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ABSTRACT

Context. In recent years the accuracy of magnetic field observations in the solar atmosphere has made considerable progress. Similar
progress is being made in computer modeling of complex plasma systems and computer capabilities.
Aims. To consider observed solar magnetic field structure in numerical simulations a new extrapolation method for solar magnetic
fields is used to incorporate such fields into three-dimensional MHD simulations
Methods. The simulation employs a new modified linear magnetic field extrapolation which is specifically designed to satisfy sym-
metry conditions which are generic to MHD models. The model domain includes photosphere, chromosphere, and corona.
Results. The new model is applied to several solar field configurations and results are compared to three-dimensional field structure
from observations and another extrapolation method. The new model provides a simple and efficient method for the simulation of
observed solar magnetic field structures by constructing a three-dimensional initial field that is consistent with symmetry boundary
conditions of MHD simulations.
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1. Introduction

Modern investigations of the solar atmosphere provide a wealth
of new information on the magnetic and plasma structure. A
valuable tool to interpret these data is numerical simulation of
the magnetic coupling between the different regions of the so-
lar atmosphere starting from the photosphere, where the mag-
netic field can be determined with the highest spatial resolution,
through the chromosphere and the corona.

Existing solar simulation models usually use model mag-
netic fields on meso-scales (e.g., Antiochos et al. 2002; Cheng
et al. 2003; Choe & Cheng 2002; Galsgaard et al. 2003; Priest
& Forbes 2000) or address global solar phenomena (e.g., Linker
et al. 2001, 2003; Mikic et al. 1999) to investigate the influence
of the photospheric boundary conditions such as magnetic shear,
plasma motion, emerging flux, etc. A first meso-scale simulation
model based on observed line of sight magnetic fields has been
used by Gudiksen & Nordlund (2002) to study coronal heating.
The further development of such models is highly desirable to
interpret the properties and evolution of structures in the solar
atmosphere as observed in various wavelengths of the solar ra-
diation. Here we describe a new method to incorporate observed
photospheric magnetic fields in magnetohydrodynamic simula-
tions to study the evolution of solar magnetic fields. For ap-
plications we refer to other publications (Büchner et al. 2004,
2005a,b)

The method consists of two parts. First, the observed mag-
netic field along the direction of the line of sight has to be con-
verted into three-dimensional magnetic fields. Our approach em-
ploys a solution of the force free magnetic field condition

∇ × B = κB (1)

with a constant coefficient κ (we use κ instead of the common α
the latter is used as an angular variable in the Fourier expansion
in this paper). Although there are various linear and nonlinear
methods for the extrapolation of solar magnetic field most of
these are not suitable to be used as initial conditions for MHD
simulations because of the required MHD boundary conditions.

The second step consists of the use of the extrapolated mag-
netic fields as an initial condition in the MHD simulation. The
simulation code uses a finite difference approximation for the
full set of MHD equations where the plasma is coupled to a neu-
tral fluid. The latter is important in the photosphere and chromo-
sphere.

The following section focuses on the extrapolation of the
magnetic field consistent with MHD boundary conditions.
Properties of the initial state and the extrapolated magnetic field
for a case of a coronal bright point analyzed by Brown et al.
(2001) are discussed in Sect. 3. Section 4 addresses the simula-
tion method and the last section presents a summary and discus-
sion of the presented results.

2. Magnetic field extrapolation

Various methods have been suggested to derive three-
dimensional magnetic field structures from the line-of-sight
magnetic field component. Several of these methods use poten-
tial (Schmidt 1964; Semel 1968), linear (Chiu & Hilton 1977;
Seehafer 1978; Semel 1988), or nonlinear force free fields (Aly
1989; Amari et al. 1997; Cuperman et al. 1990) with a non-
constant value of the force-free parameter κ. The use of the ex-
trapolated fields for MHD simulations, however, requires that
the boundary conditions of the extrapolation are consistent with
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boundary conditions that can be applied to the MHD simulation.
For the purpose of constructing a method which can easily be
employed and automated to construct three-dimensional mag-
netic equilibria a constant value κ is the most straightforward
choice. The particular numerical value of κ can always be cho-
sen to represent characteristics of the observed magnetic field
such as the stretching with altitude over the photosphere or a
particular (inferred) magnetic helicity.

Our approach uses a method similar to the one outlined by
Seehafer (1978). This solution is constructed through a Fourier
series expansion of the magnetic field components where the co-
efficients of the horizontal components (Bx and By) are related
to the vertical component z component Bz through the force free
condition (1) and ∇ · B = 0. This procedure implies periodic
solutions in the x and y directions. The solution of Seehafer
(1978) has the particular advantage of using a symmetry con-
dition for Bz at the x and y boundaries of the system which allow
a solution in a quarter of the full periodic system, i.e., the solu-
tion is constructed in the domain 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly while
the full period covers the domain −Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly.
This avoids the need for periodicity in the magnetic field.

However, this solution is not suitable as an initial condition
for an MHD simulation which requires well defined symmetry
conditions at the boundaries. For Bz the solution by Seehafer
(1978) employs

Bz(−x, y, z) = −Bz(x, y, z), for the boundary at x = 0

Bz(x,−y, z) = −Bz(x, y, z) for the boundary at y = 0

in any plane z = const. such that Bz(0, y, z) = Bz(x, 0, z) = 0.

Using proper MHD symmetry boundary conditions (a de-
tailed discussion will be given in the following section) at
x = 0 implies either Bx(−x, y, z) = −Bx(x, y, z) or Bx(−x, y, z) =
Bx(x, y, z). Allowing for a non vanishing normal component at
this boundary therefore implies the second choice. Furthermore
∇ · B = 0 requires ∂By/∂y = 0 at the x = 0 boundary (x̃ = −x,
and ∂/∂x̃ = −∂/∂x) which can only be satisfied in general if
By(−x, y, z) = −By(x, y, z) or By(0, y, z) = 0. Thus the normal
component Bx is symmetric and nonzero while the tangential
components are zero and reverse sign. However, using these
symmetries and calculating the current at the boundary x = 0
yields jx(−x, y, z) = ∂yBz(−x, y, z)− ∂zBy(−x, y, z) = − jx(x, y, z).
Thus the normal component of the current must reverse sign at
the boundary.

The other boundaries at x and y have the same symmetry
conditions. While there is no problem in the interior domain the
conditions at the x and y boundaries are in contradiction to the
force free condition (1) because the magnetic field normal to the
boundary is continuous and the current normal to the boundary
reverses sign. The reason for this mismatch is that the symmetry
boundary condition is not the proper continuation of the mag-
netic field into the region x < 0. The proper continuation into
this region is determined by the fully periodic solution from −Lx

to +Lx. For this reason the solution by Seehafer (1978) is not
suitable as initial condition for an MHD simulation because an
MHD simulation requires boundary conditions which are lo-
cal symmetry conditions or requires to consider the full period
of the system as considered by Gudiksen & Nordlund (2002).
However, as will be illustrated the approach by Seehafer (1978)
can be modified to accommodate well defined MHD symmetry
conditions.

Table 1. Transformation properties for the transformation x̃ = −x, ỹ =
y, and z̃ = z.

Quantity Set (a) Set (b)
ρ, p, η (s) (s)

ux (a) (a)
uy, uz (s) (s)

Bx (s) (a)
By, Bz (a) (s)

jx (a) (s)
jy, jz (s) (a)

2.1. MHD symmetries for system boundaries

The MHD simulation will use the full set of MHD equations

∂ρ

∂t
= −∇ · ρu (2)

∂ρu

∂t
= −∇ · ρuu − ∇p + j × B (3)

∂B

∂t
= ∇ × (u × B − η j) (4)

∂p

∂t
= −∇ · pu − (γ − 1)p∇ · u + (γ − 1)η j2 (5)

with E = −u × B + η j

∇ × B = µ0 j.

The system boundaries are considered to at x = [0, Lx] and y =
[−Ly/2, Ly/2]. We will now consider symmetry conditions at the
boundary x = 0 for a plane z = const. and distinguish two basic
cases:

i) Local mirroring at the plane x = 0: x̃ = −x, ỹ = y, and
z̃ = z, which implies ∂x̃ = −∂x, ∂ỹ = ∂y, and ∂̃z = −∂z where
∂x ≡ ∂/∂x.
The MHD variables must transform such that the MHD equa-
tions remain invariant for the transformation implied by the
boundary condition. There are two possibilities for the indi-
vidual variables. They can transform either as f (−x, y, z) =
f (x, y, z) which we call symmetric (abbreviated “s”) or they
may transform as g(−x, y, z) = −g(x, y, z) which we call an-
tisymmetric (or “a”). Positive definite variables like ρ, p,
and η must transform symmetric for instance ρ(−x, y, z) =
ρ(x, y, z). Examining the full set of MHD equation with these
rules yields two possible sets of transformations which main-
tain the invariance of the equations. The result for the indi-
vidual variables is summarized in Table 1.
The result demonstrates that the transformation of the mag-
netic field components is always different than the transfor-
mation of the current density components. Set “a” is not suit-
able because of the reasons outlined above. Set “b” implies a
zero normal magnetic field (at x = 0) but has a nonzero nor-
mal current density which is also inconsistent with the force
free condition (1).

ii) Point (line) mirroring (at x = 0) with respect to x = y = 0:
x̃ = −x, ỹ = −y, and z̃ = z, which implies ∂x̃ = −∂x, ∂ỹ =
−∂y, and ∂̃z = ∂z. This resulting set of boundary conditions
implies a line symmetry along the line x = y = 0.
Similar to the prior symmetry all positive definite MHD vari-
ables must be symmetric, e.g., ρ(−x,−y, z) = ρ(x, y, z). The
result for all variables is given in Table 2.

Both set “a” and set “b” have the same transformation proper-
ties for the magnetic field and the current density and are thus
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Table 2. Transformation properties for the transformation x̃ = −x, ỹ =
−y, and z̃ = z.

Quantity Set a) Set b)
ρ, p, η (s) (s)
ux, uy (a) (a)

uz (s) (s)
Bx, By (s) (a)

Bz (a) (s)
jx, jy (s) (a)

jz (a) (s)

suitable for the MHD equations satisfying the force-free condi-
tion. In the following we will employ the transformation set “b”
for the magnetic field extrapolation. Note that while for MHD
models the symmetry set (a) is equally suitable but is lost if
the Hall term is included in Ohm’s law. The boundary condition
has some implications regarding a preconditioning of the initial
magnetic field. The symmetry also applies to the plane x = 0,
i.e., Bz(0,−y, z) = Bz(0, y, z) such that the magnetic field along
the z axis must be symmetric with respect to y = 0 which can be
obtained through

B
precond
z (0, y, z) =

1
2

(Bz(0, y, z) + Bz(0,−y, z)) . (6)

Applying this boundary condition to each boundary along x
and y also implies that all corner point must have the same value
for Bz

Bcorner
z =

1
4

∑

i=corners

B(i)
z . (7)

In addition the solution will produce a magnetic field where the
z axis (and the corresponding midpoint lines for the other bound-
aries are magnetic field lines because the symmetry along these
lines implies Bx,By = 0. However, this preconditioning appears
acceptable compared to method by Seehafer (1978) which re-
quires Bz = 0 on all x and y boundary planes.

2.2. Line symmetry and fourier expansion

In the x, y plane we assume an expansion for Bz with base func-
tions of the form

Ψmn = c1 sin
πm

Lx

x sin
πn

Ly
y + c2 sin

πm

Lx

x cos
πn

Ly
y

+c3 cos
πm

Lx

x sin
πn

Ly
y + c4 cos

πm

Lx

x cos
πn

Ly
y (8)

in a system 0 < x < Lx, −Ly/2 < y < Ly/2 as illustrated in Fig. 1.
The line symmetry conditions are

Ψmn (−x,−y) = Ψmn (x, y) at x = xmin = 0

Ψmn (Lx + x,−y) = Ψmn (Lx − x, y) at x = xmax = Lx

Ψmn

(
Lx

2
− x,−

Ly

2
− y
)
= Ψmn

(
Lx

2
+ x,−

Ly

2
+ y

)

at y = ymin = −
Ly

2

Ψmn

(
Lx

2
− x,

Ly

2
− y
)
= Ψmn

(
Lx

2
+ x,

Ly

2
+ y

)

at y = ymax =
Ly

2
·

x

y

-x1

Lx

Ly/2

-y1

∆x

∆x∆y

∆y

-Ly/2

y1

x1

Fig. 1. Illustration of the geometry of line symmetry.

Applying the symmetry conditions to the expansion yields the
base functions

Ψmn = c1 sin
πm

Lx

x sin
πn

Ly
y + c2 cos

πm

Lx

x cos
πn

Ly
y (9)

with m, n both even or m, n both odd for the expansion in x and y.

2.3. Solution to the force free condition

The solution is found similar to the work by Seehafer using an
expansion in the form:

Bz,αβ = c1 exp
(
−λαβz

)
sinαx sin βy

+c2 exp
(
−λαβz

)
cosαx cos βy (10)

and

Bxαβ = exp
(
−λαβz

)
(c1x sinαx cos βy + c2x cosαx sin βy) (11)

Byαβ = exp
(
−λαβz

) (
c1y sinαx cos βy + c2y cosαx sin βy

)
. (12)

Applying the force free condition allows to formulate the general
solution which satisfies the line symmetric boundary conditions.

Bx =
∑

m,n odd

c1mn

κ2 + λ2
mn

exp (−λmnz) (βnκ sinαmx cos βny

−αmλmn cosαmx sin βny)

+
∑

m,n odd

c2mn

κ2 + λ2
mn

exp (−λmnz) (αmλmn sinαmx cos βny

−βnκ cosαmx sin βny) (13)

By = −
∑

m,n odd

c1mn

κ2 + λ2
mn

exp (−λmnz) (βnλmn sinαmx cos βny

+αmκ cosαm x sin βny)

+
∑

m,n odd

c2mn

κ2 + λ2
mn

exp (−λmnz) (αmκ sinαm x cos βny

+βnλmn cosαmx sin βny) (14)

Bz =
∑

m,n odd

c1mn exp (−λmnz) sinαmx sin βny

+
∑

m,n odd

c2mn exp (−λmnz) cosαm x cos βny (15)



316 A. Otto et al.: Force-free magnetic field extrapolation for MHD boundary conditions in simulations of the solar atmosphere

Fig. 2. Magnetogram of the line of sight components at the beginning
of the Π phase of an observed EUV bright point (Brown et al. 2001).

with κ2 + λ2
mn = α

2
m + β

2
n, αm = πm/Lx, and βn = πn/Ly. A given

polarity image in Bz is expanded in the set of these base functions
at the solar surface z = 0 subject to the preconditioning of the
image data according to (6) and (7). The extrapolated solution
is then used as an initial condition in the full three-dimensional
MHD simulation model.

It is important to note that neither the Seehafer (1978) nor the
presented method require a total magnetic flux balance different
from a fully periodic solution as used by Gudiksen & Nordlund
(2002). The Seehafer (1978) solution is restricted in that it re-
quires that the magnetic field has only a normal component at
the boundaries in x and y while our extrapolation allows that all
components of the magnetic field are non-zero at these bound-
aries except for the lines of symmetry.

3. Properties of the magnetic field extrapolation

The goal of the magnetic field extrapolation is to construct a
suitable initial condition for an MHD simulation of the corre-
sponding configuration. This does not necessarily imply that the
initial configuration has to reflect the exact state of the magnetic
field at the start of the simulation because this configuration un-
dergoes continuous changes caused by the photospheric plasma
motion. For this reason the magnetic and plasma structure can
never be expected to be in an exact equilibrium configuration.
However, after sufficient time has passed it can reasonably be
expected that the precise initial state has only a minor influence
on the dynamical evolution. In other words the system has a fi-
nite memory.

Nevertheless, it is desirable that basic geometrical magnetic
field properties are accurately reflected in the initial magnetic
field. Boundary conditions always influence this geometry and
the magnetic field evolution. Therefore it is important to choose
a simulation domain of sufficient size such that the main mag-
netic field concentrations and their inter-connections are con-
tained within the system. As an example for the model prop-
erties we used a magnetogram related to an EUV bright point
described by Brown et al. (2001). The original magnetogram is
shown in Fig. 2 with a pixel size of about 500 km. We note that a
decomposition by 32 modes provides a highly accurate represen-
tation of the original magnetogram. However, for a system size
of 28 Mm as in the case of the Brown et al. (2001) observation,

Fig. 3. Representation of the magnetogram in Fig. 2 by 16 (top) and by
8 Fourier modes (bottom) with an overlay of magnetic field lines repre-
senting the potential field. Field lines are started from the photospheric
boundary and projected onto this boundary.

the scale height of harmonics larger than 16 is less than 600 km,
decreasing with increasing mode number. Thus the higher order
harmonics do not contribute significantly to the magnetic field
structure at transition region heights and in the solar corona.

The Fourier decomposed Bz magnetic field component based
on the solution in described in Sect. 2.3 for κ = 0 is shown in
Fig. 3. Here the magnetogram is resolved by 8 and by 16 Fourier
modes for each direction. The plots also include the projection
of magnetic field lines starting from the photospheric boundary
where a reddish color indicates field lines extending higher into
the photosphere. Both decompositions show the main magnetic
polarities of the original data albeit the size of the major po-
larities increases with decreasing mode number and the mag-
nitude of the magnetic field decreases with decreasing mode
number. Although magnetic field lines have some similarity
Fig. 3 demonstrates that the inclusion of higher harmonics de-
scribes more complex details of the field structure. Also more
of the uniformly space field lines are short and close within
the photosphere consistent with the small scale height of higher
harmonics.

In comparison to our 8 mode solution Fig. 4 shows the
Seehafer (1978) extrapolation with 8 modes. The two results



A. Otto et al.: Force-free magnetic field extrapolation for MHD boundary conditions in simulations of the solar atmosphere 317

Fig. 4. Same as Fig. 3 for the Seehafer (1978) 8 mode extrapolation.

Fig. 5. Difference of the line of sight magnetic field between the
Seehafer and our extrapolation for 16 modes.

show very similar distributions of the polarities and a similar
shape of field lines close to the center of the system. However,
field lines close to the boundary are rather different. The figure
also demonstrates that all boundary field lines in the Seehafer so-
lution are normal to the boundaries where they leave the domain
as expected by the symmetry conditions discussed in Sect. 2. In
fact the extrapolation after Seehafer (1978) allows only a normal
component of the magnetic field at the boundary.

The difference in the Bz component between our extrapola-
tion and the Seehafer extrapolation is shown in Fig. 5 for the
16 mode expansion. The largest differences occur close to the
boundaries as can be expected because of the different bound-
ary conditions. The differences are also most pronounced in the
highest order modes indicating that the difference decreases fast
with height.

However, the comparison of the extrapolated magnetic fields
does not necessarily imply that the magnetic structure is simi-
lar. A quantitative measure of this structure is difficult and the
comparison of individual field lines is a poor indicator of the
basic field structure because magnetic flux boundaries can be
shifted by a small amount such that individual magnetic flux
tubes started at the same physical location can have entirely
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Fig. 6. Flux tube volume for our magnetic field extrapolation (top) and
Seehafer’s model.

different shape. Here we employ the differential magnetic flux
tube volume

VB =

∫

B

ds

|B|
(16)

as a measure of the magnetic configuration. The differential
magnetic flux tube volume has the properties that it increases
with the length of individual field lines. It also increases with
decreasing magnitude of the field along a field line, such that
a corresponding plot shows large flux tube volume in regions
where field lines stretch to higher altitudes and where field lines
enter regions of particularly weak magnetic field.

The differential magnetic flux tube volume for our field
model and for the Seehafer extrapolation is shown in Fig. 6
for the cases of 8 modes and 16 modes for our model and the
8 mode expansion for the Seehafer model. Comparison with
Fig. 3 demonstrates that small flux tube volume is indicative
for short flux tubes which close below the transition region.
These are typically arranged along polarity inversion bound-
aries. Large flux tube volume indicates foot point locations of
magnetic structures which rise to considerable height. Large flux
tube volume can also be indicative for complex magnetic struc-
ture because the differential flux tube volume becomes very large
(or diverges) close to magnetic neutral points or lines.

The comparison of the 8 mode expansions show good agree-
ment in the central region of the system whereas there are con-
siderable differences closer to the boundaries. Noticeable are
very large flux tube volumes close to the boundaries in the
Seehafer extrapolation. It turns out that these are actually an
artifact of the Seehafer solution. Since the potential field in
this expansion has only a normal component at the boundaries,
any change of the polarity of the normal component implies a
zero value of the magnetic field. Thus a reversal of the nor-
mal component implies the presence of artificial neutral lines
at these boundaries. Figure 7 shows the normal magnetic field
and the neutral lines for the Seehafer extrapolation at the x = 0
boundary.
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Fig. 7. Normal magnetic field for the Seehafer solution at x = 0.

A generic topological property of a three-dimensional field
are isolated neutral points rather than neutral lines. Thus our
model contains only isolated neutral points. The area of pho-
tospheric regions which map into the vicinity of neutral points is
small. In contrast the presence of neutral lines (rather than neu-
tral points) at the boundaries of the Seehafer extrapolation leads
to the extended photospheric regions of large magnetic flux tube
volumes illustrated in Fig. 6.

The 8 mode plot in Fig. 6 shows a relatively simple structure
where areas with bluish color indicate longer field lines extend-
ing into the corona or mapping to the vicinity of neutral points.
The case of 16 modes shows the same basic structure, however,
with smaller dark regions which are cut out of the regions of
higher flux tube volume. To understand this one has to remem-
ber that a larger number of modes implies the presence of small
scale structure which also has a small scale height, i.e., which is
not reaching into the corona. The strong magnetic field regions
are more confined for cases with larger mode numbers. The dark
cutouts in the flux tube volume reflect these small loops that do
not reach into the corona and therefore have small flux tube vol-
ume. The same tendency, i.e., additional small size cutouts from
the larger flux tube volume regions continuous in the case of 32
or more modes (not shown).

Another important question is the deviation of the tangen-
tial (Bx and By) components of the magnetic field, which arise
in both, the Seehafer and our extrapolation methods although
they start with the normal (Bz) component of the photospheric
magnetic field alone. The reason is that the force-free condition
κ = const. requires for selfconsistency finite Bx and By compo-
nents as well. In order to test our new extrapolation method we
applied it to a case, where the full vector magnetogram informa-
tion was available. As such we choose the active region NOAA
AR8210 which was previously discussed and investigated in de-
tail by Longcope (2004) and Welsch et al. (2004). We choose the
moment 17:30 UT, just before a major eruption took place. As a
quantitative measure for the deviation we calculated the relative
tangential magnetic field deviation

∆Bt ≡

√√√√√(Bx,ex − Bx,meas
)2
+
(
By,ex − By,meas

)2

(
Bx,ex + Bx,meas

)2
+
(
By,ex + By,meas

)2

where the lower index ex indicates the field components from the
extrapolation (ours or Seehafer’s) and the index meas indicates
the magnetic field components obtained by polarimetry methods
in the photospheric plane. Figure 8 shows the relative tangential
magnetic field deviation for our extrapolation method (top) and
for the Seehafer (bottom) method. In both extrapolations we as-
sumed κ = 0, i.e., potential fields. Both methods reveal similar
regions with deviations in the tangential magnetic field compo-
nents as compared to the observed ones. Because of the simi-
larity we interpret most regions with large deviations as regions
where larger field-aligned (and possibly perpendicular ) currents
are present in the observed fields. Both methods also indicate
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Fig. 8. Deviation of the tangential magnetic field between the extrapo-
lated (our model – top; Seehafer – bottom) field and the vector magne-
togram for the active region NOAA AR8210.

larger deviations close to the boundaries which is expected be-
cause of the influence of the boundary conditions on the solution.

4. Simulation model

The MHD equations are solved with a Leapfrog scheme which is
second order accurate and has very low dissipation. A small dis-
sipation is switched on if oscillations develop on the grid scale
similar to flux corrected transport (FCT) schemes. Terms involv-
ing second order derivatives are treated with the Dufort-Frankel
method which allows to consider very small resistivity.

The grid is chosen nonuniform in the z direction with the
highest resolution at zmin and ∆z = 0.3 (corresponding to about
160 km). At least 8 grid points should be considered for the
smallest wave lengths of the Fourier series expansion to ensure
sufficiently small discretization errors for the finite difference
scheme, i.e., for an area of 64 pixels modeled with a maximum
of 8 modes per direction at least 64 grid points should be used
for the simulation. In fact it turned out that 16 grid points are
desirable for the shortest wavelength of the 16 mode expansion
examples presented here. This corresponds to a 256×256 grid in
the x, y plane. Since magnetic flux and energy decrease fast with
with altitude, only modes which contribute significantly at coro-
nal heights (z > 4) are important for reconnection and magnetic
reconfiguration in the corona.
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4.1. Equations and normalization

An important consideration for a model of the photo-
sphere/chromosphere/corona region is the interaction with the
neutral environment. In the collision dominated photosphere
and chromosphere this implies ionization and recombination,
friction, and thermal contact between the plasma and neutrals.
Radiative processes are not included in the present model. The
plasma is coupled to a neutral background fluid which is present
only in the lower (z < 4) portion of the system representing pho-
tosphere and chromosphere.

The focus of the current implementation of the model is to
provide a framework to simulate solar processes based on the
extrapolation (Sect. 2) of observed photospheric magnetic field
and to examine basic effects caused by the collisional environ-
ment below the transition region.

∂ρ

∂t
= −∇ · ρu − µ(ρ − ρ0) (17)

∂ρu

∂t
= −∇ ·

[
ρuu +

1
2

(
p + B2

)
1 − BB

]
− µρ(u − u0) (18)

∂B

∂t
= ∇ × (u × B − η j) (19)

∂h

∂t
= −∇ · hu −

(γ − 1)
γ

h1−γ
(
2(γ − 1)η j2 − µ(h − h0)

)
. (20)

The pressure p is substituted by the variable h = (p/2)1/γ be-
cause this yields a continuity equation in the absence of source
terms for the internal energy.

The above set of equations is in normalized units. We nor-
malize magnetic field to B0 = 1 G = 10−4 T, plasma den-
sity to the density in the corona just above the transition region
n0 = 2 × 1015 m−3 for protons (the actual number density is
smaller but a presence of heavier ions and convenience let us
choose this number), and length scales close to the length of an
MDI pixel size L0 = 500 km. This yields a normalization of
velocities to the Alfvén speed vA0 = 50 km s−1 and of times
to Alfvén times τA0 = 10 s. Pressure is normalized to typical
magnetic pressure p0 = B2

0/ (2µ0) = 4.0 × 10−3 and tempera-
ture to T0 = p0/ (2n0kB) = 7.2 × 104 K (the factor 2 is because
of electrons and ions). This yields a typical thermal velocity of

vth0 =
√

2kBT0/m =

√
B2

0/ (2µ0mn) = vA0/
√

2. Note that the

physical temperature Tp is determined by Tp = T0
√

p/ρ with p
and ρ being the pressure and plasma mass density (assuming
protons) in simulation units.

The ion neutral collision frequency is νin = nnσnvth with
σn ≈ 10−19 m2. In normalized units this yields µ = 70ρn

√
p/ρ,

where ρn is the neutral mass density normalized to ρ0 (assum-
ing hydrogen). This illustrates that the normalized collision fre-
quency is large anywhere below the transition region (increasing
toward the solar surface).

Electron – ion collision frequencies are about νei ≈ 107 s−1

in the photosphere/chromosphere and νei ≈ 103 s−1 in the
lower corona. The normalized resistivity is η = λ2

eνcτA/L
2
0

with the electron inertia length λe = c/ωpe. Note that the dif-
fusion time is τdiff = L2

0/(λ
2
eνc) which is 107 s in the photo-

sphere/chromosphere and 1010 s in the corona. The correspond-
ing normalized resistivity is between η ≈ 10−6 and η ≈ 10−9.
However, the classical resistivity is far too small to explain ob-
served time-scales of reconnection in the solar corona. In the
simulation model we use a current dependent resistivity based
on the drift speed of the current carriers. Our model assumes

particle scattering as a result of plasma turbulence when the drift
velocity surpasses a threshold value (such as for ion-acoustic or
other micro-instabilities). Since these are sub grid processes it
is assumed that the actual current are filamentary and on a scale
of a few km, i.e. about 1/100 of our horizontal grid resolution.
The resistivity is switched on when the parallel plasma velocity
is larger then some critical value (0.2 vA(ztrans)

√
T (z)/T (ztrans)

where ztrans is the height of the transition region.

Note that for strong magnetic fields the resistivity and Alfvén
time decrease with the inverse magnitude of the magnetic field.
To obtain fast reconnection the thickness of the diffusion region
has to decrease to about 1 km below the transition region (if
fast reconnection were possible with the strong neutral coupling)
and to about 1 m in the corona (and below these values if the
magnetic field is larger than B0 = 1 G).

4.2. Initial conditions

The value for the ion neutral collision frequency is chosen in
part for numerical reasons (very large collision frequencies may
require to reduce the time step). The mass density below the tran-
sition region is assumed to increase to ρ = 100 (in units of the
corona density which is set to 1) and the normalized collision
frequency is assumed with a maximum of µ = 30 in the photo-
sphere. This underestimates the actual collisional effects such as
friction, however, whether the plasma is forced with 99% of the
neutral velocity or with 99.99% is not significant for the physics.
On the considered time scales the forcing is always large.

In the simulation we do not distinguish between effective fre-
quencies for ionization/recombination, friction, and energy ex-
change. The main effect of the collisions is to keep plasma den-
sities, velocities, etc close to equilibrium or neutral values. For
this purpose the exact values do not matter as long as the fre-
quencies are≫1. The pressure is assumed constant with a value
of 1 (this is equal to the plasma beta β = 1 based on B0 = 1 G)
which yields a plasma β≫ 1 for all regions with B ≫ 1.

The dynamical evolution in the simulation is usually initi-
ated through a photospheric neutral vortex motion. This neutral
velocity is chosen to satisfy ∇ · un = 0. Since the plasma mo-
tion is strongly coupled to the neutral motion, this condition im-
plies dρ/dt = 0 and thus avoids potentially unrealistic density
perturbations. The neutral velocity is contained in x, y planes
and implemented through potential U such that un = ∇ × (Uez).
The neutral motion is specified throughout the simulation do-
main but is effective only where the neutral density and collision
frequency are large. Thus the neutral motion forces the plasma
to move in the same manner below the transition region.

4.3. Boundary conditions

At the x and y boundaries line symmetry with respect to the cen-
ter of each boundary plane is assumed as discussed in Sect. 2.

At the lower boundary the tangential velocity is specified as
defined by the neutral motion. The normal velocity is set to 0.
The normal magnetic field uses ∇ · B = 0 and the horizontal
components are computed from ∇ × B = αB. As an alternative
one could just fix the initial magnetic field for cases without the
neutral flow or one can assume symmetry, i.e., ∂zBx = 0 and
∂zBy = 0. Density and pressure are assumed symmetric (zero
normal derivative). At the top boundary symmetric conditions
(zero normal derivatives) are assumed.
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Fig. 9. Magnetic field and magnetogram for the 16 (top) and 8 mode
(bottom) expansions 99 min into the simulation. Field lines are com-
puted from the plane z = 5 just above the transition region.

5. Summary and discussion

There are many applications of the proposed modeling method.
For instance the method can be used to identify the stability
of solar magnetic field structures or to identify specific modes
of magnetic reconnection. The presented model can employ in-
ferred convection patterns for the foot point motion of the mag-
netic field in the photosphere. In the case of potential field this
motion provides a pointing flux into the corona. In cases of a
force free initial condition the resulting Poynting flux can be up-
or downward.

As an example for the dynamic evolution Fig. 9 shows mag-
netic field lines and the magnetogram 99 min into simulations
for the 16 and the 8 mode expansions for the configuration il-
lustrated in Fig. 2. Here field lines are computed from a plane at
z = 5 corresponding to about 2500 km, i.e., just above the tran-
sition region. The photospheric flow boundary condition have
been presented in Büchner et al. (2005b). While Fig. 3 illustrates
large differences in the magnetic field, the field structure is very
similar in the plots of Fig. 9. The reason for this is the selection
of field lines starting from the plane z = 5. Since the amplitude of
higher modes decreases rapidly with altitude (13)−(15) the mag-
netic structure of the 8 and 16 mode expansions are converging

Fig. 10. Extrapolated potential field for the 16 (top) and 8 mode (bot-
tom) based on the observed at 15:36 UT by MDI line-of-sight magnetic
field components, i.e., the same time as for the simulation results shown
in Fig. 9.

with increasing height. The difference between these expansions
is largest at the photospheric boundary and for the current exam-
ple the 8 mode expansions provides a reasonable approximation
for the dynamics above the transition region.

Our simulations demonstrate that currents are generated in
the corona in response to the energy input through the photo-
sphere . Indeed, we found that both parallel as well as perpen-
dicular currents are created, which deform the magnetic fields
compared to the potential field extrapolation. The two plots
in Fig. 10 depict the potential fields, extrapolated based on
the observed MDI line-of-sight magnetic field components at
15:36 UT, 99 min after the moment, for which the simulation
was started (cf. Fig. 3) and at the same time that shows the sim-
ulation result in 9. The results of Figs. 9 and 10 demonstrate
that the simulated magnetic field corresponds to a large extend
to the magnetic field, extrapolated for the observed photospheric
line of sight field. However there are many differences if one
examines the detailed field structure which reflect the fact that
the field from the simulation is not anymore a potential field
and contains field-aligned as well as perpendicular currents. For
instance, the elongated structural element, extending from the
left main polarity to the lower right region, exists only in the
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simulated magnetic field structure. This structural element is due
to the local current dissipation and reconnection, which we are
able to describe by our simulation approach in contrast to any
force-free extrapolation approach, which cannot reveal regions
of perpendicular currents and reconnection.

Additional results on this case are presented in Büchner et al.
(2005b). Those results demonstrate a good agreement between
the TRACE observations of a corresponding EUV bright point
and the field-aligned parallel potential. Other results using the
presented method can be found in Büchner et al. (2005a,b). It is
worth mentioning that model results frequently show large paral-
lel electric fields forming in and just above the transition region,
which demonstrates the importance of including this region into
the MHD simulation.

The proposed method contains various assumptions and lim-
itations, however, several of which can be overcome or can be
improved upon. The main limitations are due to (a) the lim-
ited spatial resolution of observations and simulation; (b) the
assumption of a force free equilibrium with a constant coeffi-
cient; (c) some of the physics included in the basic dynamical
equations; and (d) the absence of newly emerging magnetic flux
which is not implemented yet. Limitations in the third category
address for instance radiative energy loss and heat conduction.
The model development is being continued with the goal to in-
corporate additional important physics.

In summary the presented solar magnetic field expansion
and simulation model provide a straightforward method which
can incorporate observed solar magnetic fields into MHD
simulations of the dynamics of magnetic structure. The model
uses an extrapolation of the solar fields which is consistent with
generic MHD boundary conditions. The model includes the pho-
tosphere, chromosphere, and solar transition region and results

indicate that this transition region may be important for the dy-
namics of solar magnetic structure.
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