can either be con-

nected directly to the human or to the neural oscillator.

For stability reasons, it is easier to connect the drum-

stick directly to the neural oscillator. In this case, a vir-

tual spring kC can be employed to limit the impedance

presented to the human [30]. Simultaneously, the spring

kC couples the human to the neural oscillator in the

same spirit as shown in Figure 4, which we believe

should promote the ability to coordinate and share con-

trol. The derived model structure is depicted in Figure

5, drawn to emphasize the fact that the elements are

assumed to move only vertically for the purpose of con-

ducting simple experiments.

4 Evaluation of the interaction using subject tests
We conducted two formal subject tests in order to eval-

uate how effectively human subjects could share control

of the virtual percussion instrument.

4.1 Setup

Each subject gripped a single degree-of-freedom force-

feedback device that moved vertically as represented in

Figure 5. The subject heard the vibration of the virtual

percussion instrument and saw the position of the force-

feedback device, the neural oscillator, and the virtual per-

cussion instrument on a screen. The virtual musical

instrument consisted of a simple damped resonator. The

instrument sounded once per oscillation period as the

drumstick passed through the center position moving in

the negative direction. The CORDIS-ANIMA formalism

and the ERGOS platform and force-feedback device were

employed [11,31-33]. For any reader who may wish to

implement the model, we provide in Appendix A explicit

discrete-time equations for simulation of the Large oscil-

lator within the CORDIS-ANIMA paradigm.

4.2 Quantitative subject test with the linearized Large

oscillator

4.2.1 Design

The model structure incorporated many parameters, so

we performed a quantitative human subject test to help
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determine how effective models should be adjusted.

During this stage, we focused on the following research

questions:

• Does force feedback provide the subject with better

control over the oscillator?

• Is it necessary for the spring kC to be so strong

that the oscillator and the force-feedback device

remain in phase?

• When rendering visual feedback, is it necessarily

optimal to plot the positions of the force-feedback

device and the oscillator, as would be the case with

real-world “physical” force-feedback interaction with

a haptic-rate resonator? Or could some other visual

representation be more helpful for the subjects?

These questions did not target specifically the neural

oscillator but more generally the whole setup at hand.

Hence, for the sake of simplicity in the first subject test,

we employed a linearized version of the neural oscilla-

tor, that is a simple oscillator obtained using the same

model structure and applying b = a = 0.

We found informally that it was generally easy to

increase the amplitude of the oscillation, and it was

often relatively easy to speed up the oscillator or slow it

down, but it tended to be more difficult to decrease the

amplitude or stop the oscillator. For this reason, we

decided to study how well a subject could coordinate

with the neural oscillator’s motion in such a manner as

to stop it, showing evidence of truly sharing control with

it in all interaction modes. In particular, we focused on

the situation in which the oscillator was started from

the home position with an initial negative velocity, and

the subject was asked to try to stop the output sound in

as few oscillation “bounces” as possible. To promote

high-fidelity force-feedback interaction, the unloaded

natural frequency of the neural oscillator was set to a

haptic rate of ω = 5.0 rad/sec, corresponding to about

0.8 Hz.

First Four Models We calibrated five different models,

for which we planned to later estimate and compare

their “intrinsic difficulties” relating to stopping the oscil-

lator. The first four models differed only in the imple-

mentation of kC, allowing to adjust how strong the

force-feedback link between the force-feedback device

and oscillator was. kC ranged from a small but non-neg-

ligible value for WEAK, to a medium-sized value for

MED, to large enough to force the device and oscillator

position to remain phase-locked for the STRNG “strong”

model. Figures 6, 7, and 8 provide some intuition into

how the positions of the force-feedback device and of

the neural oscillator influence each other, ranging from

the WEAK model, to the MED “medium” model, to the

STRNG model. The plots are shown only for subject

two, but the coupling affected all of the subjects in the

same manner. In the NF “no force-feedback” model, kC
had the same value as MED except that the force-feed-

back was disabled.

Fifth Model NF-HINT The fifth model was somewhat

different. We included it to study how a visual cue pro-

viding a strategy could help the subject perform the task

better given weak or non-existent force feedback, where

the positions of the force-feedback device and the oscil-

lator might not be well correlated.

In the following analysis, we assumed that the force-

feedback device would move according to a decaying

sinusoid at ω rad/sec. Even though no test subject pro-

duced this trajectory perfectly, many were similar, and

the assumption allowed for a simple analysis that pro-

vided important insight into the optimal phase relation-

ship. When force feedback is sufficiently weak (e.g., for

the NF and WEAK models), then because the “spring”

force on the neural oscillator is proportional to the dif-

ference in between its position and the position of the

force-feedback device, the most energy-efficient strategy

for stopping the oscillations the fastest is for the test

subject to force the device along a position trajectory

that lags that of the neural oscillator’s position by 90°.

However, according to the theory of dynamic patterns, a

90° visual phase relationship should be difficult for test

subjects to maintain because it is considered “unstable”

(see Section 2.3) [13,19].

Figure 5 Model structure for a human sharing control of a

virtual percussion instrument with a neural oscillator.
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Figure 6 Part of subject two’s performance for WEAK.
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Hence, we designed NF-HINT to be the same as the

NF model, except that, instead of displaying the position

of the Large oscillator on screen in yellow, we displayed,

in green, a ball that moved in proportion to the negative

velocity of the oscillator. Then an energy-optimal solu-

tion for the subject would be to perfectly follow the

green ball. This 0° visual phase relationship should be

more stable for the human motor control system, at

least for visually dominated coordination tasks. In other

words, the motion of the green ball represented the

most effective strategy. Although subjects would not be

able to perfectly follow the green ball, we reasoned that

in attempting to do so, they would be successful in stop-

ping the oscillator and could gain further insight into

the dynamics of the task, reducing the training time for

the experiment.

Procedure Eleven test subjects were recruited from the

laboratory. Some had no experience in manipulating a

force-feedback device, while others had used and even

programmed them before. Only subject eight was left

handed, and two subjects were women. One subject was

eliminated who was gave up in stopping the sound after

317 bounces for the NF model. All of the other test sub-

jects were successful.

For a copy of the instructions given to the partici-

pants, please see Appendix B. We were aware that the

task of stopping the bouncing could be challenging, so

we presented the models to the test subjects always in

the following order during the training phase: NF-HINT

to immediately provide insight into an optimal strategy,

followed by NF, MED, WEAK, and STRNG. During the

testing phase, each of the ten successful subjects

received the same five models ordered according to a

balanced Latin square to minimize first-order residual

learning effects during testing. If a subject made a mis-

take, the subject could repeat the test trial until satisfied

with his or her test trial.

4.2.2 Number of bounces

Table 1 shows B (n, c), the number of bounces that the

nth subject required to stop the oscillator from making

sound for the model c. The STRNG model clearly linked

the force-feedback device to the oscillator so well that

the subject was able to stop the oscillator much faster

than for the other models.

In general, the outliers were mostly relatively large

numbers of bounces (see Table 1). These trials tended

to correspond to instances in which the test subject

made one or more suboptimal movements, which added

so much energy to the oscillator, that significantly more

bounces were required to remove enough energy from

the oscillator to stop the sound. We noted that taking

the logarithm of the number of bounces would reduce

the numerical impact of the outliers (see (10)).

From visual inspection of the data in Table 1, the

reader will recognize that certain subjects tended to

require more bounces to stop the oscillator. Other sub-

jects may have been more skilled at interacting with

dynamical systems. For instance, subject number three

was a dexterous percussionist who attained the lowest

(i.e., best) number of bounces for each model.

4.2.3 Analysis

Prior to testing, some subjects may have learned more

than others, implying that some subjects may have

exhibited more skill than others at stopping the oscilla-

tor during testing. The differing skill levels of the sub-

jects made it harder to infer the intrinsic difficulty of

each of the test models directly from the data shown in

Table 1. Consequently, we developed a model for esti-

mating how much each subject’s skill level and how
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Figure 7 Part of subject two’s performance for MED.

0 0.5 1 1.5 2

−0.06

−0.04

−0.02

0

Time [sec]

P
o
s
it
io

n

 

 

Device position

Oscillator position

Figure 8 Subject two’s performance for STRNG.

Table 1 Number of bounces observed for the five models

NF-

Subject n NF HINT WEAK MED STRNG

1 33 24 49 23 1

2 10 7 37 12 1

3 5 5 10 5 1

4 78 24 103 18 2

5 15 7 15 7 1

6 20 10 14 13 1

7 17 14 85 17 7

8 18 9 13 8 1

9 13 9 30 17 1

10 122 7 19 7 1

Berdahl et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:9

http://asmp.eurasipjournals.com/content/2012/1/9

Page 7 of 14



much each model’s intrinsic difficulty contributed to the

number of bounces observed:

B(n, c) =
D(c)

S(n)
· Ns, (9)

where S (n) was the skill level of the nth subject, D (c)

was the intrinsic difficulty of the model c, and Ns was a

random noise variable. By taking the natural logarithm

of both sides of (9), we arrived at a linear equation in

the log-variables:

log B(n, c) = log D(c) − log S(n) + log Ns. (10)

We noted that taking the log of the noise Ns made its

histogram more symmetrical. We applied least squares

linear regression to the log-variables in (10) to estimate

log D (c) and log S (n). We labeled the estimates log

D̂(c) and log Ŝ(n) , respectively. This step enabled to

plot B(n, c)Ŝ(n) , the observed number of bounces nor-

malized by the estimated skill level of each subject, as

shown with the blue x’s in Figure 9. The same figure

also shows the estimated intrinsic difficulty D̂(c) of

each model with a black o.

Lilliefors’ composite goodness-of-fit test indicated that

taking the log of the normalized bounces tended to

make the values seem more normally distributed. Then,

using the repeated measures analysis of variance test, we

concluded that the data for the different models was not

all drawn from the same distribution. Finally, we applied

the two-sample Kolmogorov-Smirnov goodness-of-fit

hypothesis test to the data in order to evaluate the sta-

tistical significance of differences between pairs of mod-

els. Using a 5% significance level, we concluded that

only the pairs (NF, WEAK) and (NF-HINT, MED) were

not significantly different.

4.2.4 Stronger link provided better control

The intrinsic difficulties D̂(WEAK) , D̂(MED) , and

D̂(STRNG) were all pairwise significantly different. In

fact, each subject performed better with STRNG com-

pared to MED and with MED compared to WEAK,

implying that a stronger coupling spring kC, which

helped keep the subject and the neural oscillator

approximately in phase (recall Figures 6, 7, and 8),

promoted more effective coordination with the neural

oscillator. Indeed, this was in agreement with motor

resonance, and more specifically the theory of

dynamic patterns, which suggested that the subject

would coordinate with an external haptic-rate oscilla-

tor best when the dynamic pattern is stable, and

prior experiments had showed that a 0° phase rela-

tionship tends to be the most stable (see Section 2.3)

[13,19].

4.2.5 Non-physical visual feedback can be better

When humans watch passive objects vibrating mechani-

cally in nature, they typically observe displacements and

not velocities. In this sense, the NF-HINT model could

be thought of as non-physical because the movement of

the ball represented the oscillator’s negative velocity and

not its position. Hence, at first consideration, one might

assume that test subjects would have had relatively little

success at interacting with the non-physical model.

However, the situation required further consideration

because the task was especially difficult. As discussed in

Section 4.2.1, the test subject could damp the oscillator

the fastest by moving the force-feedback device 90°

behind the position of the oscillator, which is an

unstable pattern according to the theory of dynamic pat-

terns (see Section 2.3).

On a statistically significant level, subjects performed

the task of stopping the oscillator more successfully

when the negative velocity of the ball was plotted on the

screen (compare NF-HINT and NF in Figure 9). We

believe subjects performed more successfully because

the ball provided them with a strategy–they were taught

in the training phase to “follow the green ball.” Further-

more, they could then follow the green ball with a 0°

phase lag, which is much more stable from the dynamic

patterns perspective.

This result also showed that a theory from visual-only

human coordination experiments could be extended to

situations involving also auditory feedback: non-physical

visual feedback could enable a subject to complete an

otherwise impossible or very difficult task, if the visuali-

zation revealed an inner state or otherwise unseen strat-

egy that provided a human test subject with assistance

[18]. Indeed, some subjects commented that they could

not really understand what they were doing, but they

nonetheless performed successfully with NF-HINT.

NF NF−HINT WEAK MED STRNG
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Figure 9 Observed number of bounces normalized by

estimated skill B(n, c)Ŝ(n) (blue x’s) and estimated intrinsic

difficulty D̂(c) (black o’s).
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4.2.6 Benefit of appropriate force feedback

As suggested by Figure 9, subjects may have exhibited a

tendency to perform worse with weak force-feedback

(WEAK) in comparison with no force-feedback at all

(NO-FF). Although this effect was not determined to be

statistically significant, this possibility could be investi-

gated further in future study with larger numbers of

participants. We note that weak force-feedback could

possibly distract the subject from successfully employing

a certain strategy, in particular due to the 90° phase

relationship. Force-feedback may not be beneficial in all

situations.

However, the medium strength (MED) and strong

(STRNG) force-feedback models produced statistically

significant improvements over the basic no force-feed-

back model (NF), and (STRNG) even over (NF-HINT),

in which a strategy was explicitly provided to the test

subject. This result strongly underscores the utility of

incorporating force-feedback into systems that imple-

ment human interaction with virtual dynamical systems.

4.2.7 Perspective

Subjects were asked to fill out a questionnaire to

describe their experience. Since the subjects had been

instructed to attempt to follow the green ball for NF-

HINT during the training phase, they initially gained

some intuition into the difficulty and dynamics of the

task. The subjects all reported that they attempted to

follow the green ball for the NF-HINT model during

testing (see the relatively low numbers of bounces in the

NF-HINT column of Table 1). However, the green ball

was not present for the other four models. Many of the

subjects adapted this strategy more or less successfully

for the NF, WEAK, and even MED models. For example,

subject # 5 even reported attempting to imagine where

the green ball would have been in order to produce

mental guidance for stopping the oscillator for NF.

Other subjects reported “incorrect” strategies, particu-

larly for NF, such as keeping the force-feedback device

180° out-of-phase with the position of the Large oscilla-

tor. This strategy, if implemented perfectly, would not

have damped the Large oscillator’s motion. In fact, par-

ticipants would commonly move the force-feedback

device slightly fewer than 180° (instead of an optimal

precisely 90°) behind the Large oscillator’s motion,

resulting in only modest damping.

Finally, even though STRNG resulted in the best per-

formance for all of the test subjects, one subject

reported in his comments that he preferred the MED

spring coupling level kC. For MED, the coupling was

weak enough that he felt it was easier for him to com-

mand the motion of his hand; however, the coupling

was nevertheless strong enough that he could clearly

feel the motion of the virtual oscillator.

This was one of the motivating factors in designing

the next subject test, with which we wanted to investi-

gate more fully the subjects’ perceptions of the force-

feedback interaction with the strong coupling level kC
present in the STRNG model.

4.3 Qualitative subject test with the non-linear Large

oscillator

We created the STRNG-NL model by starting from the

STRNG model and adjusting the parameters to make

the model nonlinear. We believed that then the oscilla-

tor would behave more like a real, biological neural

oscillator. First we made the model nonlinear by

increasing b from zero. We increased b until the model

could not oscillate with an amplitude large enough to

attempt to push the force-feedback device beyond its

workspace. Then we increased a such that the system

would readily self-oscillate. The system had one equili-

brium point at the home position, but this equilibrium

point was unstable [26]. As before, the unloaded natural

frequency of the Large oscillator remained set to ω =

5.0 rad/sec, or about 0.8 Hz.

4.3.1 Our own perception of the model

Anecdotally, we found the model to be curiously intri-

guing. We considered interacting with it to be akin to

being set into the shoes of a child drummer who likes

to play a drum periodically by him or herself, but who

is also very capable of cooperating with external agents

to synchronize frequency of oscillation and amplitude.

We can report that in our opinion, the system was satis-

fying in the sense that we were able to share control

with a neural oscillator via an exciting coupling to play

a simple rhythm.

We found that the nonlinear part of the model pro-

vided a strange feeling that one typically does not

encounter in nature: when one attempted to move the

force-feedback device sufficiently far away from the

home (center) position, the damping increased rapidly.

The consequence was that the device did not immedi-

ately tend back toward the home position, but rather

any further motion away from the center position was

strongly damped, and then further perturbations could

easily, but not necessarily, contribute to the force-feed-

back device being pushed back toward the center posi-

tion. The reader can gain some more intuition into the

STRNG-NL model behavior by watching the video at the

bottom of the project website: https://ccrma.stanford.

edu/~eberdahl/Projects/NO/

Since negative damping was strong near the home

position, it was difficult to stop the force-feedback

device from moving when held in this region. But after

moving the force-feedback device further from the

home position, the nonlinear damping in combination
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with the damping from the subject’s hand could be

employed to stop the motion of the device.

An analysis of the dynamics showed that it was rela-

tively easy for the subject to increase the frequency of

oscillation simply by increasing the stiffness that his or

her hand presented to the force-feedback device. How-

ever, in our opinion, it was more difficult to slow down

the frequency of oscillation, simply because no human

could passively cause the hand to have a negative stiff-

ness, rather, any human would need to actively exert

forces on the force-feedback device to counter its

motion such that its frequency of oscillation decreased.

4.3.2 Subject test

We designed a subject test in order to study human

subjects’ perception of interacting with STRNG-NL.

Indeed, in nature, one does not have the opportunity to

reach into the brain or spinal column and adjust the

internal states of the neural oscillators directly by apply-

ing mechanical forces (see Figure 3 for one depiction),

so we suspected that subjects would find the force-feed-

back interaction to be strange; however, we thought that

they might consider it to be intuitive. After all, we do

have many neural oscillators inside our bodies, and we

use them constantly throughout our day-to-day life.

For the subject test, we recruited ten members of the

laboratory, two of them female, and one of them left-

handed. Eight of the participants had prior experience

manipulating a force-feedback device, the other two par-

ticipants were new master’s degree students at the

laboratory. Each of the subjects was given a question-

naire and encouraged to interact with STRNG-NL via

the device while answering the questions.

On the questionnaire, some questions pertained to the

subjects’ perceptions of the interaction, while other

questions pertained more directly to perceptions of the

force-feedback device. One of the reviewers suggested

that the subjects’ perceptions of the device itself could

be dependent on its visual appearance and description.

Because we had made no effort to dress up the force-

feedback device, make it look cute, or describe it as a

puppet-like entity or house pet, we decided to analyze

only the answers to the questions regarding the

interaction.

4.3.3 No unstable explosions

The choice of the model parameters (particularly b) as

well as the implementation were successful in the sense

that no subject was able to destabilize the force-feed-

back device to cause any discomfort or large-amplitude

oscillations that would have required disabling the

device, stopping the experiment, or similar.

4.3.4 Force-feedback interaction was “fun”

Eight out of ten subjects found the experience to be

“enjoyable,” and “fun” or “entertaining” to investigate.

Eight out of ten subjects also considered the interaction

to be intuitive, even though it does not exist in nature.

4.3.5 Sharing control with external agent

While most test subjects were immediately comfortable

with giving up some control with the robotic neural

oscillator, one subject reported not feeling comfortable

giving up some control to share with the neural oscilla-

tor. However, this subject also reported that he would

prefer to reduce the strength of the coupling spring kC.

Humans typically limit their force-feedback interactions

with strangers to only occasional occurrences, typically

with relatively low force levels. Hence, the situation cre-

ated in the experiment could be considered somewhat

strange. One subject likened it to “interacting with a

dog[’s tail]” although there are clearly also many

differences.

4.3.6 Most subjects discovered how to change oscillation

frequency

Nine out of ten subjects reported that they were able to

play faster than the free resonance frequency, and eight

out of ten could play slower. However, we had never

instructed the subjects on how they might go about try-

ing to change the frequency. This result implies that test

subjects acquired enactive knowledge simply by interact-

ing with the models, so they needed less explicit instruc-

tion. In fact, as we observed in the preceding subject

test, subjects were sometimes able to successfully adopt

a strategy without being able to accurately describe what

the strategy was.

4.3.7 Sharing control with neural oscillator

Although only eight out of ten of the subjects consid-

ered the interaction to be “intuitive,” all of the subjects

reported they were able to “cooperate” in some under-

standable manner with the oscillator.

4.4 Summary of results

All of the test subjects found that they were able to

share control with the neural oscillator. Only one sub-

ject reported feeling uncomfortable giving up some con-

trol, but this subject also suggested to reduce the

strength of the coupling.

In general, the results seemed quite promising. Our

own perception of the models, and also the subject test

we carried out, allowed us to state that force-feedback

interaction with a neural oscillator enabled innovative

coupling for exploring a new middle ground between

intuitiveness and strangeness.

5 Conclusion
The study underscores that it is necessary to understand

how the human motor control system works in order to

design effective active force-feedback interactions for

humans. Building upon ideas inherited from human
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studies of neural oscillators, we presented an explicitly

computable expression for the Large neural oscillator,

and we introduced its mechanical analog. Following

consideration of some different scenarios for humans

and robots interacting in real and virtual environments,

we described a simple model structure for enabling a

human and a virtual robot, which consisted of a single

Large neural oscillator, to share control of a virtual per-

cussion instrument. We implemented the model struc-

ture with a system providing concurrent force, auditory,

and visual feedback. We calibrated six different models,

and we performed formal subject tests with the models

in order to gain insight into how to tune them and how

human subjects would perceive the interactions.

We found that force feedback can be useful in helping

a human share control of a virtual percussion instru-

ment with a virtual neural oscillator (see Figure 5). The

force feedback must be carefully designed and cali-

brated. For instance, the force feedback should not

induce a contradictory percept in conjunction with

visual and auditory feedback, such as some subjects

might have experienced with the WEAK model. Further-

more, we found that visual feedback must not necessa-

rily be computed completely faithfully according to a

coherent physical model. Instead, if the visual feedback

is non-physical but provides the test subject with a good

strategy for completing a difficult task, then superior

performance can be observed (compare NF-HINT and

NF). In particular, if (at least a visual) 0° phase relation-

ship can result in successfully completing a task, then a

human subject will more likely be able to coordinate

successfully than if the optimal dominant phase relation-

ship is 90° [13].

In the context of coupling to the virtual oscillator, we

found that reducing the amplitude of an oscillation is

more difficult than increasing the amplitude or changing

the frequency of oscillation. For this reason, we focused

primarily on studying human subjects’ ability to stop the

oscillation. We found that increasing the coupling spring

kC enabled subjects to more effectively share control

with the neural oscillator (compare STRNG, MED, and

WEAK). Since a stronger coupling spring kC reduces the

phase lag in between the position of the force-feedback

device and the oscillator position, a nearly-0° phase rela-

tionship (e.g., with STRNG) seems to result in a more

stable dynamic pattern than a 90° pattern (e.g., with

WEAK). Hence, this result suggests an extension to

force-feedback tasks of dynamic pattern theory, which

has previously been applied to humans performing

visual tasks [13].

However, some subjects preferred to have a some-

what weaker coupling spring kC. We could attribute

this phenomenon to the fact that humans typically

limit their force-feedback interactions with strangers

to only occasional occurrences, typically with rela-

tively low force levels. For instance, we hypothesize

that a human could tend to feel more comfortable if

the interaction seems more akin to interacting with a

dog or an active puppet, rather than resembling hold-

ing hands tightly with a stranger. Nevertheless, eight

out of ten participants found the force-feedback inter-

action with the neural oscillator in STRNG-NL to be

“enjoyable” and “fun” or “entertaining,” which we

hope is often the case for musical interactions in

general.

6 Final words
The case with the strong coupling spring kC seems par-

ticularly intriguing as it provides human subjects with

the best control over a virtual neural oscillator. Very

low-latency feedback control systems are required for

digital implementation of such strong couplings to the

force-feedback device [30]. For our experiment, we were

able to achieve a delay on the order of a single sample,

thanks to a feedback control sampling rate of 44.1 kHz.

Such technology is not available in many laboratories,

but it will be necessary for further investigation along

the lines of the present study.

We would like to graciously thank researchers in the

field of robotic musical instruments for inspiring us to

complete this study, and we hope that with this article,

we can inspire them to learn more about the application

of virtual modeling in this field. We hypothesize that

robotic musical performances can become more expres-

sive as the simulated models measure up more closely

to human capabilities. Such systems could be capable

not only of exhibiting behavior that somehow resembles

human behavior, but which somehow also exceeds

human abilities, resulting in some situations in new

“superhuman” music [34].

Appendices
A Large oscillator discrete-time equations

The Large oscillator can be described in the form of the

following two coupled real-valued nonlinear differential

equations:

ẇ =
(

α + b(w2 + u2)
)

w − ωu + x1 (11)

and

u̇ =
(

α + b(w2 + u2)
)

u + ωw + x2 (12)

where the output position of the oscillator is w.

In the spirit of Cordis Anima, the coupled nonlinear

equations can be discretized in time using Forward

Euler Integration to arrive at [11,33]:
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w[n + 1] = w[n] +
1

fS

[(

α + b(w2[n] + u2[n])
)

w[n]

−ω · u[n] +
Fext[n]

mDfS

] (13)

and

u[n + 1] = u[n] +
1

fS

[(

α + b(w2[n] + u2[n])
)

u[n]

+ω · w[n] +
Fext[n]

mDω

(

1 +
α

fS

)]

,

(14)

where the particular form of the input via Fext [n] is

employed to allow for only a single-sample delay

between the input force and its effect on the output

position, while nevertheless preventing any unintended

filtering of Fext [n] (see the ẋ1 term in (8)).

B Instructions for the quantitative subject test

In this section, we provide the same instructions that

were given to test subjects, along with a picture similar

to Figure 5 to provide orientation prior to the experi-

ment itself.

Holding a force-feedback device in your dominant

hand, you will interact with a virtual percussionist. It

will be initialized so that it is already playing regular

beats. Your task is to stop the virtual percussionist in as

few beats as possible. You may employ any strategy that

you prefer. There are the following five experimental

conditions:

- NF-HINT

You will receive visual and auditory feedback in a “stan-

dard” configuration. If you carefully follow the green

ball (which, by the way, represents the negative velocity

of the virtual percussionist), it will help you stop the

sound.

- NF

The same as NF-HINT, except that the green ball is

replaced by a yellow ball showing the position of the vir-

tual percussionist.

- MED

Same as NF but with force feedback.

- WEAK

Same as MED but with a weaker force-feedback link to

the virtual percussionist.

- STRNG

Same as MED but with a stronger force-feedback link to

the virtual percussionist.

Note: Do not worry–if a condition is too difficult, you

can give up!

The procedure is as follows:

1. Prepare: Please read these instructions as well as the

questionnaire that you will be asked to fill out the fol-

lowing experiment.

2. Practice: First you will practice each condition in

the order shown above. You can practice each as many

times as you like.

3. Test: When you are ready to test your performance,

the conditions will be presented to you in a random but

known order. For each condition, you should attempt to

stop the virtual percussionist in as few beats as possible.

You can attempt each test until you are satisfied with

your performance.

4. Questionnaire: Following the experiment, you will

be asked to please fill out a questionnaire to describe

the strategies you employed for each condition.

C Application: robotic music performance

C.1 Robotic performance using humanlike generalized

motor programs (GMPs)

Thus far in the article we have presented and studied a

model structure enabling a human to share control with

a neural oscillator to play a virtual percussion instru-

ment. In this appendix, we provide a brief summary of

how this technology can endow a robotic system with

the ability to play a real musical instrument.

To this end, we consider a robotic system implemen-

ted using a force-feedback device, which can be pro-

grammed with a model of GMPs [35] to play musical

instruments (see the force-feedback device playing a

musical shaker in Figure 10, left). It is believed that

GMPs are essential for controlling rapid human motor

movements, for which the motor reaction time via the

communication loop to the brain is too long to provide

a robust feedback control mechanism. Schmidt and Lee

define a GMP as “a program with invariant (a) sequen-

cing among muscles, (b) relative timing, and (c) relative

forces among the contractions [13].” For a robot, aspects

of a GMP can be simulated using a stored waveform

with some adjustable gain and offset parameters.

Figure 10 Force-feedback device plays a musical shaker on the

left as directed by a human conductor via the force-feedback

device on the right.
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C.2 Force-feedback interaction for shared control

A human gripping a second force-feedback device (see

Figure 10, right) can speed up or slow down the tempo

through force-feedback interaction if the devices are

linked together using a neural oscillator. For instance,

see the paradigm suggested in Figure 11. The system

mimics a human playing a musical shaker using periodic

patterns according to a tempo. The tempo is controlled

not only by the parameter values of the Large neural

oscillator, but also by the actual motion of the force-

feedback devices.

C.3 Force-feedback conducting

In order to enable the human performer to “conduct”

the music using a traditional conducting gesture, it is

merely necessary to implement a method for linking the

human-operated force-feedback device’s position to the

conducting gesture. For example, the force-feedback

device operated by the human could be linked to a con-

ductor’s gesture using a tunnel paradigm [36-38] for

counting in four beats to the bar, while the other robot

responds by playing a GMP waveform to the shaker

repeatedly. Some example videos created using this sce-

nario are available at the top of the project website:

https://ccrma.stanford.edu/~eberdahl/Projects/NO/
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