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Abstract

Presented is a polarizable force field based on a classical Drude oscillator framework, currently
implemented in the programs CHARMM and NAMD, for modeling and molecular dynamics
(MD) simulation studies of peptides and proteins. Building upon parameters for model compounds
representative of the functional groups in proteins, the development of the force field focused on
the optimization of the parameters for the polypeptide backbone and the connectivity between the
backbone and side chains. Optimization of the backbone electrostatic parameters targeted quantum
mechanical conformational energies, interactions with water, molecular dipole moments and
polarizabilities and experimental condensed phase data for short polypeptides such as (Ala)5.
Additional optimization of the backbone φ, ψ conformational preferences included adjustments of
the tabulated two-dimensional spline function through the CMAP term. Validation of the model
included simulations of a collection of peptides and proteins. This 1st generation polarizable model
is shown to maintain the folded state of the studied systems on the 100 ns timescale in explicit
solvent MD simulations. The Drude model typically yields larger RMS differences as compared to
the additive CHARMM36 force field (C36) and shows additional flexibility as compared to the
additive model. Comparison with NMR chemical shift data shows a small degradation of the
polarizable model with respect to the additive, though the level of agreement may be considered
satisfactory, while for residues shown to have significantly underestimated S2 order parameters in
the additive model, improvements are calculated with the polarizable model. Analysis of dipole
moments associated with the peptide backbone and tryptophan side chains show the Drude model
to have significantly larger values than those present in C36, with the dipole moments of the
peptide backbone enhanced to a greater extent in sheets versus helices and the dipoles of
individual moieties observed to undergo significant variations during the MD simulations.
Although there are still some limitations, the presented model, termed Drude-2013, is anticipated
to yield a molecular picture of peptide and protein structure and function that will be of increased
physical validity and internal consistency in a computationally accessible fashion.

*Corresponding authors: alex@outerbanks.umaryland.edu, roux@uchicago.edu.
4Currrent address: Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E Second Street, Pomona, CA
91766

SUPPORTING INFORMATION
Included are figures of the interactions of the alanine dipeptide with water, cartoon images of the studied peptides and proteins, RMS
difference plots, Ramachandran φ, ψ 2D surfaces, images of selected tryptophans in lysozyme, comparison of calculated and
experimental NMR chemical shift data and the topology and parameter information for the presented Drude force field. This material
is available free of charge via the Internet at http://pubs.acs.org.

NIH Public Access
Author Manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2014 December 10.

Published in final edited form as:
J Chem Theory Comput. 2013 December 10; 9(12): 5430–5449. doi:10.1021/ct400781b.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://pubs.acs.org


INTRODUCTION

Empirical force field studies of peptides and proteins are widely used to understand the
structural and dynamical properties of this biologically important class of molecules and
relate them to their chemical functions. To date, these studies have largely been based on
non-polarizable, additive force fields where the partial atomic charges of the system are
fixed effective values accounting for induced electronic polarization in a mean-field manner,
with the mostly widely used models including AMBER,1, 2 CHARMM,3–5 GROMOS6 and
OPLS,7, 8 among others.9, 10 Efforts to go beyond the additive approximation by
incorporating an explicit treatment of electronic polarization have been ongoing for close to
30 years.11–13 Already in 1976, Warshel and Levitt presented a polarizable model of
lysozyme in which polarization was incorporated via interacting induced point-dipoles.11

Subsequent work over the following decades involved a range of developments that were
critical to allow computationally efficient molecular dynamics (MD) simulations of solvated
biological macromolecules based on polarizable models.14–18 Such models, in which the
electronic properties vary as a function of environment, are anticipated to yield a more
physically realistic and consistent model, which would hopefully be more capable of
reproducing a wide range of experimentally quantifiable observables accurately.

Towards the goal of a polarizable protein force field (FF) amenable to MD simulations,
Berne, Friesner and coworkers introduced both induced dipole and fluctuating charge
polarizable models,19 as well as combinations thereof,20, 21 reporting gas phase protein
simulations in 2002,22 followed by a simulation in explicit solvent in 2005.23, 24 Patel and
Brooks presented explicit solvent simulations of proteins in 2004 using a polarizable model
based on a dynamically-fluctuating charge model.25, 26 AMEOBA, which models the
molecular charge distribution using a multipole representation along with induced point
dipoles, was originally reported in 200227 and has been applied for studies of ligand binding
to proteins.28–32 While polarizable MD simulations using these, as well as other
models,33, 34 have been presented they are typically short in duration, being a few
nanoseconds or less, such that the models have yet to be rigorously evaluated as well as used
in application studies. A recent exception is a study on lysozyme using the fluctuating
charge model implemented in CHARMM,35 where simulations of up to 14 ns displayed
RMS differences larger than those from the additive CHARMM22 force field.3 More
recently, an updated AMEOBA force field for proteins has been presented.36 The model was
optimized targeting both quantum mechanical and experimental data on model compounds
and small peptides and used for simulations of a collection of small proteins for 30 ns. Thus,
in practice it has clearly been a challenge to bridge the gap from the construction of a
physically-motivated polarizable force field for proteins at the conceptual level, and its
implementation into a computationally efficient form at the practical level in order to allow
one to undertake MD simulations studies for a range of systems and evaluate the robustness
and accuracy of the model.

Development of the Drude polarizable force field in our laboratories has been ongoing since
2000.37 Those efforts have lead to the development of water models37–39 and parameters for
a collection of small molecules representative of the functional groups in proteins, nucleic
acids, lipids and carbohydrates,40–48 as well as for ions.49, 50 In addition, MD simulation
studies of a DNA duplex in solution with counterions51 and of a
Dipalmitoylphosphatidylcholine (DPPC) bilayer and monolayer were reported.52 While
those studies were based on early models aimed at illustrating specific aspects of induced
polarization, they were not based on optimized force field parameters suitable for a wide
range of systems. More recently, we have completed refined models for DPPC53 and acyclic
polyalcohols.54 Thus, progress is being made in extending the Drude polarizable force field
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from small molecules to biologically relevant macromolecular systems. In the present work
we extend those efforts to a polypeptide force field applicable for MD simulation studies of
peptides and proteins. Emphasis is placed on optimization of the polypeptide backbone
parameters and the connectivity between the backbone and the side chains, whose
parameters were obtained from our previous publications with additional adjustments as
outlined below. The final model, which will be named Drude-2013, but is referred to as
Drude-3 in the present manuscript, is then applied to MD simulations of a collection of
peptides and proteins to assess the validity and overall accuracy of the model. The results
show that the model yields structural properties, including sampling of backbone and side
chain conformations in agreement with experiment at a level similar to that obtained with
state-of-the-art additive force fields. We note that the range of proteins studied and the time
scales of the present simulations are not adequate to fully probe the ability of the model to
reproduce a wide range experimental observables as has been done over time with the
additive models,55–63 such that future improvements in the model are anticipated.

Classical Drude Oscillator Force Field

Explicit polarization in the classical Drude oscillator implementation (also referred to as a
Shell or Charge-On-Spring (COS) model64, 65) is based on attaching a charged auxiliary
particle with a harmonic spring to the nucleus or atomic core of the parent atom (Figure 1a).
The classical Drude originated from the quantum mechanical (QM) Drude model used to
treat dispersion,66, 67 and has been subsequently used for ionic crystals, simple liquids,
water, ions and in QM/MM calculations.17 In the classical Drude model, the induced atomic
dipole, μ, in the present of an electric field, E, is

Eq. 1

such that the atomic polarizability, α, is equivalent to the Drude charge, qD, divided by the
force constant on the harmonic spring, kD,

Eq. 2

In practice, the unperturbed static partial atomic charge of the atom, q, is distributed between
the parent atom and the virtual Drude particle.

For the sake of simplicity, the current implementation of the classical Drude model
introduces atomic polarizabilities only to non-hydrogen atoms. However, this is adequate to
accurately reproduce molecular polarizabilties, as seen in a number of published
studies.41, 42, 47 In the case of hydrogen bond acceptors it has been shown that inclusion of
anisotropic atomic polarizability improves non-bond interactions involving acceptors as a
function of orientation, especially in the case of interactions with ions.44 Anisotropic atomic
polarization is defined as the isotropic polarizability times a tensor A, with trace = 3 (Figure
1b). A is diagonal in a local reference frame defined by the vector, A11, between the atom
on which anisotropic polarizability is being assigned and a covalently bound atom or, more
generally any particle, such as a lone pair. The third and fourth atoms, or particles, define
the A22 vector, with the A33 vector being orthogonal to A11 and A22. As the trace of A is
set to 3, only the values of A11 and A22 need to be set, such that A33 = 3 – A11 – A22. For
example, the specification in the residue-topology-file (RTF) within the CHARMM syntax
in the case of the peptide backbone carbonyl O (Figure 1B), is “ANISOTROPY O C CA N
A11 0.82322 A22 1.14332,” where the anisotropic polarizability is on the O, the A11 vector
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is along the C=O bond and the A22 vector is along the CA-N direction. To further facilitate
the ability of the model to treat non-bond interactions involving acceptors, virtual particles
representative of lone pairs are included in the model.44 In the case of the carbonyl O, this
involves two LP sites (Figure 1b), whose positions were optimized to improve the
interactions with water as a function of orientation.

An important feature in a polarizable force field is the ability of the induced atomic dipoles
to interact with each other within a molecule to yield the correct molecular polarizability
tensor.68–70 Traditionally, in additive force fields nonbond interactions between atoms
covalently bound to each other (1,2 pairs) or the terminal atoms on a valence angle (1,3
pairs) are ignored while nonbond interactions between the terminal atoms of dihedral angles
(1,4 pairs) and beyond are treated explicitly, with 1,4 pair interactions being scaled in some
force fields.1, 8 However, with a polarizable force field it is possible for all induced atomic
dipoles to interact with each other, including 1,2 and 1,3 pairs, as a means to obtain the
correct molecular polarization response. An example is the case of diatomic, as shown in
Figure 1c. With the diatomic when the electric field is parallel to the bond between the
atoms the atomic dipoles interact favorably while when the field is perpendicular to the bond
the atomic dipoles interact unfavorably. It is these differences that yield a non-trivial
anisotropic molecular polarizability tensor, which in the case of the diatomic will be larger
parallel to the bond as compared to perpendicular to the bond. While it is useful to include
these interactions in the polarizable force field, their spatial separation is such that the
Coulombic approximation fails, disallowing use of point charges for the 1,2 and 1,3
interactions. To overcome this, the electrostatic shielding treatment proposed by Thole is
applied69, in which the coulomb interactions between charges i and j are modulated by a
factor, Sij, as shown in equation 3

Eq. 3

where rij is the distance between the atoms, αi and αj are the respective atomic
polarizabilities, and ai and aj are the atom-based Thole parameters that dictate the extent of
the scaling between specific atom types. The use of atom-based Thole parameters has been
shown to yield improvements in the treatment of the orientation of molecular
polarizabilities.41 In addition, the use of Thole screening has been extended to nonbond
atom pairs.49 This extension was motivated by the need to fine tune interactions involving
divalent ions, but the approach is general and may be applied to any atom pair.

When performing minimization and MD studies using a polarizable model it is necessary, in
principle, to perform a self-consistent field (SCF) calculation based on the Born-
Oppenheimer Approximation. This assumes that the electronic degrees of freedom relax for
each position of the atomic nucleic. With the Drude model, this implies that the Drude
particles relax in the electric field for each (fixed) nuclear configuration of the system. This
requirement may be satisfied by performing an energy minimization of the Drude particles
while the atomic nuclei positions are kept at a fixed position. However, this approach is
computational demanding, making it inappropriate for MD simulations. To overcome this
the electronic degrees of freedom are treated as classical dynamic variables in the MD
simulation assuming an extended Lagrangian approach.71–73 With the Drude model, this
involves ascribing a mass to the Drude particles, which is taken from the parent atom and is
typically 0.4 AMU. The extended Lagrangian procedure then allows the Drude particle to
propagate classically during the simulation. A dual-thermostat Nose-Hoover algorithm
based on the Velocity Verlet integrator was developed74 in which the Drude particles are
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cooled to a very low temperature (near 0 K) during the MD simulation, thereby imposing the
electronic degrees of freedom to approach the adiabatic SCF limit. Alternate dual
thermostating approaches may be applied, notably based on Langevin dynamics, as has been
implemented in the program NAMD.75

An issue when performing MD simulations using a polarizable force field is the potential for
polarization catastrophe. This may occur when, for example, a positively charged ion
approaches to close to an atom, leading the negatively charged Drude particle to become
overpolarized, yielding unphysical infinite energies and instabilities. To avoid this issue, two
approaches have been implemented. The first involves a “hyperpolarization” term where
higher order anharmonic terms are added to the bond between the atomic core and the Drude
particle.49 Equation 4 shows the form of the hyperpolarization term

Eq. 4

where R is the distance between the nucleus and the Drude particle, n is the order of the
term, typically 4 or 6, Khyp is the force constant and Ro defines the distance at which the
term starts to impact the Drude particle, typically 0.2 Å, such that the normal trajectory of
the Drude is not impacted by the higher order term. More recently, a Drude reflective “hard
wall” term has been added to more rigorously avoid polarization catastrophe.53 This term
involves reversing the relative velocities along the Drude particle-parent atom nucleus bond
and scaling them accordingly to the temperature of the Drude bond whenever the Drude-
parent atom bond length exceeds a specified distance, again typically 0.2 Å. In addition the
relative displacement with respect to the specified distance is reversed and scaled according
to the new velocities on the Drude particle to assure that the location of the Drude is within
the specified distance. In practical experience, the reflective hardwall term represents a more
robust method to avoid polarization catastrophe as compare to the hyperpolarization terms
and is now the recommended approach to be used on all MD simulations using the Drude
polarizable force field.

Concerning the computational costs of the Drude implementation, as the model simply
involves additional charged particles the overhead is associated directly with the number of
Drude particles. Thus, limiting the use of Drude particles to only non-hydrogen atoms limits
the number of additional particles such that the increased computational cost is a factor of
1.6 to 2.0.75 However, for many molecular systems it is possible to use an integration time
step of 2 fs with an additive force field, while the high frequency motions of the Drude
particles limit the integration time step to 1 fs for the majority of systems, though a smaller
time step may be required for highly ionic systems. In the present study an integration time
step of 1 fs was used, unless noted, such that the additional computational cost compared to
the additive protein MD simulations is approximately a factor of 4.

METHODS

Quantum Mechanical Calculations

Quantum mechanical (QM) calculations used the programs Gaussian0976 and Q-
CHEM.77, 78 Energy minimizations were typically performed to default tolerances with the
MP2/6-31G* basis set with single point calculations at the RIMP2/cc-pVTZ level unless
noted.79, 80 Interaction energies were calculated on rigid geometries at the RIMP2/cc-VQZ
level without correction for correction for basis superposition error. The alanine, glycine and
proline dipeptide 2D φ, ψ energy surfaces were performed in 15° increments with
optimization at the MP2/6-311G(d,p) level followed by single point calculations at the MP2/
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cc-pVTZ and MP2/cc-pVDZ followed by extrapolation to the complete basis set (CBS) limit
(MP2/6-311G(d,p)//RIMP2/CBS).81

Empirical Force Field Calculations

The Drude polarizable model was initially implemented in CHARMM allowing for a range
of calculations82 to be performed as required for force field optimization.83 Subsequently,
the model was implemented into NAMD and shown to be highly parallelizable in MD
simulations.75 The SWM4-NDP water model38 was used in all calculations. Empirical force
field calculations on the model compounds in the gas phase used no truncation of nonbond
interactions, including dihedral potential energy scans. Minimizations were performed
initially on only the Drude particles with the atoms constrained using the Steepest Descent
(SD) optimizer. This was followed by minimization of all particles using the Adopted-Basis
Newton Raphson (ABNR) method to a gradient of 10−4 kcal/mol/Å.

MD simulations were performed using the Velocity Verlet Integrator74 in CHARMM and
the Langevin Dynamics method implemented in NAMD.75 Electrostatic interactions were
treated using the particle mesh Ewald (PME) approach with a real space cutoff of 10 or 12
Å, a grid spacing of approximately 1 Å and a 4th or 6th order spline. Lennard-Jones
interactions were truncated at 10 or 12 Å with the smoothing performed over the final 2 Å
using the switch algorithm84 with the long range LJ contribution accounted for using an
isotropic correction.85 All covalent bonds involving hydrogen as well as the intramolecular
geometries of water were constrained using the SHAKE86 (CHARMM) or SETTLE87

(NAMD) algorithms.

Simulation systems were initially prepared and equilibrated in the context of the
CHARMM36 additive FF.5 The protein structures were obtained from the protein database
(PDB)88 followed by solvation in a preequilibrated cubic TIP3P89 water box of suitable size
(Table 1) using the CHARMM-GUI.90 Each system was then minimized for 200 SD steps
with the protein constrained followed by minimization for another 200 SD steps without
constraints on the protein. The systems were then heated to 300 K and subjected to a 100 ps
NVT simulation followed by a 100 ps NPT simulation. The final coordinates were then
regenerated in the context of the Drude polarizable force field. The Drude oscillators were
minimized for 200 ABNR steps with all other atoms constrained, starting structures for
Drude simulations were generated. Systems were then subjected to an additional 1 ns
equilibration NPT simulation with a shorter time steps (1 fs for the additive and 0.5 fs for
the Drude simulations) followed by the production simulations using NAMD, as detailed in
Table 1. Coordinates were typically saved every 10 ps for analysis.

Hamiltonian replica exchange MD simulations91 (H-REMD) were performed on (Ala)5 in
the NPT ensemble. The peptide was unblocked and had a protonated C terminus,
corresponding to the experimental pH of ~ 2.92 The H-REMD system consisted of 8
replicas, where the potential function was perturbed using CMAP applied to the φ, ψ
dihedrals. The perturbation involved inverting the CMAP surface with the perturbation
involving scaling between the two CMAPs by factors of 0.1, were the ground state replica
(replica0) uses the unperturbed CMAP and replica7 involves scaling of 0.7. The initial
conformations of the peptide consisted of random coils in a periodic system including 988
water molecules in a cube of ~31.5 Å/side. An in-house code interfacing NAMD and
CHARMM was used to determine whether suitable exchanges had occurred. Each replica
was simulated with NAMD for 2 ps at a constant pressure of 1 atm and a temperature of 300
K. Coordinates were saved each 1 ps. Simulations were performed with a 1 fs integration
time step, with the exception of the N-methylacetamide (NMA) based model (Drude-1, see
below), where a 0.5 fs time step was used. The Drude hardwall potential was not used
during the simulations. After all replica simulations had terminated CHARMM was used to
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evaluate the energy of each replica from the saved trajectories and coordinates were
exchanged if the energy of Ri+1 was lower than the energy of Ri, where i indicates the
replica number, or the exchange was accepted according to the Metropolis criterium.93 The
C5 region of the Ramachandran map is defined by the intervals −180° < φ < −90° and 50° <
ψ < 180°, 160° < φ < 180° and 110° < ψ < 180°, and −180° < φ < −90° and −180° < ψ <
−120°. A residue is considered to belong to the PPII region if the φ and ψ torsions fall in the
following intervals: −90° < φ < −20° and 50° < ψ < 180° and −90° < φ < −20° and −180° <
ψ < −120° and a residue is defined as right-handed alpha helical, αR or α+, if −160° < φ <
−20° and 120° < ψ < 50° as well as a more rigorous definition, alpha_h, where −100° < φ <
−30° and −67° < ψ < −7° with three consecutive residues falling in this region, as previously
performed.62

Temperature REMD simulations94, 95 (T-REMD) were performed on the Ac-(Ala)7-amide
polypeptide in the absence of explicit solvent using CHARMM with no cutoff of the
nonbond interactions and a dielectric constant of 80. A total of 12 replicas were used with
temperatures ranging from 300 to 600 K. Each window was simulated for 100 ns using
Langevin dynamics with a friction coefficient of 80 ps−1. Results are reported for the 300 K
replica.

Polypeptide backbone parameter fitting

The initial set of backbone parameters, referred to as Drude-1, were based on NMA.41, 96

Electrostatic parameters based on the alanine dipeptide, yielding the Drude-2 model, were
determined by averaging the terms over 5 independent sets of parameters obtained from
electrostatic potential (ESP) fitting corresponding to the αR, αL, C5, PPII and C7eq
conformations. For each conformation the electrostatic parameter optimization, which
included the partial atomic charges, atomic polarizabilities, and atom-based Thole factors,
was performed using the FITCHARGE module of CHARMM by fitting to the QM ESP
maps as previously described.43, 51 The initial atomic charges were taken from the additive
CHARMM model3 and the initial atomic polarizabilities from the work of Miller.97 The
ESP grids were placed on concentric nonintersecting Connolly surfaces around the target
molecule. Fitting targeted the “unperturbed” ESP for the molecule alone and the “perturbed”
ESPs obtained by placing a point charge of +0.5e at different location around the molecule
to probe the polarization response. The QM ESP maps were calculated using the B3LYP
functional with the aug-cc-pVDZ basis set.

Additional optimization of backbone electrostatic parameters used a Monte Carlo Simulated
Annealing (MCSA) protocol, yielding the final model, Drude-3.98 The target data utilized an
array of QM observables determined for the alanine dipeptide and large alanine
polypeptides. Target data included the polarizability of the alanine dipeptide, relative
energies of (Ala)5 and energetic and structural data for the interaction of the alanine
dipeptide with individual water molecules along specific directions (Figure S1 of the
supporting information). Several conformations of the alanine models were used in the
development of the Drude-3 model: (i) αR, C5 and PPII for the relative energies of (Ala)5,
(ii) C5 and PPII for the interactions of the alanine dipeptide with water, and (iii) αR, C5,
PPII, and C7eq conformations of the alanine dipeptide for molecular polarizabilities and
dipole moments. In addition to the electrostatic parameters, during the MCSA internal
parameters were allowed to vary within a limited range to keep the alanine dipeptide
optimized geometries close to the targeted values. MCSA started with a temperature of 150
K with individual parameters randomly adjusted followed by accepting or rejecting the new
parameter set based on the Metropolis criterium.93 The temperature was gradually reduced
to near 0 K yielding a selected parameter set for testing in (Ala)5 solution simulations. The
error function is the sum of all differences between MM and QM data for all properties
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mentioned above with various weighting factors. During MCSA fitting, a new CMAP that
reproduces the QM alanine dipeptide φ, ψ MP2/6-311G(d,p)//RIMP2/CBS surface was
generated at each iteration. In addition, adjustments of the CMAP away from the QM-based
surface to improve agreement with conformational sampling of the peptide backbone in
peptides and proteins were included in final Drude-3 model.

χ1 and χ2 dihedral parameter fitting

Side chain χ1 and χ2 dihedral parameters for amino acids, excluding Ala, Gly and Pro, were
initially fitted to QM potential energy surfaces for the χ1 and χ2 torsions in amino acids
capped with N-acetyl and N′-methylamide moieties, analogous to the alanine dipeptide.
Previously published 2D scans of χ1 and χ2 dihedral angles were performed in 15°
increments with dipeptides constrained at three different backbone conformations, α (−60.0,
−45.0), β (−120.0, 120.0) and αL (63.5, 34.8), at the RIMP2/cc-PVTZ//MP2/6-31G*
(6-31+G* for the charged Asp and Glu dipeptides) level, and the resulting three 2D energy
surfaces were offset relative to the global minimum for each amino acid type.99 This set of
QM surfaces was also used as the target data in optimizing side-chain χ1 and χ2 parameters
for the additive CHARMM36 force field.5

CHARMM was used to generate analogous 2D MM energy surfaces and a MCSA
automated fitting program100 was used to minimize the weighted root mean square (RMS)
energy difference between the MM and QM surfaces for the optimization of side chain
dihedral parameters. During the fitting a higher weighting factor of 5 was assigned for
energies from αR and β backbone conformations versus 1 for those from αL. An energy
cutoff of 12 kcal/mol was applied, and all the energies higher than the cutoff were discarded
to avoid fitting these high-energy regions at the expense of distorting the low energy
regions. For charged side chains higher energy cutoffs (20 kcal/mol for Arg and Lys and 25
kcal/mol for Asp, Glu and Hsp) were used. Amino acids sharing the same χ1 and χ2
parameters (Lys/Arg/Met, Tyr/Phe, and Thr/Ile/Val) were fitted together. During the MCSA
optimization of dihedral parameters the multiplicities (n) were limited to the combination of
1, 2 and 3, while the force constants (K) were upper-bounded to 4.0 kcal/mol and phases (δ)
were restricted to either 0 or 180°. Simulated annealing starting from an initial temperature
of 1000K was carried out for 200000 steps with exponential cooling.

Selected χ1 and χ2 dihedral parameters optimized targeting the dipeptide gas phase QM
surfaces were subjected to manual adjustment based on condensed phase simulations. For
each amino acid X, the 9-mer peptide (Ala)4-X-(Ala)4 was solvated in a 32 Å cubic water
box with backbone restrained to the C7eq conformation (−82.8°, 77.9°) conformation. A
special Hamiltonian replica exchange with solute scaling method (REST2)101 was used to
enhance sampling efficiency. This is a revision of the solute tempering replica exchange
method proposed by the same group,102 and is based on the decomposition of the total
interaction energy into peptide intramolecular energy (Epp), peptide-water interaction energy
(Epw), and self-interaction energy within the water molecules (Eww) and scaling these three
potential energy component in such a way that the water-water energy vanishes from the
REMD acceptance criterion. To be specific, all replicas are run at the same temperature T0
with the potential energy of the replica m given by

Eq. 5

Only the 0-th (ie. ground state) replica corresponds to the desired equilibrium distribution at
T0. It should be noted that Tm in Eq. 5 is not a simulation temperature but should be

Lopes et al. Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



understood as a general scaling factor applied to the Hamiltonian. An in-house
implementation of REST2 in CHARMM was used to run 10 ns solute scaling simulations
with four replicas (T0=300K, T1=329K, T2=363K, and T3=400K) and an exchange
attempting frequency of 0.1 ps−1. Coordinates were saved every 1 ps, from which χ dihedral
angles were extracted.

To assess the agreement between χ1 and χ2 distributions from MD simulations and from a
crystallographic survey,99 probability histograms were generated using a bin size of 15°, and
the 1D overlap coefficient (OC) between two probability distributions were calculated as

Eq. 6

and extended to 2 dimensions103 in the present study.

RESULTS AND DISCUSSION

Most additive force fields for biological polymers such as DNA and proteins were
developed by first obtaining optimal parameters for a collection of small molecules
representative of the chemical functionalities in the biomolecules which serve as building
blocks.1, 3, 104 These parameters were then “combined” together to yield the biopolymer
force field. In this transfer, the connectivities between the various building blocks were
optimized to yield conformational properties in satisfactory agreement with experimental
data. Working from a set of small model compounds was critically important for the
optimization of the nonbond parameters targeting experimental data, such as heats of
vaporization or sublimation, densities or lattice volumes and free energies of solvation, for
individual types of functional groups. This approach worked well and the earlier additive
force fields, such as CHARMM22,3 OPLS,7 AMBER,1 and GROMOS,105 were
subsequently successfully applied in a large number of application studies on biological
macromolecules. The successful transfer of the small compound parameters appears to be
due in part to the additive nature of the force field, where combining the “parts” into the
complete biopolymers yielded satisfactory behavior in macromolecules. However, it should
be noted that additional refinement of the additive force fields has been ongoing for over 20
years; our own experience with an all-atom protein force field started around 1988 and saw
completion of a 1st generation model in May 1992 (CHARMM22), though not published
until 1998,3 followed by the CMAP extension in 2002,4, 106 and the most recent iteration to
yield CHARMM36 completed in 2012.5

Polypeptide backbone parameter optimization

Development of the Drude protein force field was initially performed following an approach
similar to that for the additive model. Thus, the initial model of the polypeptide backbone in
the form of polyalanine, the Drude-1 model, was based on a combination of parameters from
NMA and ethane, with the links between those moieties adjusted to reproduce QM and
protein crystal survey data. The NMA parameters are a recently revised version that yielded
good agreement with a variety of condensed phase properties as well as giving hydrogen
bond distances consistent with those occurring in α helices.96 Importantly, in creating the
initial NMA-based polypeptide model, the (φ, ψ) Ramachandran map was tuned to
reproduce a high-level QM (RIMP2/cc-pVDZ//RIMP2/CBS) surface using the CMAP utility
in CHARMM, where the CBS (complete basis set) extrapolation81 was obtained based on
RIMP2/cc-VTZ and RIMP2/cc-VQZ single point energies. Analogous QM surfaces were
used for CMAP terms for Gly and Pro and used without further adjustments. Initial
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validation of the Drude-1 model was performed using MD simulations of (Ala)5 in
solution,92 a system that serves as an important benchmark for protein force fields.57

However, as shown in Table 2, the agreement with the NMR J-coupling data was poor.
Analysis of the φ, ψ distribution shows that this was due to the peptide predominantly
populating extended conformations (Figure 2). Included in Figure 2 are three representative
conformations of blocked polyalanine in the extended (ie. C5 or beta), PPII, and αR states.
Notable is the difference in the C5 and PPII states, where in the C5 conformation the
adjacent peptide bonds were coplanar and aligned in opposite directions. This had two direct
effects. First, it allowed for maximal hydrogen bonding with the aqueous environment and,
in the polarizable model the local dipoles associated with the individual peptide bonds
interact with each other to enhance the local dipole moments associated with each peptide
bond. Indeed, a comparison of the dipole moments of Acetyl-(Ala)5-Amide for the NMA
based model with QM data indicated the overall dipole moment of the C5 conformation to
be significantly overestimated (Table 3). It was therefore hypothesized that the
overestimation, which would lead to even more favorable interactions with aqueous solvent,
was due to the electrostatic parameter optimization procedure based on NMA alone not
taking into account the electrostatic communication between the individual peptide bonds.

Based on this analysis it was concluded that a model compound allowing communication
between adjacent peptide bonds was required, with the initial candidate being the alanine
dipeptide. Five conformations of the alanine dipeptide were selected covering different
relative orientations of the peptide bonds (C7eq, C5, PPII, αR, and αL). The 5
conformations were subjected to constrained QM optimizations and subjected to RESP
fitting yielding 5 electrostatic models, which were then averaged. This produces electrostatic
parameters that better reproduce the change in the ESP associated with electrostatic
interactions between the peptides bonds in the different relative orientations. The resulting
Drude-2 model yielded a smaller dipole moment for the C5 conformation for Acetyl-(Ala)5-
amide (Table 3) and was then used in simulations of (Ala)5, with the results included in
Table 2 and Figure 2. As compared to the Drude-1, NMA-only based model, the Drude-2
model shows improved agreement with experiment, though the agreement is still poor as
compared to C36. Notably, the PPII region is populated (Figure 2b), though the C5
conformation still dominates, indicating that the inclusion of electrostatic interactions
between the peptide bonds during parameter optimization did improve the situation.
However, those improvements were clearly insufficient, indicating that additional target data
were needed to obtain a more accurate electrostatic model for the polypeptide backbone.

Subsequent efforts leading to the final Drude-3 model accounted for the contribution of the
electrostatic term to the intramolecular electrostatic properties and conformational energies
as well as to the intermolecular interactions with the environment (Table 4). It was
hypothesized that reproduction of relative gas phase energies of Acetyl-(Ala)5-amide
together with including interactions with a water molecule in the fitting procedure would
help achieve the correct relative energies in aqueous solution by balancing the electrostatic
contribution to both the intra and intermolecular energies. To obtain target data for the
intramolecular energies we undertook QM calculation on Acetyl-(Ala)5-amide for the C5
(−158.5,161.6), PPII (−75, 150) and αR helical (−60, −45) conformations. From these
calculations the relative energies of the C5 - αR and PPII -αR conformations were used as
target data. To weight the intrinsic quality of the electrostatic model itself, QM data on the
dipole moments and the components of the polarizability tensor of the C5, C7eq, PPII and
αR conformations of the alanine dipeptide were included as target data. The QM
polarizabilities were scaled by 0.85, consistent with scaling used during previous
development of the Drude small compound parameters.17, 47 Finally, consideration of
intermolecular energies in the optimization was taken into account by including interactions
of water with the alanine dipeptide in the C5 and PPII conformations (Figure S1 of the
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supporting information). Based on this target data a series of MCSA runs were carried out,
with varying weights on the different target data. This generated a collection of electrostatic
parameter sets for testing.

Testing of the electrostatic parameters initially involved MD simulations of (Ala)5 in
solution. From these simulations several parameters sets with satisfactory agreement with
the NMR J-coupling data were selected. Simulations were then undertaken using these
models on Acetyl-(Ala)7-amide in the gas phase using Langevin dynamics with the
dielectric set to 80 in the context of T-REMD to gauge their ability to assume helical
structures, using simulations of this system with the C36 force field as a benchmark. From
this process several sets of parameters were selected and further tested by carrying out MD
simulations of crambin, lysozyme and the GB1 hairpin peptide using preliminary side chain
χ1 and χ2 parameters (see below). At this stage the φ, ψ distributions were monitored along
with RMS differences for the two proteins and the peptide and J-coupling data for (Ala)5.
Based on this data adjustments were made to the 2D CMAP energy term to improve the φ, ψ
sampling in the context of (Ala)5, GB1, Acetyl-(Ala)7-amide, crambin and lysozyme. From
this process the final Drude-3 model was selected, with the remainder of the results
presented below based on the Drude-3 model. This model will be subsequently referred to as
the “Drude-2013” force field for public release. We note that a number of the tested models
yielded improved agreement with the NMR data for (Ala)5 (not shown) but significantly
underestimated the αR content and/or had unsatisfactory sampling of φ, ψ in lysozyme and
crambin. The recent AMEOBA-13 model yielded good agreement with the NMR data for
(Ala)5 with a χ2 value of 1.0 for all residues, although the amount of helical sampling in
(AAQAA)3 is underestimated based on 30 ns TREMD simulations.36 Thus, the Drude-3
model represents a compromise between these different target data obtained in the context of
limited simulation times, a compromise that leads to the Drude model being in poorer
agreement with the experimental data as compared to C36 with respect to the reproduction
of the (Ala)5 NMR data. This poorer agreement is associated with enhanced population of
the C5 conformation over PPII, which is reversed in the additive C36 model. Furthermore,
we note that the helical propensity of the model is not well determined. Based on Acetyl-
(Ala)7-amide (Table 5), the Drude-3 model has significantly more helical content than the
Drude-1 and Drude-2 models as well as C36. However, given the polarizable nature of the
Drude force field it is hard to gauge if the model will have significantly more helical
character than C36 in aqueous solution. For example, based on (Ala)5, C36 yields more
helical configurations than the Drude-3 model (Table 2). Attempts to determine the helical
propensity of the model using Acetyl-(AAQAA)3-amide, as was done with the C36, were
unsuccessful due to inadequate convergence. Reported results for C36 used 140 ns of
sampling for each replica in T-REMD simulations, with the helical content determined over
the final 40 ns,62 computational time scales that are currently difficult to attain with the
polarizable Drude model. Accordingly, we anticipate that future optimization of the Drude
polarizable model based on a wider range of target data, including improved sampling in
condensed phase simulations, will be necessary.

Side chain χ1, χ2 dihedral parameter optimization

Side chain identity is known to impact the conformational distribution of the polypeptide
backbone, as indicated by the extensive experimental studies of Baldwin and
coworkers.107–109 Furthermore, while the conformational properties of the individual side
chains themselves will impact backbone conformational properties, the conformation of the
backbone is known to influence side chain conformations as well.110–112 Thus, this linkage
between the conformational properties of the backbone and the side chain conformational
properties indicates that an iterative optimization approach is required. To overcome this we
investigated the use of the peptide (Ala)4X(Ala)4 as a model system for χ1, χ2 parameter
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optimization,113 where X is the amino acid of interest and the backbone conformation was
constrained to fully extended, C7eq, PPII and αR conformations.114 These studies indicated
that (Ala)4X(Ala)4 with either the C7eq or PPII backbone conformation yields aqueous
phase conformational properties that mimic those occurring in full proteins. Based on this
analysis, χ1, χ2 parameter optimization was performed by initially targeting QM data for the
respective side chain dipeptides, with the backbone in the β, αR and αL conformations.
These parameters were then used in H-REMD simulations of (Ala)4X(Ala)4 in solution,
with χ1, χ2 sampling compared to the PDB survey data.

Presented in Table 6 are the overlap coefficients for χ1 and χ2 from the (Ala)4X(Ala)4 in the
C7eq conformation with those from a survey of the PDB.114 The extent of overlap for many
of the amino acids based on optimization only targeting the QM data is quite good. For
example, the values of 0.87, 0.88 and 0.87 were obtained for χ1 for Cys, Leu and Val,
respectively, while the OC was 0.92 for χ2 with Leu. Based on the quality of the fit for these
residues, additional optimization was not performed. Additional optimization for the
remaining residues involved comparison of the computed and target χ1 and χ2 populations
of the gauche+, gauche- and trans rotamers and manually adjusting the corresponding
dihedral parameters to improve the level of agreement. To be more specific, the local
minimum energies at the trans and gauche- conformations were shifted empirically by
adjusting the 1- and 2-fold dihedral force constants. Since solute scaling replica exchange
simulations require a minimal number of replicas, multiple parameter sets can be tested
simultaneously. This iterative approach, which typically required ~9 days using 8 cores per
replica for the H-REMD calculations per iteration, lead to significant agreement with the
PDB target data for a number of amino acids, notable examples being Ile, Lys and Thr.
Overall, the final OC values are typically 0.7 or higher, though lower values are present
including Asn χ2, Asp χ1, Gln χ2, and Glu χ1. The final parameters were used for the
reported polypeptide and protein simulations.

Peptide simulations

In addition to (Ala)5, two other peptides were examined through MD simulations, the GB1
(41–56) hairpin115, 116 and a dimeric coiled coil (1UOI).117 Both peptides were used in a
previous force field optimization study,5 and were included as part of the training set during
final optimization of the backbone parameters in the present study. Accordingly, these
simulations do not provide a true validation, though the ability of the Drude model to
reproduce the corresponding experimental properties may be considered an indicator of the
quality of the model for the treatment of small, partially disorder peptides.

Calculations of the GB1 hairpin simply involved explicit solvent MD simulations using both
the additive and Drude models. RMS difference analysis shows the Drude model to stay
closer to the conformation of the hairpin observed in the crystal structure of the full GB1
protein (Figure S2a). The additive simulation drifts away from the crystal conformation,
with the RMS difference fluctuating primarily between 2.5 and 3 Å. In contrast, the Drude
simulation maintains conformations closer to the crystal structure on the time scale of the
simulation, yielding conformations approximately 0.8 Å and 1.5 – 2.0 Å RMS away from
the crystal conformation. The high occurrence of both highly native-like and non-native
conformations is consistent with the midpoint of the folding transition being 297 K,116 while
a more recent study indicates the peptide to be 30% folded at 298 K.118 Additional analysis
involved calculation of the chemical shifts averaged over the simulations using Sparta+.119

Presented in Figure 3 are the shifts from the two simulations, performed at 298K, along with
the experimental data from 280K.118 The agreement of both the additive and Drude model is
similar, with the additive model in better agreement for residues 2–5 while the Drude model
shows better agreement with several residues later in the sequence. These results indicate
that the additive model may better represent conformations of Trp3 and Tyr5, which are
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important for the hydrophobic interactions that contribute to stabilization of the structure,
though additional sampling is required to more robustly compare the two models.

A simulation of a dimeric coiled-coil in solution with 150 mM KCl was initiated from model
1 of the NMR structures in 1UOI,117 using a previously equilibrated system.5 Analysis
involved RMS differences, φ, ψ distribution and the inter-helical angle. RMS analysis
showed the overall structure of the complex to deviate more from model 1 of the NMR
structure for the simulation based on the Drude-3 model (Table 7 and Figure S2b of the
supporting information). This was associated with the individual helices moving relative to
each other (Figure 4a), which occurs in both FFs, while the conformations of the individual
helices were well preserved, indicating the ability of the model to adequately treat these
essential types of secondary structure. This is supported by the φ, ψ probability distribution
from the simulations (Figure S3b, supporting information). Additional analysis involved the
angles between the two helices. Both the additive and polarizable models sample a range of
inter-helical angles, spanning the range of values reported for the 20 models from the
original NMR study. The Drude model populates a slightly wider range of angles during the
100 ns simulation, which is an indication of the additional flexibility in the model as further
evidenced in the simulations of larger proteins, as presented below.

Simulations of full proteins

To further validate the Drude force field, simulations were performed on 10 additional
proteins, as listed in Table 1 and shown in Figure S4, supporting information. The
monomers of these proteins were subjected to ~100 ns simulations using both the
polarizable and additive C36 models, with two simulations performed with the polarizable
FF in select cases. The proteins were selected on the basis of coverage of secondary
structure, experimental resolution, and the availability of results from previous studies. A
majority of the proteins were small, being less than 100 amino acids (aa) as they would more
robustly test the ability of the force field to maintain their folded structures as compared to
large, globular proteins, as well as for computational expediency.

RMSD analysis was performed on all the proteins based on the Cα atoms following
alignment of residues in the secondary structural elements or of all residues, with the results
summarized in Table 7 and the RMSD time series for the individual systems are shown in
Figure S2 of the supporting information. Table 7 also includes the RMS fluctuations of the
RMSD time series. Two general trends are evident. The RMS differences are consistently
smaller with the additive force field as are the RMS fluctuations. This indicates that the
Drude model has additional flexibility as compared to the additive model. The only
exception is the results for all residues in ubiquitin (1UBQ), where the average and
fluctuations of the RMSD for all residues are larger in C36. This difference is primarily due
to the 5 C-terminal residues, which have large B factors in the 1UBQ crystal structure.

Three of the proteins simulated in the present work were also studied in the recent
AMOEBA protein FF paper, including crambin (1EJG), ubiquitin (1UBQ) and lysozyme
(135L in the present work vs. 6LYT in the AMEOBA study).36 At the end of the 30 ns
simulations in the study the backbone RMSDs were approximately 1, 2 and 2 Å for the three
proteins, respectively. These value compare to 1.1/1.1, 1.9 and 1.9/2.2 Å for those proteins
at 30 ns of the present simulations, were two values are from the individual simulations of
crambin and lysozyme. Thus, the two polarizable models yield similar RMS differences for
30 ns simulations.

While the Drude model exhibits larger flexibility as compared to the additive C36 model,
the secondary structures are stable and maintained (Figure S3, supporting information). This
suggests that the hydrogen bonding associated with secondary structure is being
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satisfactorily modeled. To verify this suggestion, the hydrogen bonding interactions
involving the peptide bond N…O distance probability distributions in the helical and sheet
secondary structure regions were analyzed. Shown in Figure 5 are the N…O probability
distributions obtained from a subset of the simulated proteins along with survey data from
crystal structures from the PDB with resolution higher than 1.5 Å.99 With the helices, in the
additive force field the distribution goes to shorter distances than observed in the survey
while the agreement of the Drude model for the leading edge of the curve with the Xray data
is excellent, although the maxima is the Drude model is slightly shifted back from the
survey by ~0.05 Å. This difference is larger with N…O distances in the sheets, with both the
additive and polarizable models having maxima longer than that in the survey, with the
difference being larger in the Drude model. Thus, the Drude model gives systematically
longer N…O distances than the additive model, with agreement in helices somewhat better
with the Drude model, while the opposite occurs with the sheet regions. It is important to
recall that the shorter distances with the additive model is consistent with the optimization of
the force field, where short hydrogen bonding distances were required to yield pure solvent
properties for model compounds in agreement with experiment (enthalpy and density).10

Such shortened hydrogen bond distances are not required to as great an extent with the
Drude model (Table 4); however, the present results indicate that a small, systematic
decrease in the distances may be required in future generations of the Drude force field.

Further investigation into the structural properties of the polarizable model involved analysis
of the φ, ψ distributions in the studied proteins. Presented in Figure 6 are the φ, ψ inverted
Boltzmann weighted distributions over protein simulations C through L reported in Table 1
with the distributions for the individual systems shown in Figure S3 of the supporting
information. Figure 6 also contains a distribution obtained from the survey of the high-
resolution crystal structures. Both the additive and Drude models populate regions consistent
with the protein crystal structures, with the Drude model sampling a slightly wider range of
φ, ψ space. In the helical region, the minimum in the Drude model is broader than with the
additive model and there is additional sampling in the region of −120, 15. Both models have
distributions similar to the survey results in the sheet regions, though C36 shows to more
well defined minima with the Drude model exhibiting a broad, low energy region from φ =
−135 to −60° for ψ ~ 150°. The Drude model also populates more of the region between the
sheet and helical regions in the range of ψ = 30 to 100°. Finally, the Drude model
distribution is broader in the αL region as compared to C36, consistent with the remainder
of the surface, with the location of the minima in both force fields consistent with the survey
data.

The differences, as well as similarities, in the φ, ψ distributions are interesting when
considered in the context of CMAP. While both the C36 and Drude surfaces have undergone
some empirical adjustments, the underlying energy surfaces are based on quantum
mechanics, such that the overall landscape of the surfaces should be similar. Adjustments in
the C36 CMAP, which was obtained at the LMP2/cc-VQZ level included local optimization
of the helical and sheet regions to reproduce subtle features observed in crystallographic
survey data4 followed by subsequent shifting of the helical region to decrease the tendency
for the C22/CMAP model to over populate that conformation, leading to C36.5 With the
Drude model the overall sheet region was lowered and the areas between the sheet and
helical regions and from φ = −90 to −180 and ψ = −60 to 105° were raised. Furthermore, we
note that the conformational properties of the χ1 and χ2 side chain dihedrals were optimized
with the same target function. Accordingly, the additional flexibility in the Drude model
may largely be attributed to the inclusion of electronic polarization in the model. While
further work is needed to understand this phenomenon, the result appears to be associated
with the variability of the molecular dipoles in the Drude model, as detailed below.

Lopes et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



NMR analysis

The above analysis largely involved the comparison of simulations of proteins in solution
with experimental crystallographic data. To more carefully evaluate the behavior of the
Drude model with respect to solution conditions, we calculated nuclear magnetic resonance
(NMR) data, such as chemical shifts and S2 order parameters, for ubiquitin (1UBQ), protein
GB3 (1MJC) and cold shock protein A (1P7E). This analysis builds upon our recent
comparison of the C36 force field with NMR data.63, 120–124 A summary of the chemical
shift results for 6 different nuclei for the three proteins is presented in Table 8; results for the
three proteins are shown in Table S1 of the supporting information. The overall comparison
indicates that the Drude model is in poorer agreement with experiment than the highly
optimized C36 model, consistent with the RMS difference analysis with respect to the
crystal structures.

Additional NMR analysis involved the calculation of peptide backbone N-H order
parameters, S2, for the three proteins, with the results presented on Figure 7. The results in
Figure 9 for C36 are from our previous study.63 For all three proteins the additive and Drude
FFs are generally in similar agreement with the experimental data. Notably, the Drude
model does not systematically underestimate the S2 values as could have been expected
given the enhanced backbone flexibility reflected in the above analyses. Moreover, in select
cases, such as residues 39 to 43 of ubiquitin and 8 to 11 and 73 in protein GB3, the Drude
model gives significantly larger S2 values as compared to C36, with the Drude model being
in better agreement with experiment. These results suggest that, while the peptide backbone
is populating a wider region of φ, ψ space, the range of conformations sampled is not
significantly overestimated and, in some cases, may even be more realistic than with the
additive force field. Such behavior is also consistent with the proteins in the Drude force
field visiting a wider range of conformations in the MD simulations, though remaining
stably folded on the time scale of the presented simulations.

Protein dipole moment analysis

During the development of the electrostatic aspect of the force field the partial atomic
charges were put into groups of total unit charge. For example, the side chains, from the Cβ
atom onward have partial atomic charges that sum to −1, 0 or 1. Similarly, the peptide bonds
along with the Cα/Hα atoms have a total charge of 0. While this simplifying constraint was
used to facilitate the transfer of the charges from the model compounds to the full
biopolymer, it also has the advantage that it allows for the calculation of the dipole moments
of the different functional groups in the MD simulations. Accordingly, analysis was
performed on the dipole moments of the peptide bonds in the GB1 peptide, for the β-sheets
and α-helices in ubiquitin and the Trp residues in lysozyme, which contains 6 such residues.
For GB1 and lysozyme the data are presented as time series of running averages over 10 ns
while the ubiquitin results are presented as probability distributions.

Analysis of the dipole moments in the backbone of GB1 shows large variability in the Drude
model as compared to C36, as should be expected (Figure 8a). Variations in the additive
model can only be associated with changes in the internal geometry of the peptide bond,
with the occurrence of values around 4.6 D associated with the αL conformation. It is
particularly noteworthy that the values are systematically higher with the Drude model—
even though the dipole moments in the additive force field are systematically overestimated
in order to account for the polar environment in a mean-field manner. Apparently, the results
from the Drude model indicate that this overestimation of the dipoles in the additive model
is insufficient to account for the relevant environments encountered by the amino acids.
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The peptide bond dipole moments were also analyzed with respect to secondary structure
from the 1UBQ simulations. Shown in Figure 8b are probability distributions of the dipole
moments in both helices and sheets for both the additive and polarizable FFs. The
polarizable sheet distribution peaks in the vicinity of 5.3 D, consistent with the results for
the GB1 hairpin. In the helices, the polarizable model predicts lower peptide bond dipole
moments, with a maximum in the vicinity of 4.6 D. However, with the additive model, the
maxima for the dipole moments are in the region of 3.7 D for both the sheets and helices,
with the narrow distributions indicative of fixed charge nature of the model. We note that
the dipole moment in the additive model is close to the value of 4.12 D of the additive NMA
model, 3 while that in the polarizable model is 3.72 D.96 Clearly, the present results indicate
that that impact of the environment on the peptide backbone is significant, leading to
significant enhancements in the local peptide bond dipole moments. Notably, these are
enhancements are larger than the inherent dipole moment in the nonpolarizable additive
force field, even though these moieties were “overpolarized” by designed in the
parametrization of this force field. The present observation is also consistent with previous
studies based on both empirical and QM methods showing the protein and aqueous
environments to alter the partial atomic charges in proteins.26, 125, 126

The increase in the peptide backbone dipole moments for both sheets and helices may be
attributed to the hydrogen bonding interactions with surrounding peptide bonds in the
secondary structures. However, the enhanced dipole moment of the sheets over the helices is
somewhat unexpected. This appears to be due to the peptide dipoles pointing in opposite
directions in the extended, sheet conformations, such that electrostatic interactions of
peptide bond i with the adjacent i−1 and i+1 peptide bonds leads to enhancement of the
peptide backbone dipole moment. This is similar to the phenomena occurring in the Drude-1
model that leads to the stabilization of the C5 conformation in (Ala)5 discussed above
(Figure 2). In helices, the i−1 and i+1 peptide bonds are approximately parallel to that of the
i peptide bond so the adjacent dipole moments don’t enhance each other to as great an
extent. Further studies into this observation, including the impact of changes in the
electrostatic model, are warranted.

To understand the impact of the explicit inclusion of polarizability on the side chains we
focus on the 6 tryptophan residues in lysozyme. Presented in Figure 8c are the dipole
moments as a function of time for those residues. With the additive model, the dipole
moments are in the vicinity of 2.3 D, with small variations associated with changes in
intramolecular geometry, including rotations about the χ2 dihedral. In contrast, the dipole
moments in the Drude model are significantly higher and fluctuate over a much wider range
of values (from 2.5 to 4 D). Moreover, there are significant variations in the dipoles during
the simulations, with the dipole moments of selected residues varying by more than 1 D
during the simulations; analysis of individual snapshots from the simulations indicates
variations from 1 to over 5 D associated with local high energy states accessible to local
regions of structures during MD simulations (not shown). The tryptophan with the smallest
dipole in the Drude simulation is Trp28, which is occluded from the solvent, being in
contact with the side chain Trp108 (Figure S5a, supporting information). The tryptophan
with the largest variation is Trp123, whose dipole moment ranges from from 2.6 to over 4 D
during the simulation. This residue is solvent exposed and located adjacent to two helices
(Figure S5b, supporting information), allowing it to sample different environments during
the simulations, leading the variation in the dipole. As with the peptide backbone, the Drude
model predicts the dipole moments of the Trp side chains to be significantly larger than in
the additive force field with those dipoles being significantly different as a function of the
local environment. The gas phase dipole moment of methylindole in the Drude model is
1.97,47 compared to a value of 2.15 with the additive model,127 indicating the significant
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polarization of the side chain that is occurring in the heterogenous environment of lysozyme
in aqueous solution.

Water dipole moment analysis

Previous studies have shown the dipole moments of water to be perturbed in the vicinity of
the protein in polarizable force field simulations.24, 26 Accordingly, we undertook analysis
of the distribution of water molecules around the charged moieties of Glu64 and Lys11 of
ubiquitin along with the change in the dipole moment of water as a function of distance
(Figure 9). In both cases it may be seen that there is a perturbation of the dipole of water in
the vicinity of the charged groups. With Glu64 at short distances the water dipole is
decreased and there is an increase of the dipole at the first maximum of the RDF followed
by a decrease at the first minimum in the RDF. With Lys11 the dipole moment of water is
enhanced at the contact distance, has a minimum just beyond the peak in the g(r) followed
by an increase to the bulk value of 2.45 D at longer distances. The magnitude of the changes
in the dipole moments appear to be slightly smaller than previously reported,24, 26 which
may be due scaling of the polarizable in the SWM4-NDP model by 0.7 as required to
reproduce the dielectric constant of the model as well as other properties.38

Practical considerations

MD simulations with a polarizable model display an enhanced sensitivity to initial
conditions and are generally less robustly stable than simulations carried out with an
additive force field and may display polarization catastrophes that will lead to crashes. For
this reason MD simulations with a polarizable model require careful equilibration.
Accordingly, the initial setup and equilibration of a simulation is best performed using an
additive FF such as CHARMM36. This includes the initial solvation, minimization and
dynamics in the presence of restraints on the protein, thereby allowing the solvent to relax
around the protein, with the dynamics being performed in the NVT ensemble. Additional
equilibration should be performed using the additive model in the NPT ensemble with the
protein structure allowed to move freely or subjected to weak harmonic restraints. 100 ps of
equilibration time may be sufficient, although extensive equilibration of 1 ns or more is
recommended. The equilibrated system is then converted to the Drude polarizable model,
including the ions and water, and subjected to an equilibration protocol similar to that
initially performed using the additive model. As discussed above protein simulations with
the Drude model can typically be performed with a 1 fs integration time step, though a
shorter time step may be required during the initial stage of equilibration as well as for
highly charged systems.

To facilitate performing MD simulations with the Drude model a new module, “Drude
Prepper” has been added to the CHARMM-GUI.90 This module allows for CHARMM
additive model protein structure file (PSF) and an equilibrated coordinate files to be
uploaded and then converted to Drude formatted files, including all nomenclature changes.
In addition, input scripts to perform MD simulations using either CHARMM or NAMD are
produced. It is anticipated that such a utility should greatly facilitate studies of proteins
based on the classical Drude polarizable force field.

SUMMARY

Presented is a polarizable empirical force field based on the classical Drude oscillator for the
modeling and simulation of proteins. In a first round, the parameters optimized from a large
body of experimental and QM data on small model compounds representative of the all
relevant protein functionalities were combined to yield a force field for the polymer.
However, direct transfer of the parameters was not sufficient, requiring additional parameter
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optimization using larger model compounds. Most notable was the transfer of electrostatic
parameters based on NMA to the polypeptide backbone. As this initial model was clearly
insufficient, additional target data on the alanine dipeptide and longer polypeptides,
including interactions with water, relative energies of different conformations, dipole
moments and molecular polarizabilities, were used to obtain the final (Drude-3) model. In
addition, final fine-tuning of the Drude-3 model required additional adjustment to the
relative potential energies of different regions of φ, ψ conformational space using the CMAP
term in the energy function. The resulting model was shown to yield stable explicit solvent
MD simulations on the 100 nanosecond timescale for a collection of peptides and proteins.
Notably, the Drude model displays more conformational flexibility than the C36 additive FF
as estimated from RMS differences with respect to crystal structures and the distribution of
φ, ψ conformations sampled in MD simulations. However, analysis of backbone N-H order
parameters indicates that backbone fluctuations with the Drude model are not inconsistent
with NMR experiments, and, in specific cases, may even represent some improvement over
C36.

Both the additive C36 and polarizable Drude models targeted similar, though not identical,
QM data for development of both the CMAP energy term that defines the φ, ψ potential
energy surface and the dihedral parameters dictating the χ1 and χ2 side chain torsional
energetics followed by additional empirical optimization of these terms. Thus, as the
underlying potential energy surfaces for backbone and side chain sampling may be
considered similar, the implication is that the systematically enhanced conformational
flexibility of the Drude model must be associated with the electrostatic model that includes
explicit induced polarization. Analysis of molecular dipoles in both the additive and Drude
models shows the polarizable model gives systematically larger dipole moments for the
studied moieties as compared to the nonpolarizable additive model, with those dipole
moments showing significant variation during MD simulations. It therefore appears that the
variations of the electronic structure do impact the dynamics of the system and the
microscopic forces dictating the structural and dynamical properties of proteins.
Interestingly, we note that the polarizabilities for many of the moieties in the polypeptides
were scaled down relative the QM data by factors ranging from 1.0 with the aliphatics, to
0.6 with the sulfur containing groups. Indeed. The molecular polarizability of the final
backbone model is systematically lower than QM estimate for the alanine dipeptide (Table
4, note that the QM values are scaled by 0.85). Thus, it seems unlikely that the current
model is inherently overpolarized, though this possibility requires further study.

Overall, the current model should be considered a 1st generation polarizable force field that
can be use for MD simulations on the order of hundreds of nanoseconds. Comparison with
the nonpolarizable C36 additive force field, which has had the advantage of over 20 years of
testing and additional optimization since its initial completion, suggests that further
improvements in the model ought to be possible. Accordingly, we anticipate that an
improved 2nd generation model can and will be produced. Nevertheless, we are confident
that the current model does provide an accurate and improved picture of the structure and
function of polypeptides and proteins and that it can serve as an important computational
tool for the biophysical and chemical scientific communities. We also note the availability
of enhancements in the model that yield more accurate treatment of cation ion-π interactions
involving aromatic residues,128 of an improved, though computationally more expensive
Drude water model,39 and of lipid Drude parameters53 and the anticipated availability of
parameters for nucleic acids (A. Savelyev and A.D. MacKerell Jr., work in progress) and
carbohydrates54 as well as tools for the optimization of small molecule parameters.129 These
enhancements and capabilities will allow for computational studies of heterogeneous
systems using a fully polarizable force field.
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The final residue topology information and parameters in CHARMM format may be
downloaded from the MacKerell Lab Website at http://mackerell.umaryland.edu/
MacKerell_Lab.html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Example of the Drude oscillator model in the context of a carbonyl (C=O) group. A) The
carbon and oxygen atoms shown as spheres with the atomic core (or nucleus) and the Drude
particle, with the associated partial atomic charges for the nucleic, qC and qO for carbon and
oxygen, respectively, and qD for the Drude particles, where the value of qD varies for the
different atom types. B) Carbonyl group in the context of a peptide bond showing the
approximate positions of the line pairs and the tensor components A11 (red), A22 (green)
and A33 (blue) that define the anisotropic atomic polarizability on the oxygen atom. C)
Schematic of the orientation of the Drude particles in a diatomic relative to the atomic
centers with the electric field, E, parallel and perpendicular to the covalent bond.
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Figure 2.
φ, ψ probability distribution from the Ala5 simulations using electrostatic parameters based
on a) N-methylacetamide (Drude-1), b) ESP fitting to multiple conformations of the alanine
dipeptide (Drude-2), c) fitting to the target data in Table 2 (Drude-3) with adjustments to
relative energies of different regions of the CMAP φ, ψ surface and D) from the
CHARMM36 additive force field. The bottom portion of the figures shows images130 of the
Acetyl-(Ala)5-methylamide the C5, PPII and αR conformations.
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Figure 3.
Comparison of experimental and calculated NMR Hα chemical shifts for the GB1 hairpin
for the Drude (black circles) and C36 (red squares) force fields. Calculated values were from
Sparta+119 and the experimental data corresponds to 280K while the simulations were
performed at 298K.
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Figure 4.
Helical properties in the dimeric coiled coil (1U01) simulations. A) RMS differences of the
individual helix Cα atoms following alignment to themselves (eg. Helix A vs. Helix A) and
following alignment based on the other helix in the dimer (eg. Helix B vs. Helix A). B)
Inter-helical angle vectors defining the helical axes were calculated using the nonterminal
residue Cα atoms following Chothia et al.131 NMR data for the 20 models generated in the
published structural study are represented as horizontal lines
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Figure 5.
Peptide N…O distance probability distributions for the A) helical and B) sheet secondary
structures from Drude (black) and C36 (red) MD simulations of the proteins 1EJG, 3VQF,
3ZZP and 4IEJ and from a survey of high-resolution crystal (xtal) structures in the Protein
Databank. Probabilities were normalized to 1 and the values multiple by 100 for clarity.

Lopes et al. Page 31

J Chem Theory Comput. Author manuscript; available in PMC 2014 December 10.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6.
Overall φ, ψ distributions for the A) C36 and B) Drude model and a distribution from a
survey of high-resolution crystal structures. Simulated data include results from 1EJG,
1P7E, 1MJC, 1UBQ, 3ZZP, 4IEJ, 3VQF, 135L, 1IFC, and 1BYI.
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Figure 7.
NMR N-H backbone order parameters, S2, from calculations using both the C36 additive
and Drude force fields for A) ubiquitin (1UBQ), B) protein GB3 (1MJC) and C) Cold shock
protein A (1P7E).
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Figure 8.
Dipole moment analysis (Drude, black, C36, red). A) Peptide backbone dipoles as a function
of time from the GB1 hairpin simulations. B) Probability distribution of the peptide
backbone dipole moments in the helices (thin lines) and β-sheets (thick lines) in ubiquitin
(1UPQ). C) Tryptophan side chain dipole moments as function of time from the lysozyme
(135L) Drude B simulation, with the time series for residue Trp28 and Trp123 labeled. Time
series are running averages over 100 0.1 ns windows.
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Figure 9.
“Unnormalized” Radial distribution function, g(r), and average dipole moments for water
around (A and C) Glu64 and (B and D) Lys11 of ubiquitin. Distances based on the Glu Cε
or Lys Nζ and the water oxygen and the error bars represent the RMS fluctuations.
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Table 1

Peptides and Proteins subjected to MD simulations.

Protein PDB ID/Reference Box size (Å) ions Simulation details

(Ala)5 -- 31.8 -- Hamiltonian Replica Exchange

Acetyl-(Ala)7-amide -- -- Gas-Phase Temp. Replica Exchange

A) GB1 hairpin (residues 41–56 of protein G 100 ns MD with C36 FF

GEWTYDDATKTFTVTE 50.0 -- 150 ns MD with Drude FF

B) Dimeric coiled coil, 2×21 aa 58.7 0.15 M KCl 200 ns MD with C36 FF5

1u0i132 100 ns with Drude FF

C) Crambin, 46 aa 52.0 -- 100 ns with C36 FF

1ejg133 2 × 100 ns with Drude FF

D) Protein GB1 domain, 56 aa 56.7 K+ 100 ns with C36 FF

1p7e134 100 ns with Drude FF

E) Cold-shock protein A, 69 aa 52.4 K+ 100 ns with C36 FF

1mjc135 100 ns with Drude FF

F) Ubiquitin, 76 aa 58.4 -- 100 ns with C36 FF

1ubq136 100 ns with Drude FF

G) Circular permutant of ribosomal proteion S6, 77 aa 100 ns with C36 FF

3zzp137 61.0 Na+ 2×100 ns with Drude FF

H) DNA methyltransferase associated protein (DMAP1) 100 ns with C36 FF

4iej (to be published), 93 aa, 59.0 -- 2 ×100 ns with Drude FF

I) PDZ domain from tight junction regulatory protein, 94 aa 100 ns with C36 FF

3vqf (to be published) 58.0 Na+ 2 ×100 ns with Drude FF

J) Lysozyme, 129 aa 69.8 Cl− 200 ns with C36 FF

135l138 93 and 100 ns with Drude FF

K) Fatty acid binding protein, 132 aa 63.4 -- 100 ns with C36 FF

1ifc139 100 ns with Drude FF

L) Dethiobiotin synthase, 224 aa 72.4 Na+ 90 ns with C36 FF

1byi140 2 × 90 ns with Drude FF

-- indicates no ions or periodic conditions were not used. Number of counterions added were enough the neutralize the system unless the
concentration is presented.
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Table 5

Secondary structural content of Acetyl-(Ala)7-amide from Langevin T-REMD simulations with a dielectric
constant of 80.

Force Field %αR %C5 %PPII

Drude-1 3.8±0.1 84.9±0.1 0.5±0

Drude-2 7.8±0.2 9.9±0.1 52.2±0.4

Drude-3 62.0±1.0 20.8±0.6 15.5±0.3

CHARMM36 28.1±0.6 25.5±0.4 9.2±0.3

%αR represents the percentage of residues with occupying the helical region. Averages and standand errors based on 5 blocks of 20 ns.
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Table 6

Impact of condensed phase optimization on the overlap of the (Ala)4X(Ala)4 and PDB χ1/χ2 probability
distributions.

Residue, X χ1 OC χ2 OC

QM only Final QM only Final

Arg 0.56 0.82 0.70 0.85

Asn 0.75 0.82 0.51 0.61

Asp 0.54 0.65 0.58 0.79

Cys 0.87

Gln 0.90 0.92 0.36 0.60

Glu 0.85 0.68 0.26 0.81

Hsd 0.80 0.94 0.77 0.80

Ile 0.07 0.78 0.15 0.89

Leu 0.88 0.92

Lys 0.70 0.81 0.20 0.93

Met 0.80 0.92 0.75 0.88

Phe 0.69 0.94 0.87 0.89

Ser 0.47 0.74

Thr 0.31 0.74

Trp 0.73 0.86 0.59 0.74

Tyr 0.94 0.72 0.73 0.74

Val 0.87
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Table 8

Combined RMS differences between calculated and experimental chemical shifts for ubiquitin (1UBQ),
protein GB3 (1MJC) and cold shock protein A (1P7E) with the C36 additive and Drude force fields. Number
of each nuclei used in the RMS difference calculations is listed.

Nucleus # of Nuclei RMSD (ppm)

C36 Drude

N 192 2.50 3.21

Cα 201 0.76 1.03

Cβ 180 1.01 1.21

C′ 141 0.95 0.98

H 193 0.41 0.47

Hα 201 0.23 0.30

all C 522 0.90 1.08

all H 394 0.33 0.39
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