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Abstract

Since the mechanosensitive channel MscCG has been identified as the major glutamate efflux system in Corynebacterium

glutamicum, studies of mechanotransduction processes in this bacterium have helped to unpuzzle a long-unresolved mystery

of glutamate efflux that has been utilised for industrial monosodium glutamate production. The patch clamp recording from

C. glutamicum giant spheroplasts revealed the existence of three types of mechanosensitive (MS) channels in the cell membrane

of this bacterium. The experiments demonstrated that the MS channels could be activated by membrane tension, indicating that

the channel gating by mechanical force followed the BForce-From-Lipids (FFL)^ principle characteristic of ion channels inher-

ently sensitive to transbilayer pressure profile changes in the mechanically stressed membrane bilayer. Mechanical properties of

the C. glutamicum membrane are characteristics of very soft membranes, which in the C. glutamicum membrane are due to

negatively charged lipids as its exclusive constituents. Given that membrane lipids are significantly altered during the fermen-

tation process in the monosodium glutamate production, MS channels seem to respond to changes in force transmission through

the membrane bilayer due to membrane lipid dynamics. In this review, we describe the recent results describing corynebacterial

FFL-dependent mechanosensation originating from the particular lipid composition of the C. glutamicummembrane and unique

structure of MscCG-type channels.
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Introduction

Glutamate efflux mechanism through the Corynebacterium

glutamicum cell envelope has presented an unresolved

mystery since the discovery of this bacterium as a workhorse

for industrial monosodium glutamate (MSG) production

(Kinoshita et al. 1957; Marshavina and Gazaryan 1975;

Shiio et al. 1962; Udaka 1960). The serendipitous discovery

of the mechanosensitive channel MscCG as a major glutamate

exporter is expected to reveal the mechanism of how gluta-

mate efflux is triggered by inhibition of fatty acid synthesis

using specific treatments, such as biotin limitation and supple-

mentation of tween 40, in the fermentative process (Becker

et al. 2013; Boerngen et al. 2010; Hashimoto et al. 2012;

Hashimoto et al. 2010; Nakamura et al. 2007). By using the

patch clamp from giant spheroplasts of C. glutamicum, activ-

ities of three types of mechanosensitive (MS) channels,

MscCG, MscCG2, and MscL, have been characterised

(Nakayama et al. 2018b). Consequently, the role of MS chan-

nels in glutamate production has been modelled as follows: 1)

biotin limitation and supplementation of tween 40 inhibit fatty

acid synthesis and change the metabolic flow to produce L-

glutamate, 2) inhibition of fatty acid synthesis increases mem-

brane tension, 3) only MscCG is activated by this increased

membrane tension, and 4) L-glutamate is excreted by passive
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diffusion through the open pore of MscCG (Fig. 1a). In this

scenario, C. glutamicum mechanosensation by MscCG is a

key determinant of the glutamate efflux; however, the activa-

tion mechanism of C. glutamicummechanosensitive channels

has remained poorly understood. Notably, how do specific

treatments triggering glutamate production increase mem-

brane tension to activate mechanosensitive channels? What

membrane changes lead exclusively to the opening of

MscCG?

C. glutamicum mechanosensitive channels,
MscS-like and MscL-like channels

Bacterial mechanosensitive channels are known to function as

osmotic nanovalves (Booth and Blount 2012; Levina et al.

1999). They release osmolytes rapidly in response to increased

membrane tension upon hypoosmotic shock (Boer et al. 2011).

Two types of bacterial mechanosensitive channels, MscS and

MscL, have been employed as models for studies of the gating

mechanism of most known types of mechanosensitive channels

(Edwards et al. 2004; Hurst et al. 2008; Sukharev et al. 1996).

Interestingly, onlyMscS homologues are found in all cell-walled

organisms frombacteria to landplants (Kloda andMartinac2002;

Wilson et al. 2013). TheseMscS-like channels are highly diverse

in their structure and function (Malcolm and Maurer 2012; Cox

et al. 2015). MscCG-type mechanosensitive channels are found

only in Corynebacterineae suborder, including C. glutamicum,

and are classified into one of MscS-like channel subfamilies ac-

cording to the structural feature of the large C-terminal extension

characteristic of these channels (Boerngen et al. 2010). In the

C. glutamicum genome, two MscS-like channels (MscCG and

MscCG2) and one MscL-like channel (CgMscL) exist

(Nakamura et al. 2007; Nakayama et al. 2018b; Wang et al.

2018). However, only MscCG functions as a major glutamate

efflux system among these mechanosensitive channels. In fact,

the most laboratory-used Corynebacterium strain ATCC13032

lacks MscCG2. In order to establish whether glutamate efflux is

caused by activity of mechanosensitive channels in the

C. glutamicum native membrane, direct application of the patch

clamp methods to C. glutamicum giant spheroplasts was devel-

oped (Fig. 1b) (Nakayama et al. 2018b). This study demonstrated

that all three types of C. glutamicummechanosensitive channels

weremechanically activated by applying negative pressure to the

spheroplast membrane. When ramp pressure was applied to the

membrane,MscCG,major glutamate exporter, was activated first

exhibiting a conductanceof 0.3nS, andwas followedbyactivities

of MscCG2 and CgMscL, which were activated at higher pres-

sure exhibiting larger conductance of 1 and 3 nS, respectively

(Fig. 1c). Moreover, mechanical properties of the giant sphero-

plast membrane were evaluated bymicropipette aspiration meth-

od (Nakayama et al. 2018b) showing that elasticity modulus of

the C. glutamicummembrane was much smaller compared with

the E. coli membrane. This result indicates that Corynebacterial

membrane is very soft and expandable. When the membrane is

stretched by applying negative pressure (suction) to a patch pi-

pette, the membrane curvature observed inside the pipette indi-

cates that membrane tension is increased because tension can be

calculated using Laplace’s law (T = Pr/2, T tension, P pressure, r

radius of membrane curvature) (Fig. 1d).

Fig. 1 C. glutamicum glutamate production by mechanosensitive

channels. a Mechanosensitive channel model for glutamate efflux.

Biotin limitation and supplementation of tween 40 inhibit fatty acid

synthesis and reduce the total amount of membrane lipids. Increased

membrane tension activates exclusively the mechanosensitive channel

MscCG and the glutamate is excreted by passive diffusion through the

open pore ofMscCG. bC. glutamicum giant spheroplasts preparation and

application of patch clamp technique. c Current recording of all

C. glutamicum endogenous mechanosensitive channels by mechanical

stimuli in direct patch clamp. Upper and lower traces show channel

currents and pressure applied to the membrane, respectively. d

Measurement of membrane tension by Laplace’s law. P is pressure

applied to the patch membrane, and r is radius of membrane curvature
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BForce-From-Lipids^ principle: lessons
from mechanosensitive channels activated
by amphipaths

Since the discovery of E. coli mechanosensitive channels as

pressure-sensitive channels in giant spheroplasts (Martinac

et al. 1987), there have been several breakthroughs reported

in the studies of the gating mechanism of mechanosensitive

channels. By applying Laplace’s law, mechanosensitive chan-

nels have been clearly demonstrated to sense membrane ten-

sion rather than pressure (Gustin et al. 1988; Nomura

et al. 2012; Sokabe et al. 1991; Sukharev et al. 1999).

However, how does increased membrane tension activate

mechanosensitive channels? Integral membrane proteins,

such as ion channels, are surrounded by annular lipids, and

thus it is believed that the mechanical gating force is trans-

ferred directly from the lipid bilayer via the annular lipids to

the channels. In lipid bilayers, hydrophilic head and hydro-

phobic tails of phospholipids generate pressure profile called

Btransbilayer pressure profile^ (Cantor 1999; Martinac et al.

2018) and integral membrane proteins are exposed to this

force distribution across the membrane bilayer. For

mechanosensitive channels, mechanical stimuli change the

lateral pressure profile, which leads to a conformational

change of the protein. This gating mechanism has been pro-

posed as BForce-From-Lipids (FFL)^ principle (Martinac

et al. 1990; Cox et al. 2018; Ridone et al. 2018; Teng et al.

2015). Although the FFL gating mechanism has not been

demonstrated for the MscCG channel, this principle was

completely proven by the experiments investigating the effect

of amphipathic molecules including conical lipids,

lysophosphatidylcholine, that create membrane local curva-

ture and asymmetric transbilayer pressure profile (Martinac

et al. 1990; Perozo et al. 2002). MscS and MscL are activated

without applying any pressure to membranes when

amphipaths are added in the patch clamp experiments. In this

situation, the patch membrane was not globally curved.

Although local membrane tension cannot be calculated by

Laplace’s law, it has been suggested that mechanosensitive

channels are activated by changes of the transbilayer pressure

profile created by local curvature (Bavi et al. 2016). Thus,

sensing changes in the transbilayer pressure profile across

membranes are the essence of the channel mechanosensitivity

(Martinac et al. 1990), and this mechanism will also be inves-

tigated for MscCG channels in the future.

Membrane alteration of C. glutamicum cell
envelope in glutamate production

C. glutamicum glutamate efflux triggered by biotin limitation

and supplementation of tween 40 are known to cause mem-

brane alteration of both inner and outer membranes in the cell

envelope (Eggeling et al. 2001; Gutmann et al. 1992;

Marshavina and Gazaryan 1975; Hashimoto et al. 2006).

The cell envelope has a unique cell surface structure

evolutionally specialised in bacterial cells of the

Corynebacteria-Mycobacteria-Nocardia group (Chiaradia

et al. 2017), and major functions of their cell envelope are

mechanical resistance and permeability barriers. The inner-

most layer of the cell envelope is the plasma membrane (inner

membrane), and the cell-wall skeleton consists of peptidogly-

can covalently linked to arabinogalactan, which is overlaid on

the plasma membrane. On top of the cell-wall skeleton, a

mycolic acid layer, so-called Bmycomembrane^ (outer mem-

brane), exists as a permeation barrier. Recently, lipid separa-

tion methods between inner and outer membranes by reverse

micelle extraction have been established (Bansal-Mutalik and

Fig. 2 C. glutamicum membrane lipids and the cell envelope structure. a

Structural membrane lipids of inner and outer membranes,

phosphatidylglycerol (PG), cardiolipin (CL), and trehalose corynomycolate

(TCMC). The negatively charged head groups of PG and CL are shown in

red. b The structure of the C. glutamicum cell envelope and membrane lipid

synthesis. As a branch point, phosphatidyl acid (PA) is biosynthesised by

transferring an acyl chain from fatty acyl-CoA (FA-CoA) to glycerol-3-

phosphate (G3P), and then forms cytidine diphosphate-diacylglycerol

(CDP-DAG), the precursor for the synthesis of PI, PIM, PG, and CL. Thus,

all phospholipids are synthesised in the inner membrane. PA is also dephos-

phorylated to become DAG and GI is synthesised from DAG.Mycolic acids

are synthesised by FAS-I and FAS-II separately from phospholipids

Biophys Rev (2019) 11:327–333 329



Nikaido 2011), and their lipid components were dissected

with high-resolution mass spectrometry (Klatt et al. 2018).

C. glutamicum cell membrane does not contain any phospha-

tidylethanolamine (PE) as the main lipid component since this

bacterium lacks PE synthesis pathway (Nampoothiri et al.

2002). Instead, it comprises mainly phosphatidylglycerol

(PG), cardiolipin (CL), phosphatidylinositol (PI), phos-

phatidylinositol mannosides (PIMs), and glucuronic acid di-

acylglycerol (GI), resulting in the highly negatively charged

plasma membrane. On the other hand, the outer membrane

mainly consists of specific types of mycolic acids (MA) called

trehalose corynomycolate (TCMC) with chain length ranging

from MA22:0–MA38:3, relatively short length of carbon

chain compared with mycobacterial counterparts. In normal

culture condition, the MAs 32:0, 34:1, and 36:2 are the major

components of the outer membrane (Hashimoto et al. 2006).

Note that MA34:1 is made of two parallel C16:0–C18:1

chains; thus, it is possible that corynomycolates and phospho-

lipids participate together in the formation of lipid bilayers

(Fig. 2a). In fact, the outer membrane is known to contain

not only corynomycolates, but also phospholipids, such as

PG, CL, and GI (Klatt et al. 2018), suggesting that outer

membrane lipids are transported from inner membrane and

that corynomycolates are inserted into the plasma membrane

during the lipid transport. All membrane lipid biosynthesis

takes place initially in the inner membrane, and some lipids

are recruited into the inner leaflet of the outer membrane.

Therefore,C. glutamicummembrane lipidsmove dynamically

in the vertical direction from the inner membrane to outer

membrane to create highly asymmetric membranes (Fig. 2b).

Bilayer alteration in the plasma membrane to trigger

glutamate efflux can be classified into three factors: total

membrane lipid amount, palmitic acid (C16:0) vs oleic

acid (C18:1) ratio, and cardiolipin amount. Total mem-

brane lipid amount is reduced almost by half by reducing

the expression level of DtsR, a subunit of acetyl-CoA

carboxylase (Kimura et al. 1997; Kimura et al. 1999),

and the ratio of palmitic acid (C16:0) vs oleic acid

(C18:1) increases (Hoischen and Kramer 1990). Since

membrane lipid saturation has been suggested to change

mechanical properties of the membrane and the activation

threshold of MscS (Ridone et al. 2018), it may also have a

similar effect on the activation of the MscCG channels.

The amount of cardiolipin increases significantly after re-

duction of total membrane lipid amount. The overexpres-

sion of phosphatidyl glycerophosphate synthetase pgsA or

cardiolipin synthetase cls causes spontaneous glutamate

efflux in C. glutamicum without any treatments

(Nampoothiri et al. 2002), suggesting that increased

amount of cardiolipin in the membrane induces glutamate

efflux. Cardiolipin is a negatively charged non-bilayer

phospho l ip id , and i t s s t ruc tu re resembles two

phosphatidylglycerols joined together via the head

groups. Due to its inversed conical shape, cardiolipin con-

tributes to creating membrane curvature and localises at

the curved poles and septa of rod-shaped bacteria (Oliver

et al. 2014). Recently, computational simulations have

suggested that cardiolipin shows a strong preference to

negative membrane curvature, thus accumulates in a leaf-

let of negatively curved side of bilayers and creates highly

asymmetric Bbuckled^ membrane (Boyd et al. 2017;

Elias-Wolff et al. 2019).

Mechanical activation vs lipid modulation
activation of mechanosensitive channels

Global curvature (μm scale) by applying negative pressure

seen in the patch clamp experiments increases membrane ten-

sion and activates all C. glutamicum mechanosensitive

Fig. 3 Local membrane curvature

generated by mechanosensitive

channels. a PIEZO (left) and

closed and open MscS (right). b

Secondary structure of

C. glutamicum mechanosensitive

channel MscCG and MscCG2.

Pore-forming helix is shown in

grey

330 Biophys Rev (2019) 11:327–333



channels, MscCG,MscCG2, and CgMscL. On the other hand,

specific treatments to trigger glutamate efflux activate exclu-

sively MscCG although other mechanosensitive channels can

be activated Bmechanically.^ Despite that the cell shape is not

deformed, how does lipid modulation by specific treatments

activates C. glutamicum mechanosensitive channels without

applying mechanical stimuli, especially MscCG? The activa-

tion mechanism of mechanosensitive channels by amphipaths

suggests the importance of asymmetry of transbilayer pressure

profile generated by local curvature (Bavi et al. 2016;

Martinac et al. 2018). Only high local membrane curvature

corresponding to a radius of < 50 nm, which is comparable

with the size of mechanosensitive channels (nm scale), can

generate enough force to activate mechanosensitive channels

(Bavi et al. 2016). Unlike ideal symmetric lipid bilayers, bac-

terial membranes have wrinkled or buckled areas, and these

curved membranes contribute to generating asymmetry of

transbilayer pressure profile. Membrane lipid modulation in

C. glutamicum glutamate production causes significantly dif-

ferent transbilayer pressure profile in the membranes com-

pared with normal condition (Hoischen and Kramer 1990;

Klatt et al. 2018; Nakayama et al. 2018a; Nampoothiri et al.

2002), suggesting that the force distribution change in the

membrane bilayers due to insertion of cardiolipin, for exam-

ple, could activate the mechanosensitive channel MscCG.

Although to date the functional reconstitution of MscCG into

liposomes has not been successful, this approach remains to

be applied in studies of inherent mechanosensitivity of this

channel in the future.

Size and shape matter for structurally diverse
MscS-like channels

Local membrane curvature is not only generated by

amphipaths and membrane lipid components, but also by

the incorporation of mechanosensitive channels them-

selves (Clausen et al. 2017; Bavi et al. 2016). The eukary-

otic mechanosensitive channel PIEZO1 and the prokary-

otic mechanosensitive channel MscS are known to pro-

duce inward membrane bending around themselves

deforming surrounding lipids when they are incorporated

into membrane bilayers. It has been suggested that during

the channel opening, the membrane flattens out (Fig. 3a)

(Liang and Howard 2018; Phillips et al. 2009; Guo and

MacKinnon 2017). The effects of local curvature generat-

ed by these mechanosensitive channels are of great inter-

est to understand the FFL activation mechanism. Indeed,

MscS mechanosensitivity is strongly dependent on its size

and shape (Cox et al. 2016; Nomura et al. 2012; Shaikh

et al. 2014). MscS-like channels including MscCG-type

channels are the most diverse family with regard to their

structure and function among all mechanosensitive chan-

nels (Malcolm and Maurer 2012; Cox et al. 2015). It

should be noted that MscL has not been shown to curve

membranes although this channel is activated by FFL

principle. This is because FFL principle does not only

include membrane stretching (tension) but also membrane

curvature as a mechanical stimulus sufficient for activa-

tion of MS channels, including MscL (Perozo et al. 2002).

The channel-induced membrane bending may be required

for the activation of MscS-like channels, but this hypoth-

esis needs still to be demonstrated. The structural feature

of MscCG-type mechanosensitive channels is the large C-

terminal extension including an additional fourth trans-

membrane helix, whereas the other MscS-like channel

MscCG2 does not have this characteristic extension

(Fig. 3b). Thus, an interesting question is whether the

structure of MscCG channels with the additional helix

creates membrane deformation such as inward bending

sufficiently greater than MscCG2 to change the

transbilayer pressure profile for mechanosensitivity.

Prospects

C. glutamicum glutamate efflux through MscCG channel has

been utilised for industrial MSG production. To understand

this process, Corynebacterial membranes and three-

dimensional structures of MscS-like channels are of great in-

terest because they contribute to creating local membrane cur-

vature resulting in a change of the asymmetry of transbilayer

pressure profile necessary to activate mechanosensitive chan-

nels. Given that the size as well as the shape of

mechanosensitive channels plays a significant role in chang-

ing this asymmetry, the unique structure of the MscCG chan-

nel needs to be elucidated to understand how this channel

itself creates membrane curvature required for its gating by

mechanical force. Consequently, understanding corynebacte-

rial FFL mechanosensation will provide insights not only for

improvement of MSG production, but also for further under-

standing of the gating mechanism of mechanosensitive

channels.
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