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Abstract 
 
Humans are able to pump gas into a car with little or no difficulty.  This task is 

characterized by two sources of force: that from the nozzle contacting the car 

and that from the hose attached to the pump.  The task succeeds due to the 

appreciable skill of a human and a forgiveness in the connection.  The robotic 

mating of connectors burdened by forces from sources like the gas hose is 

beyond the current state of art.  The research presented in this dissertation 

develops technology for robots to mate connectors that concurrently experience 

appreciable forces from encumbrances, like those from hoses, cables and 

oscillating masses, in addition to forces from contact. 

 

Effective force guided assembly under the influence of these bias forces, 

requires the differentiation of contact forces from bias forces, a task that is 

impossible using traditional sensing configurations.   

 

Emulating the contribution of bias during contact allows the estimation of bias 

forces and, subsequently, contact forces.  By measuring and modeling bias prior 

to contact, when the only forces on the connector are from bias, a model of the 

bias source can be made.  This model can be used to emulate bias during 

contact, enabling the differentiation of contact forces and allowing gentle force 

guided assembly. 

 

This thesis asserts that identification of and compensation for biasing 

forces will enable the robotic assembly of complex and fragile connectors 

that would otherwise be impossible. 
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Chapter 1 

Introduction 

 

 

 

 

 

 

 

 

1.1 Introduction 

 

Humans are able to pump gas into a car with little or no difficulty.  This task is 

characterized by two sources of force: that from the nozzle contacting the car 

and that from the hose attached to the pump.  The task succeeds due to the 

appreciable skill of a human and a forgiveness in the connection.  The robotic 

mating of connectors burdened by forces from sources like the gas hose is 

beyond the current state of art.  The research presented in this dissertation 

develops technology for robots to mate connectors that concurrently experience 

appreciable forces from encumbrances, like those from hoses, cables and 

oscillating masses, in addition to forces from contact. 

 

Force guided assembly is the process of mating components using contact 

forces to determine correct assembly commands.  It is the method of choice for 
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mating components that have high connection tolerances because it enables 

gentle assembly in the presence of position uncertainty. 

 

This research defines “bias” as the forces acting on a connector stemming from 

sources other than contact.  Forces due to flexure of a hose, tension in a cable or 

vibration of a flexible part are all examples of bias.   

 

Traditional force guided assembly fails when bias is present.  This research, 

force guided assembly under bias, enables the gentle and accurate assembly of 

components that are influenced by bias and makes possible the assembly of an 

expanded set of components critical to future construction tasks.  This 

technology is useful for assemblies in which manipulator force and power are 

insufficient relative to the 

challenges of assembly.  The 

approach is never more relevant 

than in the space environment 

where high tolerance, fragile 

connectors that are influenced by 

bias sources are prevalent.  

 

Current space construction relies 

on astronauts to perform most 

assembly tasks.  Astronauts 

conduct spacewalks to attach 

power, fluid and data cables, 

deploy antennas and solar arrays 

and activate other sub-systems.  

This approach is dangerous and 

expensive.   

 

Figure 1.1 – Artist’s rendition of robotic 

space facility assembly. 
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Robotic construction represents the best alternative to current assembly methods 

in space. (Figure 1.1)  Robots do not require the extensive infrastructure 

associated with humans, are expendable, and can be designed and optimized to 

operate in the harsh space environment.  Whittaker et al. [29] and Staritz et al. 

[28] discuss the role of robots in the construction of large scale space facilities.  

In most cases, robots for these applications will not require expendables like fuel, 

reducing or eliminating the need for a resupply infrastructure.  Though the loss of 

a robot has both financial and scheduling implications, these are minimal 

considerations compared to loss of life.  Teams of robots can be designed such 

that they perform the required tasks more quickly, safely and efficiently than their 

human counterparts. 

 

The realization of a capable robotic workforce for space assembly requires 

advances in the state of the art.  Whittaker et al. [30] discuss technologies that 

need further advancement before robotic assembly of space facilities can 

become a reality.  Among these technologies are the ability to manipulate gently 

and perform wiring, plumbing and connecting operations autonomously. 

 

The forces and torques exerted by a robot on construction elements must be 

minimized.  Transporting materials from earth to orbit is an expensive task, thus 

the mass of the components used to build space facilities is minimized wherever 

possible.  Advances in materials and design are opening the door to new 

“gossamer” structures.  For example, recent studies examining inflatable, 

rigidizable structures report wall thicknesses on the order of 0.1 mm. [8]  These 

structures are so light and fragile that improper handling during assembly could 

damage or destroy them.   

 

It was also recognized by Whittaker et al. that wiring, plumbing and connecting 

operations represent a significant step beyond current assembly capabilities.  

These operations belong to a class of assembly tasks that incorporate bias.  

Tethers, cables and fluid lines generate bias by creating an alternative path to 
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ground.  This path allows forces and torques 

to bypass sensing and corrupts accurate 

measurement.  Bias from flexible 

attachments is commonly a function of 

position and orientation of connectors and for 

the purposes of this research will be 

relegated to the spatial domain.   

 

Component dynamics like beam oscillation 

represent another source of bias.  In this 

case, bias forces and torques applied to the 

connector are a result of component motion 

as shown in figure 1.2.  If the dynamics are 

independent of connector motion they can be 

modeled solely in the time domain but if they 

are dependent they belong to both time and spatial domains. 

   

Traditional force guided assembly is 

commonly performed using a 

force/torque sensor to determine the 

forces and torques (hereafter 

wrenches) applied at a contact point 

between components.  This wrench 

data provides information about the 

relative orientation of components, 

allowing for the determination of 

motions needed to perform assembly.  

Consider, for example, placing a block 

against a plane as shown in figure 1.3.  

Figure 1.2 – The forces and 

torques from beam oscillation 

are an example of bias. 

Figure 1.3 – Non-parallel contact 

between blocks creates a contact 

torque. 
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Non-parallel contact with the plane generates a torque on the block, thus 

providing data about the relative orientation of the two parts and the direction to 

turn to achieve flush contact. 

 

This approach works well as long 

as any other loads applied to a 

component are constant or vary 

slowly with time.  In cases where 

the loads applied to components 

change as a function of position or 

time, traditional force guided 

assembly fails because it is unable 

to resolve contact wrenches from 

total wrenches sensed.  Again 

consider the block example.  The 

addition of a tether as shown in 

figure 1.4 corrupts the torque measurement.  The force/torque sensor located in 

the wrist of the robot senses the sum of all torques applied to the block.  In the 

example, the torque from the tether exceeds that from contact, resulting in a 

positive torque and incorrect motion to complete the assembly. 

 

There are multiple approaches that may enable force guided assembly under 

bias.  The addition of sensors to the component could provide enough data about 

the bias that assembly would again be possible.  However this approach calls for 

the costly and complicated addition of sensors to each set of connectors and 

receptacles.  

 

Another approach calls for assembly by robots with multiple manipulators as 

shown in figure 1.5.  In this method the majority of the load is compensated for by 

one manipulator while the other performs gentle assembly.  This approach is 

particularly useful for highly flexible elements like cables.  However, as a bias 

Figure 1.4 – The wrench generated by 

bias sources (tether) can not be 

distinguished from contact torques. 
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source becomes stiffer the ability of 

the bias compensating manipulator 

to isolate bias from the assembly 

manipulator diminishes and the 

approach becomes less useful. 

  

An alternative approach, advocated 

here, is the modeling of bias 

wrenches prior to contact, thus 

enabling accurate estimation of both 

bias and contact wrenches during 

assembly.  This approach is 

implemented in software, thus 

succeeding with traditional robot configurations and avoiding cost. 

 

This approach is validated by performing force guided assembly of biased 

connectors.  Three separate sources of bias are considered: cables, bending 

beams and pendulums independent of the spatial domain.  Also explored in this 

work are dependent pendulums which belong to both the spatial and time 

domains. 

 

1.2 Document Outline 

 

Chapter 2 presents the problem of force guided assembly under bias.  Chapters 

3 and 4 discuss the methodology and the relationship of this research to past and 

present work.  Chapter 5 introduces the concept of the bias number and its utility 

and application are explained.  An introduction to the experiments conducted in 

this research follows, outlining the common aspects of each experiment (Chapter 

6).  In chapters 7 through 11 five experiments are presented that illustrate the 

value of the approach for the spatial, temporal and spatial-temporal domains.  

Chapter 12 presents the contributions and conclusions of this research. 

Figure 1.5 – Assembly with multiple 

manipulators allows the isolation of 

bias forces. 
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Chapter 2 

Problem Statement 

 

 

 

 

 

 

 

 

Force guided assembly requires the detection and interpretation of contact 

wrenches between connecting components.  Force/torque sensors are not 

capable of differentiating between the wrenches generated by connector contact 

and the wrenches generated by bias sources because the sensor detects the 

sum of all applied wrenches.  The inability to differentiate between these sources 

means that contact state can not be accurately known based on wrench data 

alone when bias is present. 

 

This thesis asserts that identification of and compensation for bias will 

enable the robotic assembly of complex and fragile connectors that would 

otherwise be impossible.  

 

Identification is the determination of the parameters and in some cases the state 

of a physical system.  It is assumed that models of systems are known a priori 

and that only parameters and state are learned during the identification process.  

Identification is performed using manipulator state data and wrench data from 
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force/torque sensing; no other sensing is used for identification.  In this research, 

identification occurs during transport, prior to contact, thus wrench data is solely 

from bias sources. 

 

Bias is defined as any wrench acting on a component that is not a result of 

contact.  Gravity is a common source of bias in many systems.  Due to its 

constant nature, compensating the effects of gravity and other constant field 

effect forces is usually as simple as subtracting a constant value in the correct 

frame of reference.  Compensating for bias becomes significantly more 

challenging when it is the result of D’Alembert or spring forces that change as a 

result of the state of the component.   

 

The importance of dealing with bias depends on the absolute magnitude of the 

bias and the magnitude of change in bias as a function of time or space.  Biases 

that are smaller in magnitude than the resolution of force/torque sensing are 

indiscernible and can be ignored for the purposes of this research.  However, 

once these wrenches exceed the sensor resolution the need for bias 

compensation is based on the change in bias magnitude, connector 

characteristics, and manipulator capabilities.   

 

If the change in bias magnitude is 

small, bias can be considered 

constant and simply subtracted 

from the data without the creation 

of a model.  If the forces needed to 

assemble a biased component 

without bias compensation exceed 

either manipulator capabilities or 

connector force limits, 

compensation is necessary.  The 

magnitude of bias change 

Figure 2.1 –Flush contact of connector 

and receptacle. 
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considered in this work is sufficient to ensure assembly failure if bias 

compensation is not performed. 

 

For the purposes of this research, assembly is defined as the alignment of 

connector and receptacle such that the entire length of the contact surface is 

flush with the receptacle surface as shown in figure 2.1.  For a connection to be 

considered a complete assembly the robot must achieve stable contact in the 

assembled position. 

 

A complex connector is one that requires mating of high tolerance interlocking 

components, restricting the assembly trajectory by mandating a high accuracy 

docking path.  Prior to assembly the connector components must be sufficiently 

misaligned to constitute true assembly.   

 

Misalignment is defined as an initial position that requires translation and rotation 

in each available degree of freedom to achieve assembly.  (Figure 2.2) The 

magnitudes of these offsets are sufficient to 

prevent accidental contact of connector and 

receptacle during identification.  Also, the 

misalignment offsets must not exceed the 

physical constraints of the force assemblable 

connector as defined in Chapter 6 – 

Experimental Introduction. 

 

Fragile indicates that the bias wrenches 

experienced during contact are the same 

magnitude as the wrench limits placed on the 

connectors.  Thus a connector may be damaged 

if the bias wrenches are not compensated. 

Figure 2.2 – Misalignment 

is error in both position 

and orientation.  

x 

y 

z 
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Chapter 3 

Methodology 

 

 

 

 

 

 

 

 

The methodology of force guided assembly under bias consists of parameter 

identification and component assembly as shown in figure 3.1.  Parameter 

identification is performed to enable accurate emulation of bias wrenches.  

During contact these emulated wrenches are subtracted from the sensed wrench 

Figure 3.1 - Force Guided Assembly Under Bias Methodology 

Model  

Identification 

Parameter 1  

Characterization 

Parameter N 
Characterization 

Assembly 

Guarded Move  

to Contact 

Force Guided 

Assembly Using 

Model Filtered 

· 

· 

· 
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to estimate the actual contact wrenches.  Thus gentle assembly can be 

performed under bias. 

 

For the purposes of this research assembly refers to the process that begins 

after a component has been grasped by the manipulator and ends with flush 

alignment of connector and receptacle.  This includes the transport of the 

component from the grasp point to the assembly point. 

 

3.1 Parameter Identification 

 

It is assumed that the type of payload being identified and assembled is known a 

priori but that the parameters of that model are not known.  These assumptions 

are consistent with most assembly scenarios in which the class of component 

being assembled is known but the specific characteristics are not.  For example, 

a database may contain information indicating that a particular component is a 

beam with a given length and diameter but that same database can not contain 

accurate parameter information due to parameter dependence on manufacture, 

deployment and environment. 

 

Identification is performed during transport.  The wrenches exerted on the 

manipulator during transport are due solely to the bias sources because contact 

has not yet been made.  This allows the direct correlation of wrenches to the 

state of the system.  In many cases only small changes in transport trajectories 

are necessary to perform identification, thus parameter characterization can be 

performed with little additional transport time.  In all cases it is assumed that the 

models are linear in parameters. 

 

The biases explored in this work are functions of the spatial and/or time domains.  

Identification of parameters differs for each of these domains and will be treated 

separately. 
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3.1.1 Spatial Domain 

 

In the spatial domain bias wrenches correlate directly to the physical location and 

orientation of the connector.  Thus by modifying the transport trajectory to include 

motions that isolate and modify individual model axes the parameters can be 

learned.  A variety of approaches are sufficient for the identification of the spatial 

domain model parameters.  Chapter 4 – Relation to Previous and Present Work, 

outlines the possible approaches and the method chosen. 

 

3.1.2 Temporal Domain 

 

Biases in the temporal domain are assumed to be independent of the spatial 

domain.  Thus bias wrenches change only as a function of time and are not 

influenced by the acceleration of the connector.  This is an idealized model 

because all real systems are influenced by acceleration.  However, in the case 

presented, the magnitude of change is sufficiently small that the temporal domain 

assumption is valid.  When a bias resides solely in the time domain it is 

unnecessary to modify the transport trajectory.  Instead, identification is 

performed during transport directly to the assembly site. 

 

3.1.3 Temporal-Spatial Domain 

 

Biases in the temporal-spatial domain are a function of time and acceleration of 

the connector.  Identification requires the determination of both model 

parameters and system state.  An adaptive observer provides a provably stable 

and exponentially convergent approach to simultaneous identification of 

parameters and state.  Fast convergence requires a persistently exciting input 

that can be superimposed on a transport trajectory.  Thus, minimal change to a 

transport trajectory is necessary for identification in the temporal-spatial domain. 
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In all three domains, completion of identification is signaled by sufficiently low 

estimation error and indicates that assembly can begin.  

 

3.2 Emulation and Assembly  

 

During assembly bias wrenches are emulated using the predefined models and 

identified parameters (and in the Temporal-Spatial Domain: states).  These 

estimated wrenches are subtracted from the wrenches sensed by the robot 

during assembly.  Thus, accurate estimates of contact wrenches can be 

estimated based on sensor data and model estimates. 
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Chapter 4 

Relation to Previous and Present Work 

 

 

 

 

 

 

 

 

This research is motivated by the need for autonomous robotic assembly of large 

space structures. (Whittaker et. al. [29])  Whittaker advocates the use of attached 

mobile manipulators, robots that locomote and work on the structures they are 

building.  This approach requires the use of the structure under assembly as a 

reaction platform.  In the case of fragile or gossamer structures the ability to 

gently locomote and assemble is enabling.  Whittaker et al. [31] also address the 

need for assembly of flexible elements like cables, tethers and hoses.  

Technology capable of assembling such elements is beyond prior state of art. 

 

4.1 Force Guided Assembly 

 

The gentle assembly of complex or high tolerance components requires the 

feedback of force information.  The body of literature regarding force guided 

assembly is extensive, covering a variety of approaches that can be divided into 
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three general groups: search patterns, geometric interpretation and compliant 

motion. 

 

4.1.1 Search Patterns 

 

The combination of force sensing and search patterns enables the detection of 

changes in contact state as the pattern is performed.  Such approaches 

systematically progress through various search patterns based on changes in 

contact state until all of the contact criteria are fulfilled. 

 

By implementing virtual control points and a set of virtual springs (Figure 4.1) 

Newman et al. [22] realize a search pattern for transmission assembly that 

exploits force data.  In this work a complicated set of components are mated 

while minimizing the forces and 

torques applied.  Virtual control 

points are established and 

connected to the end-effector 

by virtual springs.  By moving 

the virtual control points 

through a search pattern the 

manipulator is guided over the 

mating surface but remains 

subject to force constraints.  

When the components align 

properly the physical 

constraints are removed and 

the components are mated with 

minimal force. 

 

An alternative search pattern approach develops a set of trajectory and 

sensorimotor primitives to realize the assembly of complicated wire connectors. 

Figure 4.1 – Newman et al. implemented a 

search pattern using virtual control points 

and springs. 

Virtual Control 

Points 

Virtual Springs 
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(Morrow et al. [20] )  This research focuses on the development of sense/act 

primitives that can be concatenated to generate useful skills.  A search skill is 

combined with a sticking move primitive, enabling a simple search pattern with 

variable resolution.  This relatively simple approach provides a robust method for 

the connection of complicated components, in this case a connector without a 

cable attached. 

 

Both of these approaches rely on force guided search patterns to realize 

assembly.  This method has proven effective for a variety of connectors and 

components but is most useful for connectors that do not generate useful force 

data when in contact.  For example, the forces generated by a peg in contact 

with a plane reveal nothing about the location of the hole.  As a result a search 

pattern is implemented to determine the location. 

 

The forces generated by the connectors advocated in this research provide 

useful information about relative orientation if contact is established within 

specified error bounds.  This characteristic allows the use of other forms of force 

guided assembly.  Although the search pattern approach could be effectively 

applied to this research, relatively slow performance motivates an alternative 

solution. 

 

4.1.2 Geometric Interpretation 

 

The geometric interpretation approach utilizes force feedback to infer the relative 

orientation of connecting components in a manner similar to how a human 

performs assembly.  This method increases reliability and can significantly 

decrease the time needed to complete the assembly task.   
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For example, by combining a search 

pattern with the ability to interpret the 

geometric meaning of force data 

Newman et al. [23] perform peg in 

hole assembly faster and more 

accurately than a simple search 

pattern.  During most of the search 

pattern, when the peg is in contact 

with the plane, the information from 

the force/torque sensor is ambiguous, 

not providing any information about 

the location of the hole.  However, 

when the hole is found, the tilted peg 

is moved laterally across the opening, 

enabling the detection of the distance between the hole’s edges and 

consequently the location of the center of the hole.  (Figure 4.2)  Identification of 

the center of the hole enables the controller to bypass any more searching and 

move directly to the mating position. 

 

Implementing the geometric interpretation strategy with a discrete event 

framework enables assembly of more complex components. (Austin and 

McCarragher [4])  In this work each state is given a desired event to move it to 

the next state.  The desired events are chosen such that the system constantly 

moves toward the goal state.  For example, in one experiment a peg is brought 

into contact with a plane.  Based on this contact state the approach calls for 

lateral motion until an opposing resistance is encountered.  (Figure 4.3)  This 

triggers another state and another set of motions and goals.  In this way it is 

possible to extend the geometric approach to more complicated connectors. 

 

Unfortunately, this method requires significant knowledge of the geometry of the 

connectors and relies on the enumeration of all possible contact configurations, 

Contact Point  

Figure 4.2 – Geometric 

interpretation of data can 

significantly reduce assembly time. 

Direction of Motion  
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resulting in a complicated model of the connection 

process.  This complexity limits the applicability of 

the approach for connectors with intricate shapes. 

 

4.1.3 Compliant Motion 

 

The final approach presented here for force 

guided assembly is that of compliant motion.   In 

this approach a goal configuration is established 

but is subject to the constraints of force and 

torque.  Thus if the goal state is beyond a rigid 

surface, the manipulator will attempt to reach the 

state while complying to the contact wrenches. 

 

The correct design of manipulator admittance 

enables force guided assembly. (Schimmels and 

Peshkin [26])  In this research the authors discuss 

the concept of “force-assemblability”.  A system is 

said to be force-assemblable if “a single nominal 

velocity in conjunction with a single mapping of forces to motions … can 

guarantee the proper assembly of a given [connector] pair.”  Although this 

approach places significant constraints on the design of the connectors, it 

simplifies the control algorithms needed for assembly.  The authors go on to 

show that, in the absence of friction, all deterministic connectors are force-

assemblable.  A deterministic connector is one that is constrained by N 

independent wrenches when mated, where N is the number of degrees of 

freedom of the workspace. 

 

Adaptive accommodation control, in which the accommodation of the manipulator 

is modified based on the contact state, is introduced by Kang et al. [9].  The 

correct accommodation is achieved by modeling the assembly operation as a 

Figure 4.3 – Geometric 

Interpretation with a discrete 

event framework. 
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convex optimization problem.  In this approach the contact forces, target location 

and target orientation are used to determine the correct accommodation law.  

This approach enables the assembly of components not addressed by 

Schimmels and Peshkin but adds complexity to the controller and does not 

represent a significant advantage over Schimmels and Peshkin for this 

dissertation. 

 

Selection of a force guidance approach is based on the complexity of 

implementation, applicability of capabilities to the research and the anticipated 

speed of assembly.  Based on these criteria Schimmels and Peshkin’s approach 

serves as the basis for the work in this thesis. 

 

4.2 Bias Source Modeling 

 

The accurate modeling of bias sources to generate wrench estimates is critical to 

this research.  It is necessary to emulate the wrenches generated by a given bias 

source as a function of changes in the spatial domain and/or time domain.  For 

the purposes of this research three bias sources are emulated: a cable under 

Figure 4.4 – a) Cable under flexure and elongation b) Beam under bending 

c) Swinging pendulum 

a. b. c. 
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flexure and elongation, a beam under bending and a swinging pendulum.  

(Figure 4.4) 

 

4.2.1 Cable Models 

 

The dynamics of low tension tethers are modeled by Buckham and Nahon [5] 

using a lumped mass approach to emulate the motion of the umbilical of 

unmanned underwater vehicles.  The cable is discretized and the forces on each 

element are calculated.  Tension, internal damping, drag, buoyancy, gravity and 

internal bending forces are all modeled with the intention of predicting cable 

response to vehicle motion.  Tests of the model under static conditions are 

conducted and errors of as little as 4% are reported. 

 

Although a simpler cable model was sought, no literature could be found 

regarding spatial domain bending.  Buckham and Nahon’s model could be 

modified to reflect the less complicated case presented in this work.  However, a 

simpler approach that does not require iterative calculation is implemented. 

 

4.2.2 Beam Bending 

 

Spatial domain beam bending is modeled in most elementary mechanics of 

solids texts using a continuous beam formulation. (Lardner and Archer [12])  

Beam dimensions, modulus of elasticity, moment of inertia and end constraints 

relate the displacement and the associated wrench.  This work is directly 

applicable to the modeling task addressed in this research. 

 

4.2.3 Harmonic Motion 

 

The modeling of the dynamics of pendulums with fixed attachment points using a 

time domain approach can be found in most introductory dynamics texts.  Riley 
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and Sturges [25] provide a complete description of the modeling of a pendulum.  

Parameters include period of oscillation, amplitude, damping constant and phase 

shift.  An introduction to harmonic motion and the equations that dictate damped 

oscillation can be found in Rao’s [24] text on mechanical vibrations.  These 

models are examined and implemented in this work. 

 

The modeling of pendulums with movable attachment points using a dynamic 

model is significantly more complicated.  Elmer [6] provides the equation of 

motion of a damped pendulum for which the attachment point may be 

accelerated in both x and y directions.  Parameters include the damping 

constant, the masses of the attachment point and pendulum bob and the length 

of the pendulum arm.   The state of the system must also be identified.  The 

equations of motion for the connector and the pendulum bob are derived and 

implemented in this work. 

 

4.3 Contact Sensing 

 

This research will draw on previous work in transitioning from free motion to 

contact.  Will and Grossman [34], Kazanzides et al. [10], Morrow et al. [20] and 

Newman et al. [22] utilize the guarded motion approach in which contact is 

detected by slowly moving along a vector until a force threshold is met.  This 

approach provides accurate data regarding surface position given force readings 

are reliable.  Utilizing this approach in an environment where spurious force 

signals are present jeopardizes accuracy.  Despite the potential for false 

transition, the approach is adopted due to the simplicity of implementation. 

 

4.4 Parameter Identification 

 

There are many methods for identification of unknown parameters that would be 

sufficient for this research.  The literature regarding machine learning and 



23 

 

adaptive approaches is voluminous.  For an introduction to these fields refer to 

Mitchell’s [19] overview of machine learning and Narendra and Annaswamy’s 

[21] overview of adaptive systems.   

 

For the purposes of payload parameter and state identification it is assumed that 

the wrenches exerted by the payload on the manipulator are available and that 

manipulator joint commands and responses are known.  Identification for the 

spatial, temporal and spatial-temporal domains are addressed separately. 

 

4.4.1 Spatial Domain 

 

In the spatial domain it is assumed that the state of the system is entirely 

described by the position and orientation of the end of the payload.  In such 

cases only the parameters and not the state need to be identified.  The 

identification of parameters is commonly performed using a least squares 

approach. 

  

Marquardt [16] presents an approach for switching between the steepest decent 

method and the inverse Hessian method for nonlinear least squares fitting.  

Using this approach the least squares algorithm will aggressively descend when 

far from the minima but will use the inverse Hessian method when in close 

proximity. Åström and Wittenmark [3] present the recursive least squares 

approach to parameter identification.  For the spatial domain cases presented in 

this research both recursive least squares and batch least squares are utilized. 

 

4.4.2 Temporal Domain 

 

In the temporal domain bias behavior is independent of component motion.  In 

this case it is assumed that the state of the system is well described by 
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undamped harmonic oscillation.  The identification of parameters is commonly 

performed by direct calculation. 

 

4.4.3 Spatial / Temporal Domain 

 

This research also explores the potential for bias compensation of dependant 

dynamic systems.  This portion of the work embarks from prior research in 

adaptive control.  By establishing physical models of dynamic elements an 

adaptive observer can be created to identify both the parameters and the state of 

the element. 

 

Luders and Narendra [13] present an adaptive observer that only requires a 

system’s input and output signals.  In this approach the authors design a model 

reference adaptive observer using Lyapunov’s direct method.  Thus it can be 

shown that the adaptive observer is globally stable and asymptotic convergence 

can be guaranteed.  By creating an observer that does not require internal state 

data the authors have opened the door to real world application.  This work is 

applicable to single input single output systems. 

 

Kreisselmeier [11] presents a parameterized adaptive observer that is provably 

exponentially convergent.  The author adopts the parameterized representation 

of the adaptive observer, an alternative but equivalent representation of the 

Luenberger observer [15].  This approach allows the separation of adaptation 

and observation and enables the independent formulation of adaptive schemes.  

The author exploits this freedom to demonstrate three separate adaptive 

schemes that are exponentially convergent.  The results presented are 

applicable to single input single output systems. 

 

Based on Kreisselmeier’s approach Luders and Narendra [14] formulate a 

simpler adaptive observer that can be expanded to the multi-input multi-output 

case.  In this work the authors present a new canonical form for the plant which 
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does not require the feedback of auxiliary signals to ensure convergence.  Again 

the authors show that the observer is globally asymptotically convergent.   

 

In Narendra and Annaswamy’s [21] text, Stable Adaptive Systems, this approach 

is abandoned in favor of another parameterization.  The preferred 

parameterization’s output is a linear combination of 2n accessible signals, where 

n is the number of states of the system.  Anderson [1] shows that this non-

minimal representation of the adaptive observer can be applied to multi-input 

multi-output systems and that the system is globally asymptotically convergent. 

 

Inoue et al. [7] also make use of the parameterized representation of the 

adaptive observer.  The authors propose a method for designing multi-input 

multi-output adaptive observers with an 

exponential rate of convergence.  By 

augmenting the filtered signals rather than the 

order of the plant the authors avoid direct 

interactions between plant outputs.  This 

approach enables the application of single-

output adaptive observer schemes to multi-

output systems. 

 

Although this approach shows promise, in 

theory its application to multi-input multi-output 

systems is computationally prohibitive.  

Implementation of this approach on a 2 input 2 

output system requires the integration of 

hundreds of intermediate signals.  For this 

reason the application of this approach is not 

explored in this work. 

 

Figure 4.5 – Three degrees 

of freedom associated 

with planar pendulums.  

X 

Y 

θ 
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The identification of the parameters and state of many dynamic elements, a 

pendulum in the planar case for example, requires the consideration of multiple 

degrees of freedom.  (Figure 4.5)  This work considers a fourth order, single-

input single-output, dynamic system which can be approximated as two masses 

connected by a spring and damper.  The identification of this system will rest on 

the work of Luders and Narendra which has been shown to be simple to 

implement. 

 

4.5 Manipulator Control 

 

The realization of fast and precise manipulator motion for transport and assembly 

tasks requires the creation of stable controllers robust to dynamic perturbations.  

Slotine and Li [27] present an approach to adaptive control of robot manipulators.  

The nonlinear nature of manipulators complicates the generation of provably 

stable systems.  The authors show that the algorithms developed result in a 

globally convergent adaptive controller and demonstrate its performance on a 

simple two link direct drive manipulator.  Performance under perturbation from 

unmodeled dynamics is comparable to that of a standard proportional-derivative 

controller but trajectory tracking is significantly better than either the proportional-

derivative controller or a computed torque approach. 

 

Although this approach works well, its applicability to manipulation for assembly 

is limited.  The control of a manipulator conducting force sensitive assembly of 

rigid components is not trivial.  The accurate application of wrenches and the 

precision tracking of a trajectory are mutually exclusive for many control 

techniques. 

 

Arimoto et al. [2] propose a model based adaptive controller for simultaneous 

force and trajectory tracking.  In this approach the authors introduce the concept 

of joint space orthogonalization.  This design method exploits the fact that the 

nominal reference signal is composed of two orthogonal signals, that associated 
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with position trajectory tracking and that associated with force tracking.  This 

orthogonality is a result of the physical constraints of the system in which the 

force vector from contact is normal to the surface but the tracking error is tangent 

to the surface.  This approach allows the formulation of provably stable 

controllers with asymptotically decreasing trajectory and force errors.  Whitcomb 

et al. [32] and [33] validate the joint space orthogonalization approach.  This work 

compares the inverse dynamics critically damped force adaptive approach to the 

proportional derivative force controller.  The results show that the adaptive 

approach is not only provably stable but delivers superior performance 

regardless of the proportional-derivative controller’s gain. 

 

It was anticipated that an approach similar to that presented by Arimoto et al. and 

validated by Whitcomb et al. would be used to perform manipulator control during 

the assembly process.  Such an approach could be implemented over many 

experiments and would allow an incremental increase in performance over time 

until the parameters of the system had converged.  However, the bandwidth and 

performance of the manipulators and force/torque sensors available for this work 

were insufficient to warrant the implementation of such an approach. 

 

4.6 Manipulation of Flexible Objects 

 

The accurate manipulation of flexible objects requires the ability to emulate 

forces as a function of time and/or space.  Several researchers have examined 

the manipulation of flexible objects with the intent of performing assembly. 

 

Zheng et al. [36] present a set of strategies for the insertion of flexible beams into 

holes.  The researchers manipulate a thin beam into a hole under the effects of 

gravity.  The resulting flexure is identified using visual sensing and the trajectory 

for insertion is modified depending on assembly tolerances.  The researchers do 

not implement force guidance for these experiments, instead relying on the 

implied lack of force during smooth assembly.   
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Yukawa et al. [35] posed the problem of grasping a moving flexible object and 

damping its motion.  In this work the authors develop a dynamic representation of 

the flexible object and use a visual sensing system to identify its state. 

 

The visual sensing of flexible objects is a convenient way to emulate payload 

configuration and resultant forces.  The visual sensing approach may be used in 

conjunction with the method proposed in this dissertation.  However, the addition 

of computationally expensive sensing adds complexity to the overall system and 

is not necessary.    Thus the visual sensing approach is not used in this work. 

 

Meitinger and Pfeiffer [18] present the 

insertion of pistons with O-rings into 

cylinders.  (Figure 4.6)  The flexible 

nature of the O-rings generates complex 

non-linear forces during assembly.  The 

authors model the force generated by the 

rings a priori, assuming that similar rings 

will have similar characteristics.  During 

the assembly process only the rings are 

in contact with the cylinder so the model 

alone is sufficient to predict the forces 

encountered.  Using the model 

developed, the authors perform insertion 

experiments and verify the utility of 

contact state prediction based on force 

data. 

 

Meitinger and Pfeiffer’s research utilizes an approach similar to that presented in 

this thesis.  By modeling the forces generated by flexible objects the anticipated 

forces will be predicted and used for accurate assembly of components.  

Figure 4.6 – Insertion of piston 

with flexible O-rings into hole.  

O-Rings 
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However, their work is fundamentally different in that it does not address multiple 

sources of force, the concept of bias. 

 

4.7 Summary 

 

The research presented in this section is a brief introduction to the many facets 

of this thesis.  This dissertation incorporates lessons and techniques from force 

guided assembly, bias source modeling, contact identification, parameter 

identification, manipulator control and manipulation of flexible objects.  In force 

guided assembly a compliant assembly approach has been adopted to minimize 

assembly time and implementation complexity.  Bias source modeling and 

identification for spatial domain cases is founded upon simplified physical models 

and a least squares approach.  In the dependant dynamic case an adaptive 

observer that is provably globally asymptotically stable is the starting point.  

Manipulator control relies on fundamental lessons from proportional-derivative 

control due to the limitations of the experimental setup.  Finally, this dissertation 

looks to the approach advocated by Meitinger and Pfeiffer as the most closely 

related research to date. 

 

Each of the areas examined represent a critical aspect of this body of work but 

each is related only tangentially.  There is little prior work directly related to the 

assembly of components under any type of bias, whether from multiple paths to 

ground or dynamic effects. 
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Chapter 5 

Bias Number 

 

 

 

 

 

 

 

 

Biased assemblies can be characterized by a dimensionless value called the 

Bias Number.  This number, created in this research, has three formulations.  In 

one formulation, the number provides a quantitative test to determine if bias 

compensation is necessary.  In another, it enables calculation of the minimum 

force required for accurate assembly.  In a third and final formulation, it provides 

an estimate of the force necessary to realize unambiguous assembly without bias 

compensation.  Fundamental to this approach is the assumption that contact can 

occur at multiple locations on a connector and that connector motion is a function 

of the contact location. 

 

The bias number and associated formulations are applied throughout this 

research (where applicable) to illustrate the need for bias compensation.  The 

bias number is calculated for each of the experiments presented and in each 

case indicates the need for bias compensation.  The two alternative formulations 

mentioned above are used to illustrate the effects of bias compensation on the 

“gentleness” of assembly.  
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The formulation of bias number presented in this chapter is applicable to planar 

problems.  This formulation may be applied to three dimensional connectors if 

they can be represented as combinations of the planar case.  This is described in 

more detail in section 5.4 of this chapter.  More complicated connectors may 

require the formulation of the bias number for the general, three dimensional, 

case. 

5.1 Formulation of Bias Number 

 

The formulation of the bias number begins with the relationship between force 

and torque.  Equation 1 shows that torque is the product of force multiplied by 

distance. 

 

dF ⋅=τ        Eq. 1 

 

This equation can be applied to the contact between connectors during force 

guided assembly.  The force/torque sensor provides both force and torque data 

thus by rearranging equation 1 the distance to the contact point can be 

determined.  Once the point of contact is known the corresponding control 

commands can be issued. 

F/T Sensor 

Contact Point 

 

Figure 5.1 – Uncertainty of contact location 

due to sensor noise. 
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In the presence of noise, fluctuations in force and torque measurements modify 

the distance estimate.  Figure 5.1 illustrates the uncertainty in the location of the 

contact point as a result of sensor noise.   

 

Consider the example shown in figure 5.2.  A simple connector contacts the 

receptacle at a distance d1 from the sensor.  Measurement noise in both force 

and torque result in a distance estimate, dest, described by equation 2.  In this 

equation it is assumed that the force and torque errors may be either positive or 

negative but to simplify understanding all equations will be derived based on the 

positive case. 

 

er
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erest
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ddd
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=+=
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1      Eq.2 

 

Solving for der: 
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ddd

er

er

ester

τττ
−

+

+
=−= 1      Eq.3 

 

and after simplification: 

F/T Sensor 
Contact Point 

d1 

Figure 5.2 – A simple connector experiences 

contact at a distance d1 from the sensor origin. 

X 

Z 
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er
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er
FF

dF
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=

+

1τ
      Eq.4 

 

Where the + in der+ will be explained shortly. 

 

Examining the numerator of equation 4, it is clear that increasing τer or 

decreasing d1Fer results in an increase in the distance error.  The negative sign 

indicates that errors of opposing sign generate distance errors in the same 

direction.  Thus it is possible that in some cases the respective errors may 

partially or totally cancel each other.  In the denominator, the presence of Fer 

means that the largest distance error is encountered when the force error is 

negative and the torque error is positive.  Also worth noting is that by increasing 

F, the magnitude of the distance error can be reduced. 

 

The presence of force error in the denominator means that der is not symmetric 

and error in the negative direction is not equivalent to negative der.  If the largest 

distance error is obtained when τer is positive and Fer is negative then, based on 

the presence of the negative sign in the numerator, the other extreme must occur 

when τer is negative and Fer is positive.  This yields equation 5 that describes the 

negative error associated with a point. 
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er
FF

dF
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⋅+−
=

−

1τ
     Eq.5 

 

Consequently dest falls in the range described by equation 6. 

 

−+
+≤≤+ erester ddddd 11     Eq.6 
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This non-symmetric error bound is illustrated in figure 5.3. 

 

As the magnitude of the distance error on each of the contact points grows, the 

distance between them decreases until they overlap as shown in figure 5.4.  

When the errors overlap it is no longer possible to ensure correct motion based 

on a contact wrench.  It is this indeterminacy that the bias number helps 

diagnose and eliminate.  

 

Figure 5.4 shows two contact points located distances d1 and d2 from the force 

torque sensor.  The distance estimate errors for these points will overlap when: 

 

F/T Sensor 
Contact Point 

Figure 5.3 – Non-symmetric error bounds from 

sensor noise. 

X 

Z 

d1 d1+der- d1+der+ 

Figure 5.4 – As error magnitudes increases 

adjacent contact regions overlap.  

X 

Z 

d1 d1+der1- d1+der1+ 

d2+der2- d2+der2+ 

F/T Sensor Contact 

Points 

Overlap 

d2 
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+−
+=+ erer dddd 122      Eq. 7 

 

Substituting equations 4 and 5 into 7 and solving for force (Appendix 1) yields 

equation 8. 
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=
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     Eq. 8 

 

Where the distance from the sensor frame to the contact center, dsc, is the 

average of d1 and d2 and dcd, the center distance, is half the distance between d1 

and d2.  Thus, given constant values of τer and Fer the force at which overlap 

occurs can be determined. 

 

Substituting equation 8 into equation 4 yields equation 9. 
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Thus, despite the lack of symmetry in the error equation, the intersection of the 

distance errors occurs at the midpoint between the contacts.  In order to avoid 

the overlap of the error bars der must be less than dcd. 

 

Thus: 

cder dd <         

er
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+
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=

1τ
 and       
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scercder dFdF ⋅+⋅<τ        Eq. 10 

 

cdscerer dFdF ⋅<⋅−τ       Eq. 11 

or, 
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⋅
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Which leads to the Bias Number, B: 

 

cd

scerer
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dF
B

⋅

⋅−
=

τ
       Eq. 13 

 

Equation 13 provides a simple and effective way to evaluate the significance of 

bias on a system.  Values of B greater than or equal to 1 indicate that a system is 

not assemblable given the torque error, force error, distance from center and 

distance from sensor.  Values of B less than one can be assembled with 

increasing accuracy as B approaches zero.  To illustrate the utility of the bias 

number an example is provided from each of the formulations. 

 

Example 1 – Determining the Need for Bias Compensation 

 

During uncompensated assembly, the bias wrench effectively acts as noise in the 

system.  Thus the need for bias compensation can be determined by calculating 

the value of equation 13 given τer and Fer are the anticipated change in torque 

and force over the workspace.  A hypothetical bias source experiences a ∆τer of 

3 Nm and ∆Fer of -1 N over its workspace.  The connector used for the 

experiments described later has a center distance dcd of 0.015m and should not 



38 

be subjected to forces in excess of 100 N.  (Alternatively the capabilities of the 

robot may limit the maximum applicable force.)  The distance from the center 

point to the force/torque sensor is 0.05m. 

 

Thus: 

mNer ⋅= 3τ    NFer 1−=      

md cd 015.0=     md sc 05.0=  

NF 100max =   

      

333.2
015.0100

05.013
=

⋅

⋅+⋅
=

mN

mNmN
B      

 

The bias number is greater than unity and therefore the system requires some 

type of bias compensation in order to be assembled under the given constraints. 

 

Example 2 – Determining the Compensated Minimum Necessary Force 

 

During assembly under bias compensation, noise is the sum of sensor error and 

estimation error.  By solving equation 13 for F, allowing τer and Fer to represent 

the maximum expected noise, setting dcd and dsc equal to the physical 

constraints of the system and setting the bias number to one, the minimum force 

that must be applied to ensure that an unambiguous signal is obtained from the 

contact can be computed. 

 

mNer ⋅= 20.0τ   NFer 50.0−=      

md cd 015.0=     md sc 05.0=  

0.1=B   
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N
mNmN

F 15
015.0

05.050.020.0
=

⋅+⋅
=      

 

Example 3 – Determining Uncompensated Minimum Necessary Force 

 

During assembly of biased elements without bias compensation the whole bias 

acts as noise as described in example 1.  A small modification of the above 

examples yields an estimate of the minimum force needed to perform 

unambiguous assembly under uncompensated bias.  Using equation 14 the 

minimum necessary force for uncompensated assembly can be determined. 

 

N
m

mNmN
F 33.203

015.0

05.013
=

⋅+⋅
=  

 

Thus a minimum force of 203.33 N is needed to unambiguously assemble the 

hypothetical system when the bias is uncompensated.  This value is particularly 

useful when defining the concept of ‘gentle’ assembly, discussed in Chapter 6 – 

Experimental Introduction. 

 

5.2 Interpretation of the Bias Number 

 

In the interpretation of the bias number the significance of unity has been 

discussed, the meaning of values less than one will now be explored.  Equation 

13 shows that given constant force and torque error the bias number 

asymptotically approaches zero as the applied force increases.  Alternatively, as 

the value of the bias number approaches zero the distance error decreases. 
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As the error bars 

decrease it is possible to 

insert additional 

resolvable contact points 

into the range, as shown 

in figure 5.5.  Thus, lower 

values of B equate to 

increasing accuracy and 

the opportunity to add 

resolvable contact points.  

In the general case the 

presence of the term 

Fer·dsc in the denominator 

of equation 13 prevents 

the formulation of a direct 

relationship between 

values of B and the 

number of resolvable 

contact points, Prc.  This 

is in contrast to the 

degenerate case where 

dsc approaches zero and 

the correlation between B 

and the number of 

resolvable contact points 

is well defined. 

 

In the degenerate case 

(d2 → 0) when resolvable contact points are distributed symmetrically (or nearly 

so) about the center of a force/torque sensor the distance dsc equals zero.  

However, any additional intersection points still have non-zero sensor to center 

Force Application 

Error Bounds 

a. 

b. 

c. 

Figure 5.5 – Increasing the forces applied to a 

connector reduces the error bounds until an 

additional resolvable contact point can be added. 
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distance values as shown in figure 5.6.  In a 

small range around the zero point the values of 

intersections can be approximated as zero, 

allowing for a simplification of the bias equation 

and subsequent interpretation. 

 

In such configurations the bias number can be 

approximated as: 
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dF
B

⋅
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τ
   Eq. 15 

 

Unlike the general case, where the width of 

resolvable contact points changes with distance 

from the sensor centerline, the resolvable contact points in the degenerate case 

are assumed to be of equal width. Thus, the number of resolvable contact points 

is a function of the bias number as shown in equation 16. 
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where    indicates rounding down.  Resolvable contact points are evenly 

distributed over the contact range, thus the distance between resolvable points 

can be determined using equation 17. 
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Non-integer values of Prc prior to rounding indicate the presence of gaps between 

the resolvable points.  A distance measurement falling within a gap can only be 

F/T Sensor 

5 
6 

dsc=0.1 dsc= -0.1 dsc=0.0 

Figure 5.6 – The sensor to center 

distance equals zero when the 

connector and sensor are aligned. 
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localized to the gap plus or minus the error magnitude.  This value is always less 

than or equal to the distance between the resolvable points.   

 

Equation 18 enables the calculation of gap width, dg.  
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Where the left half of the numerator corresponds to the full width between outer 

resolvable points and the right half of the numerator is the distance occupied by 

the resolvable points and their error envelopes.  The denominator is the number 

of gaps over which the total gap width is divided. 

 

5.3 Determining Minimum Force 

 

The examples thus far have considered a simple binary controller in which the 

connector will turn either clockwise or counter-clockwise.  With the addition of 

resolvable points more complicated control schemes can be implemented but the 

minimum force applied to resolve individual contact points must increase.  Figure 

5.6 shows a connector with four, evenly spaced contact points, determining Fmin 

for this connector is not as simple as finding a bias number less than unity.  The 

approaches for finding the minimum force in the degenerate and general cases 

are different and will be treated separately. 

 

5.3.1 Degenerate Case 

 

Determining minimum contact force for the degenerate case is relatively simple.  

Rearranging equation 16 yeilds: 
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If the number of contact points desired is four, then the bias number must equal 

0.33.  Solving equation 15 for F yields equation 20 and the minimum force 

needed to resolve four contact points. 

 

cd

er

dB
F

⋅
=

τ

min       Eq. 20 

 

Increasing the force beyond this minimum will generate the gaps referred to 

previously.  In the case where there are discrete contact points a reading equal 

to a gap indicates contact at both neighboring points.  Thus gaps can be used to 

identify stable contact states and issue commands accordingly.  In the 

continuous contact case these gaps essentially provide twice the number of 

resolvable contact points.  The utility of such points is limited however, given that 

the sum of their widths is always less than the width of one resolvable point. 

 

5.3.2 General Case 

 

Determining the minimum force for a four point connector in the general case is 

significantly more complicated than the degenerate case.  Resolvable contact 

points are not evenly spaced due to the term Fer·dsc.  As the value of this term 

increases the dissimilarity of resolvable contact point widths also increases.  

Thus, it is possible that in some circumstances the distribution would be so 

irregular as to make implementation on a connector with evenly spaced contact 

points impossible.  An example of this is shown in figure 5.7. 
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Identification of the minimum contact force for the multiple contact, general case 

is based on equation 8 solved for dcd: 

 

F

dF
d scerer

cd

⋅−
=

τ
     Eq. 21 

 

It can be seen that given a distance from the sensor (dsc) and the errors in force 

and torque, modifying F widens or narrows the center distance.  Consider the 

illustration in figure 5.8; d1 is the proximal contact point and d7 is the distal 

contact point.  The distance between these points is shown in equation 22. 
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d1   d2   d3   d4   d5    d6   d7 

Figure 5.8 – Determining the minimum contact 

force for a multiple contact general case 

connector. 

Figure 5.7 –Fer⋅dsc makes the contact envelopes irregular 

such that the force applied at the 2
nd

 contact registers in 

the 3
rd

 contact envelope. 

Force Application 

Error Bounds 

Force Applied to 

2
nd

 Contact 

1
st
 2

nd
  3

rd
 4

th
  Contact Envelopes 



45 

 

The minimum contact force, F, is the force at which the sum of all the center 

distances equals the distance between the proximal and distal contact points.  

Eliminating the unknown variables yields a 3rd order polynomial in F.  One of the 

roots of this polynomial is the minimum force needed to resolve four contact 

points. 

 

Unlike other formulations already presented, this approach considers the whole 

contact range from proximal contact to distal contact.  In the previous approach 

the resulting force is calculated based on half the workspace and assumes 

symmetry.  If this approach had been implemented here the resulting force would 

have been incorrect because the midpoint of the connector is not the same as 

the point d4.  

 

5.4 Non-Orthogonal Contact 

 

This approach has been 

presented under the 

assumption that all forces 

applied to the connector are 

perpendicular to the 

connector axis as shown in 

figure 5.9a.  This assumption 

restricts contact to surfaces 

parallel with the connector 

axis and mandates 

frictionless interaction 

between connectors.  The 

assumption can be relaxed to 

allow general contact as long 

as any given contact force vector only intersects the contact surface once.  As 

a. 

b. 

X 

Z 

X 

Z 

Figure 5.9 – a.) Force vector is perpendicular to 

connector axis. b.) Force vector is not 

perpendicular. 
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shown in figure 5.10, the 

angle of the vector can be 

determined by the individual 

force components.  When this 

information is combined with 

the distance from the vector 

to the sensor a force vector 

can be projected that 

intersects the surface at the 

contact point.  In such cases 

the geometry of the connector must be known and the effects of noise on angled 

vectors must be considered.  For example, small changes in the distance, d, 

shown in the figure 5.10 may result in 

significant changes in actual contact 

position.  If noise resulted in a slightly 

larger estimate of d, the contact may be 

estimated as occurring not on the contact 

prong but to the right of it on the flat.  

Thus, noise may result in large changes in 

contact distance. 

 

The connector used in this research 

experiences non-orthogonal contact.  The 

problems associated with such contact 

are  mostly avoided through the 

implementation of a compliant controller.  

This controller acquiesces to non-

orthogonal forces such that the forces 

imparted to the connector are 

approximately orthogonal. 

 

X 

Z 

d 

Fx 

Fz 

Figure 5.10 – Given the shape of the contact 

surface, and the angle and distance of the force 

vector the contact point can be determined. 
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5.5 Application to Three Dimensions 

 

The planar formulation of the bias number may be applied to three dimensional 

connectors.  By applying the number between sets of contact points the bias 

number and minimum necessary force can be calculated.  Consider the 

connector shown in figure 5.11.  Treating each pair of contacts as a separate 

planar case allows the simple application of the tools developed to the three 

dimensional case.  The values of the bias number and minimum necessary force 

for the connector are the largest values obtained from the individual planar 

cases.  In many cases these values will correspond to the plane connecting the 

two closest contact points.  In some situations, for example when sensor noise is 

much larger on one axis than another, the largest values of bias and minimum 

necessary force will not correspond to the two closest contacts. 
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Chapter 6 

Experimental Introduction 

 

 

 

 

 

 

 

Five experiments are performed to demonstrate the principles and utility of the 

methodology of this research.  These experiments are chosen to illustrate issues 

in bias compensation pertaining to cables, bending beams and swinging 

pendulums.  In each experiment, force guided assembly is performed under bias 

while preventing contact wrenches from exceeding maximum force and torque 

thresholds. 

 

The bias in each experiment is sufficient to prevent assembly by traditional force 

guided assembly methods.  The uncompensated minimum necessary force is 

greater than the manipulator capabilities and the wrench limits of the connector.  

Thus, without bias compensation, assembly failure is assured. 

 

6.1 Process 

 

All of the experiments conducted for this research have the same operational 

process.  This process is illustrated in figure 6.1 and explained below. 
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6.1.1 Identification 

 

• Sensor Tare - Prior to ‘grasping’ the payload the force/torque sensor is 

zeroed to remove the wrenches due to internal stresses in the sensor.  This is 

performed prior to grasping so that the bias wrenches don’t influence the zero 

point. 

 

• Grasping - Autonomous grasping of the connector is beyond the scope of this 

research.  For the purposes of this work, ‘grasping’ refers to the insertion of 

the biased connector into the end effector of the manipulator. 

 

• Payload Transport – It is assumed that the tare point is separated from the 

receptacle staging point by some non-zero distance.  The receptacle staging 

point is defined as the location where the assembly trajectory begins.  This 

point is aligned with the anticipated location of the receptacle but offset by a 

distance greater than the sum of the connector and receptacle position errors 

in the z axis as shown in figure 6.2.  This offset prevents accidental collision 

of connector and receptacle before force guided assembly is enabled. 

 

Sensor Tare Grasping Payload Transport / 

Bias Identification 

Guarded 

Motion 

Force Guided 

Assembly 

Figure 6.1 – Experimental operational process. 

Identification 

Assembly 

Model  
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• Bias Identification – The path followed during transport is a function of the 

identification process which determines the relationship between the system 

state and bias wrenches.  If the identification process is not complete when 

the connector arrives at the receptacle staging point additional motions are 

added until identification is completed. 

 

6.1.2 Assembly 

 

• Guarded Motion – Transition to assembly initiates the bias estimator and 

prompts the guarded motion of the connector to establish contact with the 

receptacle.  Bias free force/torque signals are directed to the controller, 

enabling the detection of contact and the transition to force guided assembly. 

 

• Force Guided Assembly – The assembly controller operates until the 

connector achieves stable contact.  Stable contact is characterized by the 

application of a preset contact wrench with no resultant motion.  The contact 

wrench required in this research consists of a constant z axis force applied at 

X 

Z 

Figure 6.2 – Connector and receptacle are offset by 

the sum of the respective Z axis errors. 

Connector Z 

Axis Error 

Receptacle Z 

Axis Error 

Connector 

Receptacle 

Offset 
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the connector control point and the corresponding torque but zero on all other 

axes. 

 

6.2 Model Accuracy 

 

The determination of model accuracy for off-line bias model evaluation is specific 

to the domain in which the bias resides.  In the spatial domain distance degrades 

the quality of bias estimates, in the temporal and temporal-spatial domains, 

estimate accuracy decreases as a function of time.  It is assumed that the 

identification approach is stable and produces approximately the same results 

when given the same set of starting conditions.  Thus, knowing the accuracy of 

bias estimates enables designers to limit the use of a bias estimator to high 

accuracy regimes and allows conclusions to be drawn regarding when or where 

an estimator must be updated or re-identified. 

 

6.2.1 Spatial Domain 

 

Evaluating the accuracy of bias models in the spatial domain is accomplished by 

moving the identified bias source through a work envelope in a raster-like 

pattern.  By comparing the actual bias and the estimated bias at each point, the 

bias estimation error can be determined for a space.  The results can then be 

represented as a graphical representation of the error called an error map. 

 

Generating an error map requires visiting a series of points in a space.  Due to 

the assumption that these bias elements are quasi-static, motion from point to 

point must be slow enough that it does not excite oscillation in the element.  

Depending on the dynamics of the system this may result in significant mapping 

times.  Equation 1 provides an estimate of the time needed to perform a mapping 

operation.   
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)(...)()( 2211 nsnssmap stststt ⋅⋅⋅⋅⋅⋅≥     Eq. 1 

 

Where tmap is the total mapping time, tsn is the time to complete one sample and 

move to the next sample point in the nth degree of freedom and sn is the number 

of samples in the nth degree of freedom.  The value of tmap is greater than or 

equal to the right side of the equation because there are often motions in raster 

patterns that take additional time and are not accounted for in this equation. 

 

When the values of ts1 through tsn are equal and the number of samples per 

degree of freedom s1 through sn are equal, equation 1 can be simplified to 

equation 2. 

  
N

smap stt )( ⋅≥       Eq. 2 

 

Where N is the total number of degrees of freedom.  This equation shows that 

the mapping time increases exponentially with the number of degrees of 

freedom.  Thus limiting the size of the search space is often necessary. 

 

The envelope is bound by several different criteria.  As the connector moves 

farther from the starting point (the point at which the bias model is completed and 

in theory the point of lowest error) the estimation error increases.  One approach 

to bounding the mapping envelope is to include the space where the bias number 

is less than or equal to one.  Given the equation for bias number shown in 

Chapter 5 – Bias Number, it is possible to generate a surface that represents the 

bias number as a function of position.  (Figure 6.3)  The curve, B=1, bounds a 

space beyond which the fidelity of sensor readings is not assured.  The space 

bound by this curve can be referred to as the wrench error envelope. 
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Another space, referred to as the spatial error envelope, is bound by the 

maximum position and orientation errors between connector and receptacle.  

These errors are the sum of 

the maximum position 

uncertainty of the connector 

and receptacle.   

 

Whenever possible, the 

spatial error envelope should 

be a subset of the wrench 

error envelope.  This is 

presented in equation 3 and 

figure 6.4.  When this is true, 

contact state readings are 

guaranteed to be accurate 

over the workspace. 

 

Figure 6.4 – The spatial error envelope should 

be a subset of the wrench error envelope. 

Wrench Error Envelope 

Spatial Error Envelope 

Figure 6.3 – The wrench error envelope is bounded by the curve B=1. 

Bias Number  = 1 
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WESE EE ⊂       Eq. 3 

 

In this case, the spatial error envelope is used to describe the bounds of the 

raster motion.  If, however, the spatial error envelope is not a subset of the 

wrench error envelope, then there exist portions of the workspace where 

incorrect contact state readings may occur.  In this case, the bounds of the raster 

motion are described by the smallest closed space described by the surfaces of 

both the wrench and spatial error envelopes. 

 

For example, figure 6.5 shows 

an example in which the 

wrench error envelope and 

the spatial error envelope are 

overlaid.  It can be seen that 

bounding the envelope by the 

smallest combination of the 

two spaces significantly 

reduces the work envelope 

and subsequently the 

mapping time.  It may also be 

concluded from this graph 

where incorrect contact state 

readings may occur.  

 

If the connector is 

commanded to move into an area where incorrect contact readings are 

anticipated, the bias parameters should be re-identified with the new starting 

point as close as possible to the current position. 

 

The bounds adopted during the mapping process only provide a guideline for 

bounding the workspace during assembly.  The parameter fluctuations that 

Figure 6.5 – Mapping envelope is bounded by 

the smallest combination of wrench and 

spatial envelopes. 

Wrench Error 

Envelope 

Spatial Error Envelope Mapping 

Envelope 

Incorrect Contact States May Occur 
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motivate the identification 

process also govern the 

shape and size of the 

smallest workspace.  For 

example, in stiffer beams 

model accuracy as a function 

of position degrades more 

quickly than that for a flexible 

beam.  Thus, the workspace 

bounds obtained for a “soft” 

set of parameters may differ 

from those obtained for a 

“stiff” set. 

 

The experiments that follow 

are performed in a planar 

space with two translational 

and one rotational degree of 

freedom.  Representing the 

resultant error maps in an 

intuitive manner is not straight 

forward.  A representation is 

adopted in which the maps 

are depicted as multiple, two 

degree of freedom plots like 

that shown in figure 6.6, 

where each plot represents 

the error in a particular 

degree of freedom for a fixed 

value of θ. 

 

Figure 6.6 – Sample error maps for Fx, Fz, and 

Ty at one fixed value of θ (5 degrees). 
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6.2.2 Temporal Domain 

 

Evaluating the accuracy of bias models in the temporal domain is accomplished 

by observing estimation error over time. In this way the bias estimation error can 

be determined as a function of time and limits on assembly duration can be 

established.  The results can be represented graphically.  This work considers 

temporal domain bias sources that generate sinusoidal bias wrenches. 

 

Temporal domain estimation error stems from errors in four parameters: force 

offset, amplitude, phase shift and 

period.  Errors in each of the four 

parameters manifest different types 

of force error.  Errors in force offset 

shift the sinusoid in the positive or 

negative direction yielding a 

constant force error as illustrated in 

figure 6.7.  Identifying this 

parameter by taking the average 

value over multiple cycles 

minimizes parameter and force 

error.  

 

Errors in amplitude yield a 

sinusoidal error (figure 6.8) that is 

phase shifted from the signal by 

either zero or 180 degrees 

depending on the sign of the 

amplitude error.  The models used 

to estimate temporal domain biases 

do not account for damping but all 

real systems experience damping.  

Figure 6.7 – Errors in force offset shift the 

sinusoid along the force axis yielding a 

constant estimation error. 

Figure 6.8 - Errors in amplitude yield a 

sinusoidal estimation error. 
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Consequently all force estimates 

experience a steady increase in 

the amplitude of the force error. 

(figure 6.9)  The magnitude of the 

damping is directly proportional to 

the growth rate of the force error 

due to amplitude errors. 

 

Errors in phase shift manifest as a 

constant amplitude sinusoid 

proportional to the magnitude of 

the phase shift. (figure 6.10)  The 

maximum error occurs when the 

phase is off by 180 degrees, at 

which time the amplitude of the 

force error is twice the amplitude 

of the force signal.  Phase shift 

error on the order of several 

degrees is typical and yields 

minimal force error. 

 

Errors in period manifest as the 

product of two sinusoids, one high 

and one low frequency. (figure 6.11) The high frequency sinusoid has a period 

approximately equal to the force signal and a magnitude that is a function of 

signal amplitude and the errors in the other parameters.  The extent to which the 

high frequency sinusoid’s period differs from the signal’s period is the parameter 

error in question.   

 

The low frequency sinusoid has a period proportional to the magnitude of the 

error.  A period estimate error of n% yields a low frequency period equal to 100/n 

Figure 6.9 – Unmodeled damping yields 

steadily increasing sinusoidal estimation 

error. 

Figure 6.10 – Errors in phase shift yield a 

sinusoidal estimation error. 
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high frequency cycles.  In figure 6.11, 

the period estimate error is 10%, thus 

the low frequency sinusoid has a 

period equal to 10 cycles of the high 

frequency sinusoid.  The maximum 

error between the actual and 

estimated forces occurs when they 

are 180 degrees out of phase.  Thus a 

period estimate error of n% yields the 

greatest error at 100/2n cycles. 

 

Estimating the maximum anticipated error for each of the parameters and 

calculating the resultant force error as a function of time enables the estimation 

of the time allowed to complete assembly.  For example, given the parameters 

and estimated errors shown in table 6.1, equation 13 is used to determine the 

resultant force error. 

 

[ ] ( ) ( ) ( )[ ]ererernerner FOFOtAAFOtAF +++++−+= )sin()sin( φωωω  Eq. 13 

 

Figure 6.12 illustrates that a 

maximum error of 0.65 N is 

exceeded 13.1 seconds after 

identification.  Thus, if a stable 

assembly is not achieved by 

that time, the connector is 

withdrawn and the identification 

process is repeated.  Thus, this 

approach is useful for determining the amount of time a temporal domain bias 

compensator is able to operate before the data it produces contains too much 

error and it must be re-identified. 

 

Parameter Value Error Value % Error 

Amplitude 1.00 1.01 1.0 

Period 1.26 1.24 1.6 

Force Offset 0.50 0.51 2.0 

Phase Shift 2 π 0.025 0.4 

Table 6.1 – Parameter values and estimated error 

example. 

Figure 6.11 – Errors in period yield an 

estimation error that is the product of 

two sinusoids. 
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6.3 Gentle Assembly 

 

In this research, ‘gentle assembly’ 

refers to the connection of 

components while maintaining 

contact forces below specified 

thresholds.  There is no absolute 

measure of gentleness, thus the 

magnitudes of such thresholds are 

determined based on connector 

failure limits, manipulator capabilities 

and uncompensated minimum 

necessary forces.  The connector 

failure limits are the forces and 

torques that can be applied to a 

connector without causing failure.  

The uncompensated minimum 

necessary force, as discussed in 

Chapter 5 – Bias Number, is the 

minimum z axis force needed to 

ensure unambiguous contact readings when performing uncompensated 

assembly of biased elements.  An assembly operation is termed ‘gentle’ if the 

compensated minimum necessary force is less than the connector failure limits, 

within the manipulator capabilities and less than the uncompensated minimum 

necessary force.  In other words, an assembly is ‘gentle’ if the connector does 

not break, the manipulator can complete the task and the operation exerts less 

force with the bias compensator than without.  Based on this definition, two 

metrics are use to evaluate the gentleness of assembly operations for each 

experiment.   

 

Figure 6.12 – This sample independent 

oscillator exceeds the maximum 

allowable error of 0.65 N in 13.1 seconds. 
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One approach establishes a hypothetical set of connector failure limits.  In this 

approach, limits are established on each of the active 

axes.  Completion of assembly while maintaining 

contact wrenches below the established thresholds 

indicates successful gentle assembly.  The magnitudes 

of the force and torque limits are presented in table 

6.2.  These limits are assumed to be less than the 

manipulator capabilities.  As such, the wrenches are 

not compared to the manipulator capabilities. 

 

Another approach calls for the determination of the compensated minimum 

necessary force as defined in Chapter 5 – Bias Number.  The compensated 

minimum necessary force provides a theoretical limit to how little force a 

manipulator can exert while still ensuring successful assembly.  Actual contact 

forces always exceed the compensated minimum necessary force.  The degree 

to which contact forces exceed the minimum force is a function of manipulator 

control bandwidth and the control algorithm.  The force control accuracy of a 

manipulator increases as the control bandwidth increases.   Consequently, given 

a minimum force, manipulators with greater control bandwidth exhibit smaller 

maximum forces and are gentler during assembly.   

 

Axis Threshold 

Fx 30 N 

Fz 30 N 

Ty 3 Nm 

Table 6.2 – Connector 

force and torque failure 

limits. 
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6.4 Connector 

 

The experiments presented in this research 

use the Force Assemblable Connector-1 

(FAC1).  The FAC1, shown in figure 6.13, is 

based loosely on NASA's Joint 4 (figure 

6.14), a space qualified structural connector.  

The FAC1 is force assemblable, meaning 

that contact forces always result in error 

reducing motions if the connector is within 

the receptacle’s workspace.  The FAC1 is 

not designed for structural purposes and is 

suitable only for experimentation. 

 

The FAC1 is composed of two halves, a 

connector and a receptacle which mate by 

interlocking grooves and prongs.  Both 

halves are hollow cylinders, approximately 

40 mm in diameter with a 5 mm wall 

thickness.  The contact surfaces are cut 

directly from the cylinders and each half 

features a pair of grooves and prongs.  

Mating of the connector and receptacle 

requires the flush alignment of the grooves 

from one with the prongs of the other. 

 

The receptacle features a wedge shaped 

core that aids connector alignment and 

enables the locking of connector halves.  

This core locking component has two  

Figure 6.13 – Force 

Assemblable Connector -1 

Figure 6.14 – Joint 4 
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alignment channels that force the connector in the 

correct direction during approach to ensure proper 

mating.  Once flush contact has been made the core 

locking component can translate along the axis of the  

receptacle.  This motion engages the connector and 

locks the connector and receptacle together. 

 

Table 6.3 details the maximum acceptable error for 

each axis of the FAC1.  These error bounds are based 

on a fixed admittance in which the force vector is perpendicular to the connector 

axis and radiates through the midpoint of the line connecting the contact prongs 

as shown in figure 6.15.  Error in multiple degrees of freedom at once reduces 

the acceptable errors on individual axes.  The connector advances along the z 

direction, thus no error is provided for that axis.  

 

Axis Max Error 

X Disp. ± .010 m 

Y Disp. ± .015 m 

X Rot. ± 65 deg. 

Y Rot. ± 20 deg. 

Z Rot. ± 20 deg. 

Table 6.3 – FAC-1 

maximum acceptable 

errors. 

Figure 6.15 – Fixed 

admittance force vector 

Fz 

Fx 

Fy 

Test Stand 

 

Receptacle 

 

Connector 

Figure 6.16 – In single manipulator 

experiments the receptacle is 

mounted to a test stand. 



64 

During experiments, the 

connector is rigidly mounted 

on the end effector of the 

manipulator distal to the 

force/torque sensor.  The 

receptacle mounting changes 

depending on the experiment 

performed.  In all single 

manipulator experiments the 

receptacle is mounted to a 

test stand that allows 

modification of receptacle 

position. (Figure 6.16) In the dual manipulator experiment the receptacle is 

mounted on the end effector of the second manipulator distal to the force/torque 

sensor. (Figure 6.17) 

 

In the experiments that follow the 

connector’s control point 

(described in Chapter 5 - Bias 

Number) is offset from the 

force/torque sensor’s coordinate 

frame along the x axis. (Figure 

6.18)  Thus, the distance from 

center to sensor is 0.065 m and 

the general case must be used to 

calculate the bias number, contact 

states and minimum necessary 

force.  The x axis center distance, 

dcd, is 0.015 m (0.30 m contact to 

contact).   

X 

Y 

Z 

Sensor to  

Center Distance 

Control Point 

Figure 6.18 – The connector’s control 

point is offset along the X axis. 

Receptacle 

 

Connector 

Figure 6.17 – In the dual manipulator 

experiment the receptacle is mounted on the 

second manipulator. 
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6.5 Bias Sources 

 

Three general types of bias are examined in this work, quasi-static bias from 

cables and beams and dynamic bias from pendulums.  In all experiments the 

bias source is attached directly to the connector.  As such, the frame in which 

bias is applied to the system is neither aligned with the tool frame nor with the 

force/torque sensor frame.  Specific details regarding bias sources and 

experimental setup are addressed in the chapters that follow. 

 

6.6 Success Criteria 

 

In each experiment the success of the assembly is based on four measures: 

 

• Flush Contact – The physical alignment of the connector halves must be 

sufficient for the core locking component to engage.  A gap between any part 

of the contact surfaces in excess of 0.5 mm is considered a failed assembly. 

 

• Stable Contact – Stable contact is defined as the application of a preset 

contact force with no resultant motion.   

 

• Efficient Contact – The alignment of components must be efficient and 

intentional.  Under dynamic bias, vibratory motion of components can 

occasionally result in assembly regardless of the presence of biases.  These 

assemblies are characterized by periodic conflicting motion commands and 

excessively long assembly durations. 

 

• Gentle Contact – The contact forces and torques exerted during assembly 

must not exceed the wrench limits set for that task.  If the contact wrench 

exceeds the wrench limit, the controller attempts to retract the connector in an 

effort to reduce the contact load. 
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6.7 Traditional Approach 

 

Demonstrating the validity of the experiments presented in the following chapters 

requires both successful assembly under bias compensation and failure under 

traditional force guided assembly.  In showing the failure of traditional 

approaches the insufficiency of the previous state of the art is exposed and the 

value of the bias compensation approach is highlighted. 

 

The traditional experiments for each bias source utilize the same control code 

developed for the respective bias compensation experiments.  The specific 

treatment of the bias source and the results of such tests are discussed in the 

individual experiments.   
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Chapter 7 

Experiment 1 – Assembly Under Spatial Domain 

Cable Bias 

 

 

 

 

 

 

 

 

7.1 Motivation 

 

Cables, tethers and hoses are present on space structures in a variety of roles.  

These elements constitute a class of bias source that require a reliable method 

for assembly.  Hoses are used for the transport of fluids, like ammonia coolant, 

oxygen and hydrogen fuel.  Power and data cables enable remote operation of 

sensors and equipment.  Stay cables and structural tethers provide rigidity to 

flexible elements and assemblies. 

 

Stay cables are characterized by a non-zero bending radius in flexure and high 

longitudinal stiffness in tension.  In some cases they attach to beams that flex 

and bend when a cable is manipulated.  These elements are designed to operate 

under tension thus the assembly of stay cables occurs under significant biasing 

force. 
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Cables with these characteristics can not be assembled using traditional force 

guided assembly and motivate the use of force guided assembly under bias.  The 

bias source in this experiment is fashioned to emulate a structural cable attached 

to a flexible beam. 

 

7.2 Assumptions 

 

It is assumed that: 

 

• The location of the manipulator and the cable attachment point are known 

with respect to the world frame.  This allows the calculation of the unknown 

spring parameters with respect to the actual displacement and orientation.  It 

is possible to relax this assumption and calculate the approximate cable 

attachment point during identification.  However, this yields less accurate bias 

estimates. 

 

• The cable being attached 

is under constant tension 

from the axial spring and 

remains taut for the 

duration of the 

experiment.  Cables that 

are not under tension in a 

gravity free environment 

display complicated 

dynamics and assume 

complex configurations 

that are not addressed in 

this work. 

 

Approximate 

Force Vector 

Bending Due to 

Connector Orientation 

Connection 

Point 

Figure 7.1 – The cable is well approximated by 

a straight line except where bending due to 

connector orientation. 
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• The cable is well approximated by a straight line except where bending due to 

connector orientation. (Figure 7.1)  As the connector is displaced from the 

starting point the force vector changes orientation.  The assumption of 

straightness allows the cable attachment point to be used as the center of 

rotation of the force vector. 

 

• Gravity does not affect the shape of the cable or the direction of the force 

vector.  This assumption is necessary because gravity bends the cable into a 

catenary. As the degree of bending increases, the assumption of straightness 

fails and the equation describing the orientation of the force vector becomes 

more complicated.  (Figure 7.2)  This assumption is fulfilled when in a gravity 

environment by orienting the cable as close to vertical as possible. 

 

• The springs being emulated do not necessarily exhibit zero force and torque 

when the connector is at the zero position.  Alternatively, the springs under 

consideration exhibit a slack length or a slack angle defined as the distance 

or angle at or below which the spring does not generate force or torque 

respectively. 

 

• The cable does not experience any axial torsion.  The planar model does not 

accommodate the forces and torques generated by torsion about the 

connector axis. 

g 

Approximate 

Force Vector 

Connection 

Point 

Figure 7.2 - Gravity bends the cable into a centenary 

invalidating the assumption of straightness. 
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• The system does not experience hysteresis.  The presence of hysteresis is 

not accounted for in the bias models thus the magnitude of any hysteresis 

must be small enough such that it can be neglected. 

 

7.3 Model 

 

The cable model for wrench 

emulation consists of a 

longitudinal spring in series 

with a flexural spring.  The 

model also incorporates a 

passive joint to prevent the 

generation of torsional 

stresses.  The connection 

between the cable and the 

world (ground) is modeled as 

a pin joint and the attachment 

to the connector is fixed such 

that the bias element can 

exert both forces and torques 

on the connector. 

 

The model states include the position and orientation of the connector which is 

located at the end of the cable.  Figure 7.3 illustrates the cable model.  The 

actual experimental configuration may be seen in figure 7.7.  Equations 1 and 2 

present the models for the total force, FT, and flexural torque, τ.  The biasing 

element used in this experiment is well approximated by linear models, in the 

case of elements with more complex characteristics, non-linear models are used 

in place of equations 1 and 2. 

 

Ground 

Receptacle 

Connector 

Flexural 

Spring 

Passive 

Joint 

Manipulator 

Axial 

Spring 

Ground 

Figure 7.3 – Cable model and experimental 

configuration. 

X 

Z 
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cT FdkF +⋅=      Eq. 1 

 

Where k is the spring constant, d is the elongation of the spring and Fc is the 

force at the starting distance.   

 

cτθκτ +⋅=       Eq. 2 

 

Where κ is the torsional spring constant, θ is the angular displacement of the 

connector and τc is the torque at the starting orientation. 

 

The simplified cable 

model shown in 

figure 7.3 does not 

account for several 

aspects of the real 

system and is only 

sufficient for rough 

estimates of the 

generated wrenches. 

More subtle aspects 

of the wrenches are 

emulated using linear 

models applied 

locally.  For example, 

inaccuracies in the z force component stemming from incorrect angle estimates 

are corrected using a local linear model.  Figure 7.4 shows an example of actual 

force in the z direction and the estimated z force derived from the total force 

(equation 1).  The resulting error is approximately linear and can be 

characterized as a linear function over a local area. Thus, identifying the slope 

and intercept of the error and estimating it as a function of the connector 

orientation enables the revised z force estimate illustrated. 

Figure 7.4 – Example of Fz estimation error and locally 

applied linear model. 
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Another model adjusts the 

length of the cable as a function 

of the angle of the connector.  

As the connector rotates, the 

distance from the connector 

attachment point to the ground 

attachment point changes. 

(Figure 7.5)  Solving for the 

actual change in distance 

requires a complete 

representation of the 

experimental geometry.  Some 

of the parameters necessary to 

calculate this distance are 

assumed to be unknown and so 

an alternative method, creating a linear model for local estimation, is adopted.  

Combining these simple linear models enables the emulation of a complex non-

linear system.   

 

The estimate of the force in the z direction is based on the total force model. 

(Equation 1)  The total force is rotated to the correct frame based on manipulator 

orientation and combined with the linear model to arrive at the final z component 

force as shown in equation 3. 

 

( ) ( ) ( )zzcz bmFdkF ++⋅+⋅= θθsin     Eq. 3 

 

Where mz and bz are the slope and intercept of the linear z estimate error model. 

 

The estimate of the force in the x direction is arrived at by exploiting the available 

geometric constraints.  An estimate of total force is available from equation 1 and 

d

d

Point of Rotation 
θ2 

θ1 

Figure 7.5 – As the connector rotates, the 

distance from the connector attachment to 

ground changes. 

Connector 

Attachment Point 
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an estimate for the z component is available from equation 3.  Thus the force in 

the x direction can be represented as in equation 4. 

 

( ) ( )( )Tzcx FFFdkF /sincos 1−
⋅+⋅=     Eq. 4 

 

This approach avoids the creation of a third physically based model but creates a 

direct relationship between the x component error and the errors of the 

constituent models. 

  

Torque is modeled assuming a known moment arm in the z direction and an 

unknown moment arm in the x direction.  This assumption is consistent with the 

model already presented.  It is assumed that the moment arm in the z direction is 

known because the offset is coaxial with the connector.  However, the moment 

arm in the x direction is a function of the bending radius of the cable and must be 
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learned.  (Figure 7.6)  The torque generated by the z component force is learned 

as a linear function shown in equation 5. 

 

( )ττ cdF xzz +⋅=       Eq. 5 

 

Where dx is the moment arm in the x direction and cτ is a torque offset.  This 

calculation is combined with the x component torque to arrive at the final torque 

estimate, τ, as shown in equation 6. 

 

( ) zxxz dFcdF ⋅++⋅= ττ      Eq. 6 

 

Where dz is the moment arm in the z direction. 

 

The model presented in this section is not limited to the planar case.  Given the 

assumption that the cable does not resist axial torsion, this model is extensible to 

the three dimensional space.  When axial torsion is not present, a cable in flexure 

can always be described as belonging to a plane.  By implementing the model in 

the coordinate frame described by this plane and transforming the results to the 

connector frame the model presented can be used for the three dimensional 

case. 

 

7.4 Experimental Setup  

 

7.4.1 Configuration 

The experimental setup of the cable bias experiments is shown in figure 7.7.  

Tests are performed with a five degree of freedom manipulator operating in a 

plane.  The receptacle is attached to an adjustable receptacle stand and placed 

within the workspace of the manipulator.  The bias element is attached to the 

world frame directly above the manipulator and receptacle stand. 
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7.4.2 Bias Source 

The bias source for this 

experiment is composed of 

two parts, the axial spring and 

the ‘cable’.  The axial spring is 

an elastic polymer with an 

approximately linear 

relationship between 

elongation and force.  The 

magnitude of the force is 

varied between experiments 

by adjusting the preload on the spring.  The spring is attached to the world frame 

at one end by a flexible cable that approximates a pin joint.  The other end is 

attached to the ‘cable’ element. 

 

Three separate ‘cable’ elements are used for the experiments presented.  The 

elements vary in flexural stiffness to demonstrate the general applicability of the 

model and approach.  Under the loads applied by the manipulator, the most 

Cable 

 

Connector 

 

Receptacle 

 

Test Stand 

Manipulator                 F/T Sensor 

Figure 7.7 – Experimental setup of cable 

bias experiment. 

8 mm Power 

Cable 

13 mm Fiberoptic 

Cable 

Aluminum 

Beam 

Figure 7.8 – Three separate ‘cable’ elements are used for the 

experiment presented. 
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flexible of these elements, an 8 mm power cable, has an effective bending radius 

on the order of 0.01-0.02 meters.  (Figure 7.8)  The medium stiffness element, a 

13 mm fiberoptic communications cable, has a bending radius on the order of 

0.1-0.2 meters.  The stiffest of the three elements is a rectangular aluminum 

beam with a 3 mm by 25 mm cross section and a bending radius on the order of 

1.0-2.0 meters.   

 

The wrenches generated by each of these elements are very different but the 

basic model applies.  Thus a variety of cables are emulated by changing the axial 

spring preload and the ‘cable’ element.  

 

7.4.3 Identification 

Identification of the spring parameters is performed using a least squares 

algorithm.  The axial spring parameters are identified by moving the connector 

along a line radiating from the attachment point.  The flexural spring parameters 

are determined by rotating the connector to the maximum angles anticipated 

during assembly.  The parameters of the linear models used to adjust for basic 

model error are identified during the motions described for the axial and flexural 

springs. 

 

7.4.4 Issues 

The tests described in the Results section of this chapter document the assembly 

of a connector under quasi-static cable bias.  The average assembly time for 

these tests is approximately 35 seconds from first contact to completion.  The 

speed of assembly is limited by the control bandwidth of the manipulator (50 Hz) 

and not the bias compensation approach.  Increasing the speed of the 

manipulator while maintaining the control frequency yields oscillatory contact 

behavior. 
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The force/torque sensor used for this 

experiment exhibits significant noise.  

This may be attributed to the 

relatively low magnitude of the 

applied wrenches and the sensor 

configuration.  The forces and 

torques applied to the sensor are a 

fraction of the permissible ranges, 

thus the signal to noise ratio is not 

as high as is possible.  The sensor is 

configured such that it outputs a set 

of amplified analog signals from 

internal strain gauges.  The signals 

are conducted to an external analog 

to digital converter and then sent to 

the CPU.  This configuration makes 

the signals particularly susceptible to 

external sources of noise. 

  

The manipulator configuration 

constrains all motion to the plane 

and prevents even small changes 

out of plane to accommodate 

misalignment of the manipulator and 

receptacle stand.  This limitation 

complicates the experimental setup, 

mandating the precise alignment of 

the two halves.  This alignment is 

difficult given the unwieldiness of the 

halves and the precision necessary to ensure flush mating.  

 

Figure 7.9 – Error map for 13 mm fiberoptic 

cable at 5 degrees. 
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7.5 Results 

 

7.5.1 Model Accuracy 

Wrench model accuracy influences the minimum 

force needed for accurate assembly as discussed 

in Chapter 5 - Bias Number.  The accuracy of the 

model proposed for cable emulation is examined 

and conclusions regarding its utility are drawn. 

 

A portion of the error map for the medium stiffness 

flexural element is shown in figure 7.9.  The figure 

shows force estimation errors in the x and z axes 

and torque estimation error about the y axis at an 

orientation of 5 degrees from the starting 

orientation.  Figure 7.10 shows the coordinate 

frame and mapping envelope used for the error 

maps presented.   

 

The general trends exhibited by the error maps reveal the divergence of the 

models from the real systems.  The pitted texture of the surfaces is attributed to 

sensor noise in combination with small oscillations in the cable during the 

mapping process.  A single sample is taken for each sample position; noise 

reduction is possible by sampling multiple times at a single position.  The model 

error for both the x and z axes is, in many cases, comparable to sensor noise.  

This indicates that further refinement of the model in those regions would have 

no discernable effect.  It also complicates interpretation, making identification of 

trends in the error more difficult.  The sensor noise for the torque about y is 

significantly lower than the force errors, yielding more room for model 

improvement and more easily interpreted trends.    

 

5.5 cm Fx 

Fz 

4 cm 

Figure 7.10 – Coordinate 

frame and mapping 

envelope. 
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All Fx error maps exhibit a step 

increase from the first to the 

second position in the x 

direction.  This step increase, 

illustrated in figure 7.11, 

averages approximately 0.1 N 

and is a result of hysteresis.  

The step corresponds to the 

point at which the raster pattern 

changes direction and can be 

attributed to a change in 

manipulator position without a 

corresponding change in the length of the axial spring.  The exact source of 

hysteresis is unclear but may be due to any of the parts of the bias element. 

 

In all cases, regardless of flexural element and 

connector orientation, there is a significant 

increase in torque error as the connector moves 

along the x axis.  Motion of the connector along 

the x axis primarily maps to a change in length of 

the axial spring.  Although in many cases there is 

also an increase in Fz error, this is not the situation 

in all cases.  Thus it must be concluded that the 

torque error is primarily a product of inaccuracies 

in the torque model.  In those cases where the Fz 

error is also increasing, the poor performance of 

the force model contributes to the torque error. 

 

As the stiffness of the flexural elements increase 

the insufficiency of the torque model becomes 

clearer.  Figure 7.13 illustrates the difference in 

Figure 7.12 – Raster 

pattern used to create 

error maps. 

Figure 7.11 – All Fx error maps exhibit a step 

increase due to hysteresis. 

Step Increase 
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torque error between the 

three flexural elements when 

the connector is rotated five 

degrees from its learning 

orientation.  These graphs 

show that as the flexural 

stiffness of the bias element 

increases, the estimation 

error also increases.  

 

The cable bias emulation 

model estimates the forces 

and torques generated by 

the medium stiffness source 

to within 0.60 N on the x 

axis, 0.65 N on the z axis 

and 0.2 Nm about the y axis. 

(Figure 7.14a)  Figure 7.14b 

shows an alternative 

representation of the error 

map with error as a function 

of the sample number.  This 

graph shows that the 

changes in Fx, Fz, and τy are 

approximately 6 N, 8N, and 2 

Nm respectively.  Figure 

7.14c shows the percent 

error for the estimates in 

figure 7.14a.  The 

comparatively high percent 

error associated with the first 

Figure 7.13 – Ty Error at 5 degrees for the 

8mm, 13mm and Aluminum sources 

respectively. 
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portion of the z axis corresponds to the low z axis biases shown in figure 7.14b.  

For the most part, the emulation error for the z axis remains below 6% while the 

errors for x axis and torque about y remain below 5% and 2% respectively.   

 

Given the connector-sensor geometry described in Chapter 6 – Experimental 

Introduction, the change in actual bias from figure 7.14b, and the 30 N limit on Fz 

(from Table 6.1) the bias number is calculated using equation 13 from Chapter 5: 

 

52.5
015.030

065.073.798.1
=

⋅

⋅+
=

⋅

⋅−
=
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mNNm
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dF
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cd
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The value of B is significantly larger than unity, indicating that bias compensation 

is necessary to achieve gentle assembly.  The value of the bias number is 

calculated using the maximum torque and force errors over the space 

a. b. 

c. 

 

 

 

Figure 7.14 – a) Estimation 

error, b) Actual bias values, and 

c) Percent error as a function of 

sample number in a raster scan. 
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considered, providing a single 

measure for the whole space.  

Alternatively, the bias number 

can be calculated for each 

sample point in a space. 

 

7.5.2 Gentle Assembly 

The actual and estimated Fx, Fz, 

and Ty during a sample force 

guided assembly under cable 

bias are shown in figure 7.15.  

The graphs show the assembly 

process starting from before 

contact is established to when 

stable contact and flush 

assembly are achieved.  The 

process is divided into three 

sections and separated by 

events Alpha and Beta.  Prior to 

Alpha the connector performs 

guarded motion.  Event Alpha 

corresponds to first contact 

between the connector and 

receptacle.  When contact is 

made the connector advances 

without changing orientation until 

the minimum z axis force is 

established.  Event Beta 

corresponds to the contact state 

which generates a stable 

A
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h
a 

B
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a 

Figure 7.15 – Actual and estimated Fx, Fz, 

and Ty during a force guided assembly. 
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resultant force in the z direction.  Subsequent to event Beta the minimum force 

for an unambiguous contact signal is maintained (seen as the constant force 

offset between the Fz estimate and the actual Fz) and both orientation and 

position of the connector are modified until flush assembly is established. 

 

A set of 20 tests are performed to quantify the efficacy of the proposed approach.  

The tests vary the orientation and position of the connector’s starting point 

relative to the receptacle.  The starting position is offset by ± 0.01 m in the x 

direction, - 0.02 m in the z direction and ± 15 degrees relative to the nominal 

starting position. Despite significant alignment errors, the approach had a 100% 

success rate over the test set. 

 

The minimum necessary force is calculated using equation 8 from Chapter 5 - 

Bias Number: 

 

N
m

mNNm
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The minimum force is set to 17.0 N for the tests described to reduce the bias 

number and provide additional margin. 

 

The maximum change in torque encountered over the workspace is 1.98 Nm and 

the change in force is 7.73 N.  Given the physical dimensions of the connector, 

the uncompensated minimum necessary force is 157.56 N.  Thus, based on a 

compensated minimum necessary force of 16.15 N, the bias compensator yields 

a 90% reduction in necessary z axis force. 

 

The reader may note that the minimum force (the offset between actual and 

estimated force in the z direction after event Beta) shown in figure 7.15 is not 17 

N.  The data used to generate figure 7.15 stems from an earlier test set in which 

the minimum force necessary for unambiguous contact is calculated as 6 N.  The 
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data presented in figure 7.15 is chosen because it presents a particularly clear 

delineation between the different stages of assembly.  

 

7.6 Traditional Approach 

 

Implementation of the traditional approach is performed by removing the bias 

identification and compensation functions from the assembly controller.  The 

manipulator is allowed to move the connector directly to the receptacle staging 

point, bypassing the identification operation.  The bias is assumed to be constant 

and the bias wrench at the staging point is identified and subtracted from the 

sensor data, taring the sensor.   

 

Using this approach the manipulator is unable to complete the assembly of the 

biased element.  A series of ten tests are performed to verify the failure of this 

approach.  The initial position and orientation of the connector are modified for 

each test within the same bounds described for the bias compensated tests.  The 

starting position is offset by ± 0.01 m in the x direction, - 0.02 m in the z direction 

and ± 15 degrees relative to the nominal starting position.   

 

The traditional approach fails 80% of the time when under cable bias.  The tests 

that did not fail had initial conditions with orientations approaching 0 degrees 

relative to the receptacle.  In these cases the bias wrenches generated do not 

exceed the control thresholds and subsequently do not issue incorrect 

commands during assembly. 

 

Two failure modes are encountered in the failed tests.  Failure to achieve flush 

contact during assembly is the primary failure mode.  The presence of 

uncompensated bias prevents the identification of flush contact from wrench 

data.  When bias is not present or is compensated, flush contact is established 

by rotating the connector until the sum of the applied torques equals zero.  This 

indicates that contact is established on both sides of the control point and that 
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approximately equal forces are being applied.  When uncompensated bias is 

present the point at which the sum of the applied torques equals zero does not 

correspond to flush contact.  Thus, servoing to the zero point does not ensure 

flush assembly. 

 

The generation of excessive contact wrenches is the second failure mode 

encountered when implementing traditional force guided assembly.  Corrupted 

wrench data and control commands result in more frequent jamming of connector 

components and subsequently the generation of excessive contact wrenches. 
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Chapter 8 

Experiment 2 – Assembly Under Spatial Domain 

Beam Bias 

 

 

 

 

 

 

 

 

8.1 Motivation 

 

One assembly task in space construction is the connection of structural beams to 

form trusses.  These long, light beams are called longerons and are relatively 

fragile with wall thicknesses measured in fractions of a millimeter but lengths of 

tens of meters. 

 

Longerons can carry heavy loads along their length but are usually compliant in 

flexure.  This yields a bias source with little or no axial compliance but both 

torsional and bending flexure.  Connecting such elements when one end is 

already rigidly attached to the structure requires twisting and bending. 

 

Longerons that are constrained at one end cannot be assembled using traditional 

force guided assembly techniques and motivate the use of force guided 
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assembly under bias.  The bias sources in the experiments of this research are 

fashioned to emulate a longeron in flexure.  The axial stiffness associated with 

these elements is not emulated and the beam is allowed to comply along its axis.  

The motivation behind this simplified model is discussed in the Experimental 

Setup – Issues section of this chapter. 

 

8.2 Assumptions 

 

It is assumed that: 

 

• Beams contact the world frame through frictionless roller supports and that 

the forces exerted on connectors in the x axis are negligible.  Real systems 

experience forces along the x axis from both friction and a component of the 

normal force at roller supports when beams are in flexure. 

 

• The slope of a beam at a roller support is small enough during flexure that 

cantilever beam models remain accurate.  Real systems experience slopes in 

excess of 20 degrees during experimentation and the models used remain 

accurate. 

  

• Manipulator location is known with respect to the world frame but that the 

location of the roller support is unknown.  Models used to emulate beam 

bending do not rely on the world frame location of the roller support. 

 

• Bias forces and torques of un-modeled degrees of freedom remain below 

specified thresholds.  Exceeding these thresholds indicates contact with a 

receptacle and initiates compliance in the connector.  
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• Hysteresis is not present.  The presence 

of hysteresis is not accounted for in the 

bias models thus the magnitude of any 

hysteresis must be small enough such 

that it can be neglected. 

 

• Beam cross sections and bending moduli 

remain constant over the lengths of the 

beams.  Changes in these parameters 

generate complex force profiles as a 

function of displacement. 

 

8.3 Model 

 

The test configuration for this experiment is 

shown in figure 8.1.  The beams are 

statically determinate, meaning that the 

bending moment can be determined solely 

from the applied forces.  The governing 

equation relating the second derivative of 

beam deflection and moment independent of 

boundary conditions is presented in equation 1. 

 

EI

xM

dx

yd )(
2

2

=       Eq. 1 

 

Where M(x) is the bending moment at a position x along the beam, E is the 

modulus of elasticity, and I is the moment of inertia of the beam cross section.   

 

The beams are rigidly attached to connectors, thus the position and orientation of 

the end of the beams are constrained and both forces and torques are applied.  

Ground 

Ground 

Manipulator 

Bending 

Beam 

Roller 

Support 

Figure 8.1 – Test configuration for 

Experiment 2 – Bending Beam 

Bias. 

Z Y 

X 

Receptacle 

 

Connector 
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The assumption that the force application 

point can be modeled as a roller support 

means that the transverse displacement is 

controllable but the slope is not.  This 

combination of boundary conditions allows 

the treatment of the beam as a cantilever. 

 

The moment, M(x), at a point along the length 

of a cantilever beam is described by equation 

2. 

 

( )xLFxM z −⋅=)(     

 Eq. 2 

 

Where Fz is the applied force, x is the position 

along the beam as shown in figure 8.2 and L 

is the total length of the beam.  Combining 

equations 1 and 2 and integrating twice yields 

equation 3. 
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Where z is the deflection at the point x.  The constants of integration, c1 and c2, 

are equal to zero due to the boundary conditions.  Solving this equation for the 

point at which x = L yields equation 4, the displacement at the end of the beam. 
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      Eq. 4 

 

And solving for F yields equation 5. 
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L 
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Figure 8.2 – Dimensions and 

force application point for 

bending beam bias. 
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3

3

L

zIE
Fz

⋅⋅⋅
=      Eq. 5 

 

Thus, given a beam of uniform cross section and composition, the relationship 

between the perpendicular displacement and the resultant force in the z direction 

is a linear function.   

 

When the force application point does not correspond to the end of the cantilever 

beam as shown in figure 8.2, the derivation for the force in the z direction still 

holds.  In this case, equation 6 describes the force Fz. 
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zIE
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=      Eq. 6 

 

Where the length of the beam, L, has been replaced by the position of the force 

application point, x.  Linearizing equation 6 yields equation 7. 
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    Eq. 7 

 

The torque about y is related to the force in the z direction by equation 8, also a 

linear function. 

 

LFzy ⋅=τ       Eq. 8 

 

Thus the emulation of the bending beam can be performed with the two simple 

linear models shown in equations 9 and 10.   

 

321 Ω+⋅Ω+⋅Ω= θθ zxFz      Eq. 9 

31 Γ+⋅Γ= θτ xy      Eq. 10 
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Where Ωn and Γn are the learned parameters and 

xθ and zθ are the values of x and z transformed 

into the connector coordinate frame which is 

dependant on θ.  The values xθ and zθ are 

described by equations 11 and 12. 

 

( )θθ cos⋅= dx     Eq. 11 

( )θθ sin⋅= dz     Eq. 12 

 

Where d is the distance between the fixed end of 

the cantilever and the force application point and 

θ is the angle between the line d and the 

connector axis.  Figure 8.3 illustrates the 

geometric basis for xθ and zθ. 

 

An alternative model is also developed based on 

observations of the experimental system.  In the 

experimental system the force in z and the 

torque about y are both well approximated by 

linear functions of the world frame coordinates x, 

z and θ as shown in equations 13 and 14. 

 

4321 Ω+⋅Ω+⋅Ω+⋅Ω= θzxFz     Eq. 13 

4321 Γ+⋅Γ+⋅Γ+⋅Γ= θτ zxy      Eq. 14 

 

The accuracies of each of these models are examined in the Results section of 

this chapter.  Over a local area, the alternative model exhibits lower error and is 

used for the experiments presented. 

 

θ 

d xθ 

zθ 

Figure 8.3 – Illustration of 

the geometric basis for xθ 

and zθ. 
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8.4 Experimental Setup  

 

8.4.1 Configuration 

The beam bias experimental configuration 

is shown in figure 8.4.  Experiments are 

performed using a seven degree of 

freedom manipulator operating in a six 

dimensional space.  The receptacle is 

attached to an adjustable receptacle 

mount which is attached to the world 

frame.  The bias element contacts the 

world frame through a roller support, the 

position of which is adjustable in both the x 

and z axes. 

 

8.4.2 Bias Source 

The bias source for these experiments is a 

0.01 m diameter aluminum beam.  The 

beam is clamped at one end directly to the 

connector such that the orientation of the 

connector mandates the orientation of the 

beam at the connection point.  The beam 

exhibits an approximately linear 

relationship between displacement and 

force over small displacements. 

 

The stiffness of the beam is adjusted by changing the distance from the 

connector to the point of force application.  It can be seen from equation 5 that 

changing the distance between these points changes the stiffness of the spring 

by a factor of 1/L3.  Experiments are conducted at three separate length settings 

Manipulator 

F/T Sensor 

Bending 

Beam 

Connector 

Receptacle 

Roller 

Support 

Figure 8.4 – Beam bias 

experimental configuration. 
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1.22 m, 1.37 m, and 1.52 m.  Calculating the spring constant using equation 15 

yields constants of 56.77 N/m, 40.09 N/m and 29.35 N/m respectively. 

 

3

3

L

IE
k z

⋅⋅
=       Eq. 15 

 

Thus diverse spring characteristics are achieved using a single bias element with 

different force application points. 

 

8.4.3 Identification 

Identification of the spring parameters is performed using a batch least squares 

algorithm.  Separate motions are performed in each axis, allowing the isolation 

and identification of the dependent parameters.  This approach is used to 

emulate both the force in z and the torque about y. 

 

8.4.4 Issues 

As is the case with Experiment 1, the control bandwidth of the manipulator in this 

experiment is 50 Hz.  This relatively low bandwidth limits the speed at which the 

manipulator can be moved while in contact with the environment.  Increasing the 

speed of the manipulator again yields oscillatory contact behavior. 

 

The limitations of the control bandwidth motivate the simplified bias configuration 

described in the Model section of this chapter.  Instability and damage to the 

manipulator are risked when axes are rigidly constrained by connection to 

ground.  Without sufficient compliance, small jitters due to low bandwidth control 

create large forces.  These forces can excite a divergent feedback loop, 

potentially commanding the manipulator in such a way as to damage equipment 

and people. 
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The force/torque sensor used in these experiments is different than that used in 

Experiment 1.  The Experiment 2 sensor utilizes an onboard analog to digital 

converter with a 9 kHz sample frequency and built in noise filters.  The 

combination of onboard analog to digital conversion and filters reduces signal 

noise.  This allows for the more accurate emulation of bias and contact wrenches 

and ultimately, more gentle assembly of components. 

 

The manipulator configuration in this experiment calls for the connection of the 

force/torque sensor to a mounting plate located distal to the final rotational joint.  

The joint incorporates a harmonic drive and is configured such that the flexspline 

is distal to the rest of the joint.  Thus, the mounting plate is directly attached to a 

portion of the joint that periodically deforms.  This deformation generates internal 

stresses in the mounting plate and subsequently phantom wrenches in the force 

torque sensor.  A 0.025 m thick mounting plate is installed to reduce the effects 

of the deformation and bring the phantom wrenches to within the range of noise. 

 

8.5 Results 

 

8.5.1 Model Accuracy 

Two separate bias models are presented in the Model section of this chapter.  

One is based on the physical structure of the bias element and the theory of 

statically determinate cantilever beams.  The other assumes a simple linear 

relationship between system states and the resultant forces and torques. 

 

The absolute values of the force and torque errors for each model as a function 

of sample number are shown in figure 8.5.  This representation simplifies the 

comparison of model error over the entire workspace.  In this illustration the top 

row shows the force and torque of the physical model and the bottom row shows 

the linear model.   
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Determination of the maximum errors for each axis provides the data needed for 

calculating the minimum contact force for unambiguous signals.  Comparison of 

the respective force errors in the left column shows that the physical model has a 

larger maximum error of 0.56 N compared to 0.35 N in the linear model.  The 

maximum torque error of the physical model is 0.26 Nm compared to 0.28 Nm for 

the linear model.  The difference between these maxima is less than the sensor 

noise and is negligible.  Although the smaller force error in the linear model may 

seem to indicate that the linear model is superior, the relative unimportance of 

force due to the small distance from the sensor to the center of contact makes 

the model performance nearly identical. 

 

Based on the presented error data and the physical constraints of the system, 

the minimum force needed for an unambiguous signal can be calculated for each 

sample point.  Determining the minimum force over a workspace allows the direct 

comparison of two models by weighting the force and torque errors based on the 

Figure 8.5 – Absolute values of force and torque errors for 

both the linear and the physical model. 
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physical constraints of the system.  Figure 8.6 shows that the linear model 

requires a marginally smaller minimum force than the physically based model.   

 

Given that the performance of both models is effectively the same the linear 

model is used for all subsequent experiments.  This model is not only easier to 

realize but is also applicable to a larger set of bias sources.  The realization and 

validation of general bias models enables the relaxation of assumptions 

associated with the physical model.  For example, because the linear model is 

used for the experiments in this chapter there is no need to know the location of 

the roller support, a variable that is necessary if the physically based model is 

used. 

  

Portions of the error maps from both of the models discussed are shown in figure 

8.7.  (A complete map can be found in Appendix 3)  The pitted appearance of the 

maps is a result of sensor noise.  The sensor noise experienced in this 

experiment is smaller than that of experiment 1.  Table 1 illustrates that the  

Figure 8.6 – Comparison of minimum required force 

for the physical and the linear model. 
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typical sensor noise from experiment 2 

is approximately half that from 

experiment 1.  This decrease in sensor 

noise is attributed in part to the superior 

force/torque sensing available for 

experiment 2 as discussed in the 

Experimental Setup – Issues section of 

this chapter. 

 

Experiment Fz Ty 

1 0.2 N .05 Nm 

2 0.1 N .03 Nm 

 

a. b. 

c. d. 

Figure 8.7 – Error maps for the physical and linear models at 5.5 degrees.  a) Force map 

for physical model, b) Force map for linear model, c) Torque map for physical model, and 

d) Torque map for linear model. 
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The linear model estimates the forces and torques generated by the beam to 

within 0.35 N on the z axis and 0.28 Nm about the y axis.  Figure 8.8a shows a 

two dimensional representation of the emulation error for each of the degrees of 

freedom over the workspace.  Figures 8.8b and 8.8c show the corresponding 

bias and percent error respectively.  

 

Given the connector-sensor geometry, the change in actual bias from figure 8.8b, 

and the 30 N limit on Fz the bias number is calculated: 
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a. b. 

c. 

 

 

Figure 8.8 – a) Estimation error, 

b) Actual bias values, and c) 

Percent error as a function of 

sample number in a raster scan 
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The value of B is significantly larger than unity, indicating that bias compensation 

is necessary to achieve gentle assembly. 

 

8.5.2 Gentle Assembly 

The actual and estimated Fz, and 

Ty during force guided assembly 

under cable bias are shown in 

figure 8.9.  The assembly is again 

divided into three parts where 

events Alpha and Beta delineate 

transitions.  As was described in 

the Results section of Chapter 7 – 

Experiment 1, the graphs show the 

assembly process starting from 

prior to contact to when flush 

assembly is achieved.  Prior to 

event Alpha the connector 

performs guarded motion.  Event 

Alpha corresponds to first contact 

between the connector and 

receptacle.  When contact is made 

the connector advances without 

changing orientation until the 

minimum z axis force is 

established.  Event Beta 

corresponds to the contact state which generates a stable resultant force in the z 

direction.  Subsequent to event Beta the minimum force for an unambiguous 

contact signal is maintained (seen as the constant force offset between the Fz 

estimate and the actual Fz) and both orientation and position of the connector are 

modified until flush assembly is established. 

 

Figure 8.9 – Actual and estimated Fz, 

and Ty during a force guided assembly. 
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Thirty tests are performed to quantify the efficacy of the proposed model and 

approach.  In each test the starting orientation and position relative to the 

receptacle are changed.  The starting position is offset by ± 0.01 m in the x 

direction, - 0.01 m in the z direction and ± 5 degrees relative to the nominal 

starting position.  

 

The angular errors introduced for this test were limited to ± 5 degrees.  This was 

done to limit both the bias model error and the curvature of the beam.  The 

curvature of the beam is a function of the orientation of the connector, the 

bending modulus (E·I), and the distance from the connector to the force 

application point.  Thus a relatively small change in orientation can generate 

significant deformation in a beam depending on the other parameters.  Given the 

configuration and parameters of the bias source in this experiment, limiting the 

change in orientation is necessary to maintain assumptions regarding small 

slopes at the force application point. 

 

The maximum change in torque encountered over the workspace is 10.68 Nm 

and the change in force is 8.42 N.  Given the physical dimensions of the 

connector, the uncompensated minimum necessary force is 739.91 N.   

 

The compensated minimum necessary force is calculated using equation 14 in 

chapter 5 – Bias Number.  The workspace used to determine the force and 

torque errors is equal to 0.03 m by 0.035 m.  Based on a maximum torque error 

of 0.28 Nm and force error of 0.35 N, the minimum necessary force is 19.97 N.  

Thus, implementing the bias compensator yields a 97% reduction in necessary z 

axis force.  The 19.97 N force is labeled as the contact force in figure 8.9.  The 

actual value fluctuates around and below 19.97 due to connector motion. 

 

The approach has a 97% success rate over the test set, failing once out of the 30 

tests performed.  This failure is due to the incomplete mating of the connector 

and receptacle.  When the connector and receptacle contact in a configuration 
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similar to that shown in figure 8.10 

it is possible for the parts to jam.  

This either prevents flush mating or 

causes the contact wrench to 

exceed the wrench limits. 

  

The failed attempt was the 26th test 

in the series, the starting position 

was offset by approximately 0.0 m 

in x, -0.01 m in z and 1.0 degrees 

about y.  Subsequent tests at the 

same starting position completed 

successfully. 

 

8.6 Traditional Approach 

 

Traditional force guided assembly is implemented by removing the bias 

identification and compensation functions from the control code. The beam bias 

is assumed to be constant and the force/torque sensor is tared at the receptacle 

staging point to remove the bias wrench.  

 

A set of ten tests are performed to confirm the failure of the traditional approach.  

The starting position and orientation of the connector are modified for each test.  

The starting position is offset by ± 0.01 m in the x direction, - 0.01 m in the z 

direction and ± 5 degrees relative to the nominal starting position.  These values 

are identical to those used for the bias compensated approach.  The traditional 

approach fails 100% of the time when under beam bias. 

 

The failure modes encountered using the traditional force guided assembly 

approach include failure to achieve flush contact and the generation of excessive 

contact wrenches.  As is discussed in the Traditional Approach section of 

Figure 8.10 – Occasionally when the 

FAC1 contacts as shown, jamming may 

occur. 



103 

experiment 1, these failure modes result from the presence of uncompensated 

bias.   

 

The failure rate in this experiment is greater than that of experiment 1 because of 

the comparatively high stiffness of the bias source.  As the stiffness of the bias 

source increases so does the rate of change in the bias wrench as a function of 

displacement and orientation.  Thus, even small changes in orientation and 

displacement yield large changes in bias wrenches and result in failed assembly. 
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Chapter 9 

Experiment 2b – Dual Manipulator Assembly 

Under Spatial Domain Beam Bias 

 

 

 

 

 

 

 

 

9.1 Motivation 

 

The connection of multiple elements, 

that experience individual biases that 

can not be represented as a single 

bias, calls for dual manipulator 

assembly.  Consider, for example, 

the configuration shown in figure 9.1.  

A robot, attached to ground, 

attempts to connect a pair of 

perpendicular longerons.  Both of 

these elements are attached to a 

rigid structure, preventing motion 

Robot 

Longeron 

Directions 

of Freedom 

Longeron 

Ground 

Figure 9.1 – Two constrained perpendicular 

longerons being assembled by a grounded 

robot.   
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along their respective axes.  Without 

the freedom to move along the axis 

of the longeron, manipulating a 

single element does not ensure 

access to the receptacle position. 

(Figure 9.2)  Thus, both longerons 

must be manipulated in order to 

achieve assembly.  In this scenario, 

the robot is attached to ground and 

the forces applied to one element 

are not equal and opposite to the 

forces applied to the other.  

Consequently, multiple manipulators are required to individually identify the bias 

for each element and perform assembly. 

 

The accessible space for an axially constrained connector can be approximated 

as a plane for small deflections.  When connector and receptacle are each 

attached to an axially constrained longeron the resultant assembly space is the 

intersection of the respective planes, 

a line, as shown in figure 9.3.  The 

need to move both elements 

requires the identification of biases 

for each beam.  This motivates the 

use of two force/torque sensors, 

referred to here as dual manipulator 

assembly. 

 

As in the previous experiment, the 

axial stiffness associated with these 

elements is not emulated and the 

beam is allowed to comply along its 

Figure 9.2 – In some assembly scenarios 

manipulating a single element does not 

ensure access to the receptacle position. 

Ground 

Ground Manipulator 

Directions  

of Freedom 

Unreachable 

Goal 

Longeron 

Intersection of 

Accessible Planes 

Longeron 

Figure 9.3 – The space where connector 

and receptacle may be joined is the line 

describing the intersection of the 

accessible planes. 
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axis.  This constrains the beam to a plane as with the true bias configuration, but 

does not rigidly attach the manipulator to the world frame.  Although this 

approach yields a wholly different set of biases the concept and many of the 

lessons are directly applicable to the actual scenario. 

 

9.2 Assumptions 

 

All of the assumptions presented in the previous chapter regarding bending 

beams apply to both of the beams in this experiment. 

 

In addition it is assumed that: 

 

• The planes that describe the 

accessible space for each of the 

beams are orthogonal.  The 

configurations of the experimental bias 

sources prevent changing the angle 

between the planes about the line of 

intersection.  (Figure 9.4)  Thus, 

misalignment of the connector and 

receptacle about this axis can not be 

compensated for. 

 

9.3 Model 

 

The linear model used in the previous chapter is applied to both beams in the 

following experiment.  This approach allows the individual identification of the 

parameters for each of the beams.  Thus no assumptions need be made 

regarding similarity of beams.   

 

Accessible 

Planes 

Line of 

Intersection 

Figure 9.4 – The experimental setup 

mandates that the accessible planes 

remain perpendicular. 
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9.4 Experimental Setup  

 

9.4.1 Configuration 

The configuration for the dual manipulator beam bias experiment is shown in 

figure 9.5.  Experiments are performed using two seven degree of freedom 

manipulators each operating in a three dimensional space.  The receptacle is 

attached to the second manipulator, allowing active motion to accommodate for 

misalignment. 

Connector 

Receptacle 

Vertical Beam 

Horizontal Beam 

Force Application 

Point 

Figure 9.5 – Dual manipulator experimental 

configuration. (Force application point for horizontal 

beam is beyond the field of view.) 

Manipulator 
Manipulator 
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The bias elements contact the world frame through roller supports, the position of 

which are adjustable in both the x and y axes of the beams. 

 

9.4.2 Bias Source 

The bias sources for these experiments are two 10 mm diameter aluminum 

beams.  The beams are clamped directly to the connector (and receptacle) at 

one end and contact the world frame through roller supports at the other end.  

Over small changes in displacement and orientation the forces and torques 

generated by the beams are approximately linear.    

 

Beam stiffness is adjusted by changing the distance from the connector to the 

point of force application.  The stiffness of the beam attached to the connector is 

modified during experiments.  The bias configurations used during tests are the 

same as those used in Experiment 2.  The stiffness of the receptacle beam is 

held constant through all experiments.   

 

9.4.3 Identification 

The same identification approach used for the previous experiment is 

implemented on each of the beams of this experiment. 

  

9.4.4 Issues 

The motivation behind the modified bias configuration extends from the 

limitations of the control bandwidth.  In order to avoid potential damage to the 

manipulator the bias configuration does not include a rigid attachment from the 

manipulator to ground. 

 

This modification changes the bias characteristics and subsequently the models 

used for emulation.  One aspect of this change is the different orientation of the 

planar workspace.  Figure 9.6 illustrates that the modified bias source operates in 
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a plane perpendicular to the 

clamped beam bias source that 

motivates this experiment.  

More importantly, the clamped 

beam is statically indeterminate 

and is described by governing 

equations wholly different than 

those used to describe the 

determinate cantilever case.  

 

The bending beam bias sources 

are configured in such a way as 

to limit motion to a plane.  As a 

result the completed assembly 

must fall on a line defined by the intersection of these two planes.  Moreover, in 

order to complete an assembly the orientation between the connector and 

receptacle must be correct.  Because there is no ability to change the angle 

between the planes, the relative starting orientation of the connector and 

receptacle must equal the final orientation. 

  

The force/torque sensors used in this experiment are identical to those used in 

Experiment 2 and exhibit similar noise characteristics. 

  

9.5 Results 

9.5.1 Model Accuracy 

The bias models used in this experiment are identical to those used for the single 

manipulator experiment.  As such the models were not re-evaluated. 

 

Clamped Beam 

Accessible Plane 

Modified Bias Source 

Accessible Plane 

Figure 9.6 – The modified bias source 

used for this experiment has an 

accessible plane perpendicular to that of 

the clamped beam that motivates the 

experiment. 
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9.5.2 Gentle Assembly 

Manipulator control for this 

experiment is conducted in a 

slightly different manner from the 

previous two experiments.  Prior to 

contact, guarded motion is 

performed by both manipulators.  

Both are allowed to advance so 

that the bias estimators share the 

error accumulated by moving.  

Subsequent to contact the 

available degrees of freedom are 

divided between the two 

manipulators.  (Figure 9.7)  Thus, 

commands for translation in x and z and rotation about y are sent to one 

manipulator while translation in y and rotation about x are sent to the other.  This 

approach simplifies the control code and prevents accidental motion of 

constrained axes. 

 

The error maps used for the previous experiment are assumed to be directly 

applicable in this case.  For this reason the maps were not reevaluated for the 

Model Accuracy section and the estimates of compensated and uncompensated 

minimum necessary force are the same as those discussed in the Gentle 

Assembly section of Chapter 8 – Experiment 2. 

 

Twenty five tests are performed to quantify the efficacy of the proposed 

approach.  The starting orientation and position of the connector and receptacle 

are modified between tests.  The starting position of the connector is offset by ± 

0.01 m in the x direction, - 0.01 m in the z direction and ± 5 degrees relative to 

the nominal starting position.   The starting position of the receptacle is offset by 

± 0.01 m in the y direction and +0.01 m in the z direction. 

Figure 9.7 – Available degrees of 

freedom are divided between the two 
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The approach has a 96% success rate over the test set, failing once out of the 25 

tests performed.  This failure is due to the incomplete mating of the connector 

and receptacle as a result of connector jamming.  The failed attempt was the 3rd 

test in the series, the starting position was offset by approximately +0.005 m in x, 

-0.005 m in y and +5 degrees about y.  Subsequent tests at the same starting 

position completed successfully. 

 

9.6 Traditional Approach 

 

The traditional approach tests performed for experiment 2 are considered directly 

applicable to this experiment and are not repeated. 
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Chapter 10 

Experiment 3 – Assembly Under Independent 

Pendulum Bias 

 

 

 

 

 

 

 

 

10.1 Motivation 

 

The transport of a flexible beam results in beam oscillation.  Thin walled 

longerons are stiff in the axial direction but flex readily under perpendicular loads.  

Manipulation and transport of such elements prior to connection can excite 

dynamics and yield harmonic oscillation with appreciable amplitude. 

 

Longerons for space applications are characterized by lightweight, thin walled 

structure with relatively massive connectors at either end.  These characteristics 

are best emulated by a complete dynamic model which is discussed in chapter 

11.   

 

A simpler approach is to assume that the longeron is well emulated by a single 

degree of freedom, torsional mass-spring-damper system.  (Figure 10.1)  This 
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system is emulated in the laboratory by a 

pendulum.  This approach allows the 

application of well understood equations of 

harmonic motion while exploiting the effects of 

gravity to provide a simple and uniform 

torsional spring.  

 

10.2 Assumptions 

 

It is assumed that: 

 

• Pendulum motion is independent of 

manipulator motion and pendulum state is 

entirely a function of the temporal domain.  

This assumption allows the simplified 

treatment of pendulums and avoids full dynamic modeling.  It is only 

applicable if the direction of motion of the manipulator is orthogonal to the 

plane of oscillation or if the magnitudes of the accelerations from manipulator 

motion are small enough as to be considered negligible.  

 

• Connector and receptacle are properly oriented and all error stems from 

position uncertainty.  This assumption further simplifies the treatment of the 

dynamic system, eliminating the need to transform wrenches into alternate 

coordinate frames. 

 

• The pendulum oscillates in a plane.  The model is not sufficient to emulate 

wrenches generated by oscillation in three-space. 

 

• The coefficient of viscous damping is sufficiently small as to be negligible.  

This allows the asymptotic decrease in amplitude of the forces to be ignored 

Ground 

Spring 

Damper 

Mass 

Figure 10.1 – A single degree 

of freedom, torsional mass-

spring-damper system. 
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over the time span under consideration.  Addition of a damping term is 

possible but not considered for this experiment. 

 

• The duration of pendulum oscillation is long enough to both learn the wrench 

emulation parameters and perform assembly.  This assumption ensures that 

the bias wrenches will remain interesting over the entire assembly process. 

 

• The angle through which the pendulum swings is sufficiently small that small 

angle approximations remain applicable.  This assumption enables the 

linearization of sinusoid terms for small 

angles. 

  

10.3 Model 

 

The configuration of the pendulum for this 

experiment is shown in figure 10.2.  Due to the 

assumption of independence, the beam 

oscillation can be modeled as a function of time 

only.  This means that bias wrenches are 

harmonic functions and allows the use of 

equations that describe harmonic oscillation to 

emulate the bias wrenches. 

 

The assumptions constraining the oscillation to a 

plane and precluding changes in connector 

orientation allow the bias to be modeled as only 

two forces.  The equation of motion for the 

pendulum is shown in equation 1. 

 

0sin2 =⋅+ θθ mglml &&      Eq. 1 

Connector 

Receptacle 

Manipulator 

Ground 

Pendulum 

Bob 

g 

Figure 10.2 – Pendulum 

model and experimental 

configuration. 
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Where m is the mass of the pendulum, l is the length of the pendulum arm and g 

is the acceleration due to gravity.  If the pendulum angle remains small the sine 

of theta is approximately equal to theta.  By substituting and rearranging, 

equation 1 can be approximated as: 

 

02 ≈+ θωθ n
&&        Eq. 2 

 

Where ωn is equal to 
l

g .  The solution of equation 2 is presented in equation 

3. 

)sin()( φωθ +⋅= tAt n      Eq. 3 

 

Where A is the amplitude of the 

oscillation and φ is the phase shift.  

The point at which the time equals 

zero can be set arbitrarily and is 

chosen such that φ  equals zero.   

 

The force diagram for the pendulum is 

shown in figure 10.3.  Equation 4 

describes the force applied to the 

pendulum bob in the radial direction.  

This force is reacted on the connector 

and yields the bias forces for the 

system. 

 
2cos θθ &mlmgFr +=   Eq. 4 

 

 

Mg 

Mg sin θ 
Mg cos θ 

Mg cos θ 

(Mg cos θ) sin θ 

(Mg cos θ) cos θ 

θ 

Figure 10.3 – Pendulum force diagram. 
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Where the first term is due to gravity and the second stems from radial 

acceleration.  Thus the forces in the x and z directions are: 

 

θsinrx FF =       Eq. 5 

θcosrz FF =       Eq. 6 

 

Taking the derivative of equation 3 and expanding equations 5 and 6 the full 

expressions for the forces in x and z can be determined. 

 

( ) ( )( ) ( ))sin(sincos)sin(cos 22
tAtAtAmgF nnnx ωωω ⋅+⋅=    Eq. 7 

( ) ( )( ) ( ))sin(coscos)sin(cos 22
tAtAtAmgF nnnz ωωω ⋅+⋅=    Eq. 8 

 

Again drawing on the small angle approximation the sine of theta is replace by 

theta and the cosine of theta is replace by unity. 

 

( ) ( )( )ttAtAmgF nnnx ωωω sincos)sin( 23+⋅≈      Eq. 9 

( )( )1cos22 +≈ tAmgF nz ω       Eq. 10 

 

The term ( ) ( )ttA nn ωω sincos23  in equation 9 is much less than ( )tA nωsin⋅ , thus the 

force in the x direction can be approximated as shown in equation 11.  Also, 

( )tnω2cos  can be represented as ( )tnω2cos
2

1

2

1
+  and the force in the z direction 

can be estimated as shown in equation 12.  

 

)sin( tmgAF nx ω⋅≈       Eq. 11 
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Thus, the forces in the x and z directions can be estimated as simple time 

dependent sinusoids with an unknown amplitude, period and offset. 

 

10.4 Experimental Setup  

 

10.4.1 Configuration 

The pendulum experimental configuration is 

shown in figure 10.4.  Experiments are 

performed using a seven degree of freedom 

manipulator operating in a two dimensional 

space.  The receptacle is attached to an 

adjustable receptacle mount which is 

attached to the world frame.  Unlike previous 

experiments the bias element does not 

contact the world frame. 

 

10.4.2 Bias Source 

The bias source for these experiments is a 3 kilogram aluminum disk attached to 

a rigid 1.8 m pendulum arm.  The pendulum is attached to the connector at one 

end and allowed to swing freely.  The amplitude of the oscillation is modified with 

every test. 

 

10.4.3 Identification 

It is assumed that the amplitude of oscillation, period, phase shift, and force 

offset are all unknown.  The period of the sinusoid is determined by identifying 

four local maxima and determining the average time between them.  The same 

maxima are used to determine the amplitude of the sinusoid.  Setting the value of 

time to equal zero at the first maxima implies that the sinusoid is cosine and the 

phase shift is zero.  The force offset is determined by calculating the average 

Connector 

Receptacle 

Manipulator 

Pendulum 

Bob 

Pendulum 

Arm 

Figure 10.4 – Pendulum 

experimental configuration. 
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value of over the three periods.  This approach is applied to each of the force 

axes individually and no relationship between periods or amplitudes is assumed. 

 

10.4.4 Issues 

As in the other experiments, the control bandwidth of the manipulator mandates 

relatively slow assembly speeds.  In addition, the 50 Hz control bandwidth limits 

control accuracy.   

 

The oscillation of the pendulum exerts a sinusoidal force on the manipulator.  

The PD joint controller is unable to compensate for this force and the control 

bandwidth is too slow to implement a better performing controller.  Thus the 

pendulum incites an oscillation in the manipulator with amplitude of 

approximately 3 mm.  

 

The force/torque sensor used in these experiments is the same as those used for 

experiments 2 and 2b. 

 

10.5 Results 

 

10.5.1 Model Accuracy 

 

Model accuracy of the independent pendulum can be determined from assembly 

data.  Figure 10.5 shows the signal, estimate and error during a sample 

assembly.  Prior to contact at 27 seconds, the divergence of the model from the 

real system is evident from the steady increase in the error amplitude.  This trend 

continues throughout the contact portion of the assembly. 

 

The error signal is a result of errors in multiple parameters.  Part of the error is a 

product of the unmodeled effects of damping.  The real system has a small 

damping constant that has an appreciable effect on the amplitude of the real 



120 

signal over the time span.  Figure 10.6 shows the reduction in the error signal 

when damping is added to the model.  The figure illustrates damping has a 

significant effect over the timeframe examined.   

 

Careful inspection of the data from figure 10.5 shows that the period error is 

approximately 0.13%.  Although this value is very small, it also has an 

Figure 10.5 – Fz Actual, Fz Estimated and 

Fz Error. 

Figure 10.6 – Change in error signal when 

damping parameter is more accurate. 

Figure 10.7 – Change in error signal when 

period parameter is more accurate. 

Figure 10.8 – Change in error signal when 

offset parameter is more accurate. 
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appreciable effect on the error.  

Accounting for the contribution of 

period error reduces the error 

signal as shown in figure 10.7.   

 

The average value of the error over 

the first eight periods of the error 

signal is 0.0534 N.  This value 

indicates that the estimate of force 

offset also displays error as shown 

in figure 10.8.  The phase shift of 

the signal is small enough that it is 

obscured by the sensor noise and is not estimated for this experiment.   

 

Removing the effects of all of the parameter errors from the error signal enables 

the visualization of the effects of those errors.  (Figure 10.9)  The parameter error 

estimates presented in this section are not perfect due to the effects of sensor 

noise, thus the error signal presented in the figure is not zero. 

 

10.5.2 Gentle Assembly 

The actual and estimated Fz 

during force guided assembly 

under pendulum bias are shown in 

figure 10.10.  The assembly is 

again divided into three parts 

where events Alpha and Beta 

delineate transitions.  The graph 

shows assembly from prior to 

contact to flush connection.  Prior 

to first contact (Event Alpha) 

Figure 10.9 – Change in error signal when 

all parameters are more accurate. 

Figure 10.10 – Actual and estimated Fz 

during force guided assembly under 

pendulum bias. 
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guarded motion is performed.  Between events Alpha and Beta the connector 

advances, adjusting for misalignment in the y axis.  At event Beta the connector 

and receptacle are correctly mated.  Subsequent data shows that the connector 

advances until a minimum z axis force is established.  

 

Event Alpha, the transition from 

guarded motion to sliding contact, 

is show in figure 10.11.  Left of the 

event, the forces exerted on the 

connector are due solely to bias, 

consequently the difference 

between actual and estimated bias 

yields the estimator error.  At the 

point of contact the estimator error 

is approximately 0.3 N and 

increasing.  After contact the data 

shows that the connector 

periodically contacts the receptacle until event Beta.  

 

Event Beta, the transition from 

sliding contact to flush contact, is 

shown in figure 10.12.  Due to the 

manipulator oscillations discussed 

in the Experimental Setup - Issues 

section of this chapter, there is no 

exact point of transition.  Rather, as 

the manipulator oscillates, the 

connector repeatedly makes and 

breaks contact.  The points labeled 

A show that as the pendulum 

swings forward contact is 

Figure 10.11 – Zoomed in view of event 

Alpha. 
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Figure 10.12 – Zoomed in view of event 

Beta. 
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established and the actual force is less than that expected.  At the same time the 

points labeled B show that as the pendulum swings backward contact is broken 

and the actual force is consistent with the estimate.  Also evident in this figure is 

the amplitude error that stems from damping and is discussed in the Model 

Accuracy portion of this chapter.  The estimation error due to amplitude error is 

seen at the points labeled C.  The divergence of the actual value from the 

estimated value is a result of contact wrenches. 

 

A portion of the actual and 

estimated forces in the x direction 

are shown in figure 10.13.  The 

signal to noise ratio of this data is 

approaching unity; consequently 

the estimator incorrectly identifies 

the system parameters and the 

estimation error is greater than the 

signal amplitude.  This failure 

illustrates the brittle nature of the 

approach implemented and 

advocates a more robust identification approach.  In this case, using only the 

force offset to estimate the bias force would have yielded better results than 

achieved. 

 

Unlike previous tests, a minimum z axis force is not needed to disambiguate 

contact points.  This is due to the assumption that the orientation of the 

connector is known.  For this reason the comparison of compensated and 

uncompensated minimum necessary force is not conducted for this experiment.  

However, a minimum force is still needed to establish when flush and stable 

contact has been established. 

 

10.13 – Sample of actual and estimated 

forces in the x direction. 
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A set of 15 tests are performed to quantify the efficacy of the proposed model 

and approach.  In each test the starting position relative to the receptacle is 

changed.  The starting position is offset by ± 0.015 m in the x direction and - 0.02 

m in the z direction relative to the nominal starting position.   

 

The approach has a 100% success rate over the test set, not failing during the 15 

tests performed.   

 

10.6 Traditional Approach 

 

In the traditional approach the manipulator moves the connector directly to the 

receptacle staging point.  Wrench data is gathered prior to engaging the 

receptacle so that the force offset can be determined for each axis.  This data is 

used to tare the sensor.  Using the force offset is, in itself, a form of bias 

compensation and the argument could be made that taring the sensor with the 

bias wrenches at a particular instant in time is a better representation of the 

traditional approach.  Regardless, the chosen approach is more robust and has a 

better chance of completing assembly. 

 

A series of ten tests are performed to verify the failure of this approach.  The 

starting position is offset by ± 0.015 m in the y direction and - 0.02 m in the z 

direction relative to the nominal starting position.   

 

The traditional approach fails 100% of the time 

when under pendulum bias.  As the bias 

oscillates about the force offset the controller 

transitions between several different states.  

Figure 10.14 illustrates an example scenario in 

which a pendulum swings from region 1 to 

region 4.  During the swing the control 

Region Control Command 

1 Retract – Speed 2 

2 Retract – Speed 1 

3 Hold Position 

4 Advance – Speed 1 

Table 10.1 – Different control 

commands  are issued in each 

region. 
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commands transition as shown in table 

10.1.  This pattern reverses as the 

pendulum returns to the initial region.  

As long as the pendulum oscillates, 

the control commands will also 

transition.  In the presence of damping, 

the amplitude of oscillation decreases 

over time, incrementally eliminating 

control commands until the advance 

command is the only command issued. 

 

The command transitions described in 

the example occur in the actual 

experiments using the traditional 

approach.   Conflicting commands are 

issued in a periodic manner, 

preventing the efficient and deliberate 

contact outlined in the Success Criteria 

section of chapter 6 – Experimental 

Introduction.  Although the traditional approach does on occasion result in flush 

contact, assembly times are nearly twice as long because control commands 

oscillate between the hold and advance commands.  This command oscillation 

and extended duration assembly disqualify even flush connections from being 

counted as successful.   

1. 

2. 
3 4. 

Figure 10.14 – If bias is not 

compensated the motion of the 

pendulum creates fictitious contact 

commands.  
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Chapter 11 

Experiment 4 – Assembly Under Spatial-Temporal 

Pendulum Bias 

 

 

 

 

 

 

 

 

11.1 Motivation 

 

Gossamer and low mass construction components, prevalent in the space 

environment, often exhibit flexibility in one or more axes.  The application of 

loads during transport or manipulation can excite harmonic oscillation, a form of 

bias.  The simplified model presented in chapter 10 – Experiment 3 does not 

account for the changes in oscillation due to acceleration of the component. 

 

Accounting for these accelerations relaxes a significant assumption, that 

accelerations are small enough or perpendicular to the plane of oscillation such 

that the oscillating body may be considered independent.  Introducing a model 

that accounts for the state of the bias source enables the application of this 

approach to a more general class of components. 
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11.2 Assumptions 

 

It is assumed that: 

• The angles through which 

pendulums swing is sufficiently 

small that small angle 

approximations remain 

applicable.  This assumption 

enables the linearization of 

sinusoid terms for small angles. 

 

• Pendulums swinging at small 

angles may be approximated as 

two masses connected by 

springs and dampers vibrating 

along a line.  This assumption 

allows the application of a single-

input single-output adaptive 

observer.  Where the system 

input is the applied force and the 

output is position of the 

connector.  (Figure 11.1) 

 

• The duration of pendulum 

oscillation is long enough to both 

identify parameters and perform 

assembly.  This assumption 

ensures that the bias wrenches 

will remain interesting over the 

work time span.  When damping 

Applied Force 

M2 Motion 

M1 (Connector) 

M2 (Bob) 

g 

M2 (Bob) M1 (Connector) 

Applied Force M2 Motion 

Figure 11.1 – Pendulums swinging at 

small angles can be modeled as two 

masses connected by a spring and 

damper. 

Damper  

 

Spring 
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is present the bias becomes less and less significant as the assembly 

progresses. 

11.3 Model 

 

The configuration of the pendulum for this 

experiment is identical to the configuration from 

the previous chapter and is shown in figure 11.2.  

The oscillation of the pendulum is constrained to 

a single plane, this causes the pendulum bob to 

travel along a nearly straight curve and allows 

the assumption regarding motion along a straight 

line. 

 

The dynamic equations of motion for a pendulum 

with an attachment point that may move in the z 

direction and a viscous damper are:  (equation 

1) 

 

θθθθ cossin 122

2

2 lzmglmblm &&&&& −=⋅−−  Eq. 1 

 

Where m2 is the mass of the pendulum bob, l is 

the length of the pendulum arm, b is the 

coefficient of viscous damping, g is the acceleration due to gravity, θ is the angle 

between the gravity vector and the pendulum arm, and z1 is the horizontal 

displacement of the connector.  Rearranging yields: 

 

 θθ
θ

θ cossin 1

2

2 l

z

l

g

lm

b &&&
&& −⋅+=     Eq. 2 

 

Connector 

Receptacle 

Manipulator 

Ground 

Pendulum 

Bob 

g 

Figure 11.2 – Pendulum 

model and experimental 

configuration. 
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Figure 11.3 – Pendulum geometry. 

lX 

Z 

θ 

Given the geometry illustrated in figure 11.3 and 

equations 3 through 6, equation 2 may be 

simplified.  (equation 7) 
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Given that at small angles of θ the value of x may be approximated as L, 

equation 7 is solved for the acceleration of the pendulum bob in z coordinates. 

(equation 8) 
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Determining the equations of motion for the connector, m1, requires the 

derivation of the forces applied by the bob to the connector.  (equation 9) 

 

lmzmgmFR

2

2122 sincos θθθ &&& ++=     Eq. 9 

 

Given the radial force, FR, the equation of motion for the connector in mixed 

coordinates is: (equation 10) 

 

θsin11 RA FFzm +=&&      Eq. 10 
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Where FA is the force applied by the manipulator.  Expanding and simplifying 

using equations 3 though 6 yields: (equation 11) 

 

2

2

2

2

2

12

2

2
11

x

zzm

l

zzm

l

gzxm
Fzm A

&&&
&& −++=    Eq. 11 

 

Solving for the acceleration of the connector and simplifying: (equation 12) 
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Applying the small angle assumption where 1≈
l

x  yields: (equation 13) 

 

2

2

2

1

2

2

2

2

2

1

2

2

2

2
1

1
zmxm

zzm

zmlm

gzxm

l

zm
m

F
z A

−
−

−
+

+

=
&

&&    Eq. 13 

 

If m1 is greater than or approximately equal to m2, the term 2

2 zm  becomes 

negligible, leading to: (equation 14) 
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The final terms on equations 2 and 14 are the last remaining non-linear terms in 

the equations of motion.  If the acceleration and subsequently the velocity 

remains small, these terms also approach zero. 

 

Thus, the equations of motion for a pendulum can be represented as shown in 

equations 15 and 16 if it: 1) has a driven attachment point that moves along the z 
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axis, 2) exhibits damping, 3) swings through small angles, 4) has a connector 

mass, m1, that is greater than or approximately equal to the bob mass, m2, and 5) 

accelerates slowly. 
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A pendulum under the given assumptions can be approximated by a simple 

fourth order adaptive observer and may be represented as a mass-spring-

damper system evolving along a line. 

 

11.4 Experimental Setup  

 

11.4.1 Configuration 

The pendulum experimental configuration is 

shown in figure 11.4.  Experiments are 

performed using a five degree of freedom 

manipulator operating in a one dimensional 

space.  The receptacle is attached to an 

adjustable receptacle mount which is 

attached to the world frame. 

 

11.4.2 Bias Source 

The bias source for these experiments is a 

0.95 kilogram bob attached to a rigid 0.57 

m pendulum arm.  The pendulum is 

attached to the connector at one end and 

allowed to swing freely.  The amplitude of the oscillation is modified with every 

Pendulum 

Bob 

Connector 

Receptacle 

Test Stand 

Manipulator 

Pendulum 

Arm 

Figure 11.4 – Pendulum experimental 

configuration. 
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test.  The mass of the connector and associated hardware is approximately 0.5 

kilograms. 

 

11.4.3 Identification 

Identification of the spatial-temporal domain pendulum requires the 

characterization of model parameters and the identification of the pendulum 

state.  A simple fourth order adaptive observer [13] is implemented for this 

purpose.  The adaptive observer is represented in a canonical form that 

simplifies the implementation of the observer.  Equations 17 to 23 describe the 

adaptive observer. 
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erya ⋅⋅−= 11
ˆ γ      Eq. 18 

erxa iii ⋅⋅−= γˆ      Eq. 19 

erub ⋅⋅−= 11
ˆ δ       Eq. 20 

erb iii ⋅⋅−= ωδ ˆˆ      Eq. 21 

urF
T ⋅+⋅= ωω ˆ&̂      Eq. 22 

( )TTu ωω ˆ,ˆ =       Eq. 23 

Where in an Nth order system: 

the hat symbol indicates an estimate, 

u is the scalar input corresponding to applied force,  

y is the scalar output corresponding to connector position, 

x is the internal state of the observer and is and (N-1) vector, 

a and b are parameter vectors that are each (N) vectors, 

γ , λ  and δ  are adaptive gains, 

r is an (N-1) vector, 

F is an (N-1)x(N-1) stable matrix and the pair (rT, F) is observable. 
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This observer is globally asymptotically stable, guaranteeing that the system 

converges as time approaches infinity.  A sinusoidal input is added to the 

transport vector to realize parameter convergence during transport. 

 

11.4.4 Issues 

As is discussed in experiment 1, the sensor used in this setup is constrained by a 

relatively slow control bandwidth of 50 Hz and an analog output sensor that is 

particularly susceptible to external sources of noise. 

  

11.5 Results 

 

11.5.1 Simulation 

A simulation of the pendulum is 

created to show that a single-

input single-output fourth order 

adaptive observer is capable of 

emulating pendulum motion at 

small angles.  Equations 7 and 

13 are used to calculate the 

forces applied to the connector 

and bob respectively. 

 

The values are set such that 

they emulate the real system as 

well as possible.  The masses 

m1 and m2 are set to 0.5 kg and 

0.95 kg respectively, l is 0.57 

m, and b is set to 0.01 such that 

it is essentially negligible.  
Figure 11.5 – Simulated parameter estimates. 
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Figure 11.7 – Actual system position and 

adaptive observer’s estimate of position. 

Figure 11.5 illustrates the 

parameter estimates of the system 

as a function of time.  The position 

estimation error is shown in figure 

11.6.  The parameter values are 

nearly constant at 30 seconds, with 

small adjustments still being made 

for the low frequency components 

of the signal.  After eight seconds 

the position estimation error 

remains below ± 0.0003 m.  These 

graphs show that the fourth order 

adaptive observer is capable of emulating pendulum motion for small angles. 

 

11.5.2 Experiment Failure  

The same adaptive observer is implemented on the real manipulator and 

pendulum.  Although the parameters converge to approximately constant values 

in a time frame comparable to that of the simulation, they proceed to oscillate in 

the vicinity of their respective values (Figure 11.8).  Figure 11.7 illustrates the 

actual output, estimated output 

and error of a pendulum 

experiment after convergence of 

the observer.  Failure of the 

system to settle and accurately 

emulate the position is attributed 

to two aspects of the 

experimental setup: sensor noise 

and sensor bandwidth. 

  

Excessive sensor noise obscures 

Figure 11.6 – Simulated position 

estimation error. 



136 

Figure 11.8 – Parameter estimates of the 

real system oscillate in the vicinity of their 

true values . 

the force input.  The adaptive 

observer can not distinguish 

between signal and noise thus 

it attempts to determine 

parameter and state values that 

account for every spike and 

trough in a data stream.  The 

magnitude of the sensor noise 

is sufficient to prevent 

emulation of fine motions like 

those in the experiment. 

 

The relatively low sensing 

bandwidth, which limits the 

observer update frequency, 

prevents the accurate 

emulation of some signals.  The 

theoretical minimum sampling 

frequency must be twice that of 

the highest frequency 

component of the sensed 

signal. (Nyquist)  Sampling 

frequencies on the order of ten times the highest frequency component are 

generally accepted as sufficient.  Thus, an integrator with a 50 Hz bandwidth 

should be able to emulate signals on the order of 5 Hz.  In general, adaptive 

observers require the ability to emulate signals approximately ten times faster 

than the highest frequency component of an input in order to efficiently converge.  

Thus given a 50 Hz sensing and control bandwidth, a 5 Hz signal may be 

accurately emulated and a 0.5 Hz signal may be accurately learned. 
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The highest frequency components of the signals considered in this experiment 

are on the order of 0.7 Hz, exceeding (although barely) the 0.5 Hz goal.  It is 

believed that the 50 Hz bandwidth of the system in conjunction with sensor noise 

account for the adaptive observer’s failure to converge. 

 

11.5.3 Obstacles to Realization 

The failure of the adaptive observer to converge is a result of the experimental 

equipment available.  A sensor with less noise and a faster update frequency 

would likely enable the timely convergence of the adaptive observer.  However, 

this would not have resulted in the successful completion of this experiment. 

 

Two significant obstacles must be overcome if the adaptive observer approach to 

bias compensation is to be realized.  The determination of forces from a state 

model is a significant challenge that does not yet have a sufficient solution.  Also, 

the rate of parameter convergence must increase for this approach to become 

useful. 

 

Adaptive observers simultaneously identify the parameters and the state of 

dynamic systems.  The observer takes the forces applied by the manipulator as 

input and adapts based on the output motion of the connector.  When the system 

parameters are stable and no longer change, adaptation ends and the position 

and velocity response of the system may be emulated by providing the input 

force.  This research seeks the opposite capability, to emulate the forces that 

generate the known motion of the system. 

 

One approach to achieving this capability is to assume that the mass of the 

manipulated component is much less than that of the adjacent mass in the chain.  

For example, in the case of the pendulum, the mass of the connector must be 

much less than the mass of the bob.  If this assumption holds then the forces 

applied to the manipulator (and conversely by the manipulator) may be 

approximated as a function of the state of the adjacent mass.  For example, if the 
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adjacent mass is connected to the manipulated mass by a spring and damper, 

knowing the position and velocity with respect to the manipulated mass enables 

estimation of the bias wrench.   

 

This assumption imposes a significant constraint on biased components and in 

most situations will not be the case.  It also conflicts with the requirement for 

linear representation presented in the Model section of this chapter which states 

that m1 should be greater than or approximately equal to m2. Thus this approach 

is extremely limited in its applicability and an alternative must be found if the 

adaptive observer approach to bias compensation is to become a reality. 

 

Another complication associated with this approach is the determination of the 

state of the adjacent mass.  Adaptive observers learn the parameters and state 

of a system in a representation other than that of the real system.  These 

representations share the same input and output as the real system but the 

internal states are different.  Thus, transforming the internal states of the 

observer to the real system’s representation is necessary.  Determining this 

transformation requires the solution of a set of simultaneous equations.  There 

exist circumstances in which the number of unknowns exceeds the number of 

equations, preventing the determination of the transformation and, subsequently, 

the state of the adjacent mass in the real representation. 

 

For the bias compensation approach to be practically useful the time necessary 

to achieve parameter convergence must be small enough that other approaches 

are less desirable.  Approaches like the active damping of vibration or slow 

manipulation to avoid excitation are viable alternatives if the bias compensation 

approach is too time consuming.   

 

Examining the results of the simulation presented illustrates that the simplest 

system, a single input single output fourth order system with no measurement 

noise, exhibits convergence times on the order of 30 seconds.  Such 
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convergence rates already approach the limits of usefulness for real world 

application.  But in real applications convergence rates are significantly longer 

due to sensor noise, multiple inputs/outputs and systems with more than two 

masses.   

 

The combination of incomplete state vectors, unrealistically restrictive 

assumptions and excessively long parameter modeling durations indicates that 

the adaptive observer approach is not the best solution for emulating spatial-

temporal biases.  Alternative approaches should be pursued. 

 

11.6 Traditional Approach 

 

The traditional approach tests performed for experiment 3 are considered directly 

applicable to this experiment and are not repeated. 
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Chapter 12 

Contributions and Conclusions 

 

 

 

 

 

 

 

 

The research presented in this dissertation makes four major contributions to the 

discipline of autonomous robotic assembly. 

 

1. This research contributes a method for force guided assembly under bias 

that enables assemblies that would otherwise be impossible. 

2. This research formulates the bias number, B, which enables quantitative 

characterization of the extent to which a system is biased.  

3. This research shows that simple bias models are useful for emulating 

complex systems for assembly under bias. 

4. This research presents a methodology that can realize meaningful 

reductions in the forces required for assembly under bias when compared 

to forces incurred during uncompensated assembly. 
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This research also leads to two significant conclusions regarding autonomous 

robotic assembly under bias. 

 

1. Multiple obstacles must be overcome in order to realize adaptive 

observation for the emulation of spatial-temporal domain biases. 

2. The performance of force guided assembly under bias is dependent on 

connector dimensions. 

 

12.1 Contributions 

 

This research contributes a method for force guided assembly under bias 

that enables assemblies that would otherwise be impossible. 

 

Force guided assembly utilizes contact wrenches to determine contact state and 

to issue control commands.  When a component experiences bias the 

manipulator senses the sum of the forces from bias and contact.  For example, 

the forces sensed when pumping gas not only stem from the insertion of the 

nozzle into the car but also the stretching and flexure of the hose.  The inability to 

distinguish the forces from contact prevents accurate determination of contact 

state.  Traditional approaches to force guided assembly can not gently connect 

components in the presence of bias. 

 

Bias compensated force guided assembly models the contribution of biases prior 

to contact.  In the example, a model is generated that accurately predicts the 

forces from the stretching of the hose.  During contact bias wrenches are 

emulated and subtracted from the sensed wrench providing an estimate of 

contact wrenches.  This estimate is then used to determine contact state and 

issue control commands.  

 

This research creates the bias number, B, which enables quantitative 

characterization of the extent to which a system is biased.  
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Not all systems are biased to the same degree.  Consider, for example, plugging 

a heavy power cable and a light cord into respective receptacles.  One cable is 

massive, stiff, and stretched taught when near the receptacle, the other is 

lightweight, flexible and slack.  The biases (and the mating forces) generated by 

these sources are very different.  In the case of the lightweight cable, the biases 

may be low enough that compensation isn’t necessary but the biases from the 

stiffer, heavier cable almost certainly call for compensation.   

 

The need for bias compensation is determined by evaluating the bias number.  

This quantitative measure of biased systems is based on the magnitude of bias 

change and the physical constraints of the connector.  Values greater than or 

equal to unity indicate that bias compensation is necessary.  Rearranged, the 

bias number yields the minimum necessary force, the lowest force that may be 

applied to reliably distinguish contact from bias. 

 

This research shows that simple bias models are useful for emulating 

complex systems for assembly under bias. 

 

Gentle assembly of biased systems does not require models that perfectly 

emulate bias.  The equation for bias number shows that larger emulation errors 

may be compensated for by larger assembly forces.  Thus, the more gentle the 

desired assembly, the more accurate the models must be.   

 

Establishing the force and torque requirements of an assembly enables the 

determination of acceptable force and torque error.  This provides a clear limit to 

how well a model must emulate a real system. 

 

Consider the cable model presented in experiment 1.  A two tier approach is 

adopted in which gross force estimates are fine tuned by locally accurate linear 
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models of error.  In cases where slightly larger contact forces are acceptable, the 

gross estimate tier may be sufficient to perform force guided assembly. 

 

This research presents a methodology that can realize meaningful 

reductions in the forces required for assembly under bias when compared 

to forces incurred during uncompensated assembly. 

 

The effects of bias may be overcome by exerting enough force to disambiguate 

the effects of bias from contact forces.  Consider for example plugging an 

extension cord into a socket, the plug experiences biases (though possibly small) 

from the cord.  If forcefully pushing the plug into the socket creates forces that 

are ten times larger than the largest biases expected from the cord, then the 

mating forces are likely from contact. 

 

This same concept is applied to the biased systems examined in this work.  The 

amount of force needed to perform assembly without bias compensation is 

determined and compared to the force needed with compensation.  This work 

shows that reductions in force in excess of 90% are easily obtained. 

 

12.2 Conclusions 

 

Multiple obstacles must be overcome in order to realize adaptive 

observation for the emulation of spatial-temporal domain biases. 

 

Connecting a vibrating beam to a structure using force guided assembly requires 

the emulation of bias forces.  In cases where manipulator motion has an 

appreciable effect on the motion of the beam the parameters and state must be 

learned.  This research has shown that there are obstacles to implementing 

adaptive observation for the emulation of spatial-temporal domain biases.  

Incomplete state vectors, unrealistically restrictive assumptions and excessively 

long parameter modeling durations all contribute to this conclusion. 



145 

 

1. Incomplete State Vectors 

 

Physical systems are most naturally represented such that the positions and 

velocities of the masses of that system constitute its states.  Adaptive observers 

learn the parameters and states of a system in a less convenient representation 

which is governed by the form of the adaptive observer.  These representations 

share the same input and output but the internal states are different.  The 

approach presented in this research advocates the transformation of the internal 

states of the adaptive observer to the representation where positions and 

velocities constitute the individual states.  This transformation is performed with 

the goal of emulating forces based on the positions and velocities of the internal 

components.  Determining this transformation is not always possible and, 

consequently, either is the emulation of bias using this approach. 

 

2. Unrealistically Restrictive Assumptions 

 

When emulating the forces from bias, the force applied to the connector can be 

estimated by the state of the adjacent mass if the mass of the connector is small 

relative to that of the adjacent mass.  This assumption places significant 

constraints on the hardware that this approach may be used on and in some 

cases directly conflicts with assumptions regarding linearity.  In many cases this 

assumption is not true and this approach is not applicable. 

 

3. Parameter Modeling Durations 

 

Simulations illustrate that simple systems, for example a single input single 

output fourth order system with no measurement noise, exhibit convergence 

times in excess of 30 seconds.  Such convergence rates approach the limits of 

usefulness for real world application.  Actual implementation convergence rates 
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are significantly longer due to sensor noise, multiple inputs/outputs and more 

complex systems.   

 

The performance of force guided assembly under bias is dependant on 

connector dimensions. 

 

The forces and torques applied at contact during assembly are dependant on the 

magnitude of the modeling error and the dimensions of the connector.  As the 

distances between connector contact points become smaller, the force needed to 

impart the same contact torque increases.  Thus, larger connectors with wider 

contact point spacing yield gentler assembly than a smaller connector used for 

the same task.  
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Appendix 1 

Derivation of Overlap Force 

 

 

 

 

 

 

 

 
This appendix shows the 
derivation of the force 
needed to cause overlap of 
the error bounds of two 
adjacent contact points.  
Figure A1.1 shows the error 
bounds for two contacts that 
are distances d1 and d2 from 
the force/torque sensor.   
 
Given that the positions of 
the error bounds are: 
  

++= ereb ddd 11  

−+= 222 ereb ddd  
 
The position at which deb1 and deb2 are equal is the point of overlap.  Thus: 
 

 

−+ +=+ 2211 erer dddd      Eq. A.1 
 

Rearranging equation A.1 yields:  
 

Figure A1.1 – The error bounds for two contact 

points d1 and d2.  

X 

Z 

d1 d1+der1- d1+der1+ 

d2+der2- d2+der2+ 

F/T Sensor Contact 

Points 

Overlap 

d2 
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−+ −=− 2112 erer dddd      Eq. A.2 
 
 

Substituting the equations for der1+ and der2- from equations 4 and 5 of Chapter 5: 
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Where : 
( )

2

21 dd +
is the midpoint between the two force application points, the 

sensor to center distance (dsc), and 

( )
2

12 dd −
is the distance from the contact to the midpoint, the center 

distance (dcd). 

 

Thus the equation to determine the force at which the error bounds from two adjacent 

points overlap is: 

 

cd

scerer

d

dF
F

⋅−
=

τ
    Eq. A12 
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Appendix 2 

Sample Cable Error Map 

 

 

 

 

 

 

 

 
This appendix shows an error map for the cable bias source.  A portion of this 

map is found in Chapter 7 – Experiment 1.  Details regarding the model used to 

emulate the cable, experimental configuration and the bias source may be found 

in Chapter 7.  The bias source for these maps is configured as illustrated in figure 

7.3, with the 13 mm fiberoptic cable as the flexural element. 
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Fx, Fz and Ty at 5 degrees from the learning 

orientation. 

Fx, Fz and Ty at 0 degrees from the learning 

orientation. 
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Fx, Fz and Ty at -5 degrees from the 

learning orientation. 
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Appendix 3 

Bending Beam Error Map 

 

 

 

 

 

 

 

 
This appendix shows an error map for the bending beam bias source using the 

linear model.  A portion of this map is found in Chapter 8 – Experiment 2.  Details 

regarding the model used to emulate the cable, experimental configuration and 

the bias source may be found in Chapter 8.  The bias source for these maps is 

configured as illustrated in figure 8.1, with the distance between the contact point 

and the force application point equal to 1.52 meters and the initial deflection in 

the z axis equal to 0.25 meters. 
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Fz and Ty at 5.5 degrees from the learning 

orientation. 

 

Fz and Ty at 3.5 degrees from the learning 

orientation. 
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Fz and Ty at 1.5 degrees from the learning 

orientation. 

 

Fz and Ty at 0.0 degrees from the learning 

orientation. 
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Fz and Ty at -2.5 degrees from the learning 

orientation. 
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Appendix 4 

Lessons Learned and Future Work 

 

 

 

 

 

 

 

 

Beyond the methods, experiments, results and conclusions, this research generated 

perspectives.  The research revealed lessons that are not immediately obvious or intuitive.  

Several paths for future research have also become clear.  The goal of this appendix is to 

guide future research and help avoid pitfalls that may otherwise consume time and 

energy. 

Lessons learned 
Lessons learned in adaptive observers, connector design and the limitations of 

force/torque sensors are discussed in this section. 

Adaptive Observers 

This research embarked to apply adaptive observers to various systems without 

appreciable success.  Single-input single-output and multi-input multi-output systems of 

different orders were examined.  Several lessons were derived from this experience: 
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Convergence Time 

The viability and applicability of the approach advocated in this work decreases 

as the time required for parameter convergence increases.  The speed at which 

adaptive observers converge is directly linked to the richness of the input signal.  

There are two aspects of an input signal that are of interest.  One is how 

persistently exciting it is, this is discussed in one of the following sections.  The 

other is the period of the lowest mode of a system.  Convergence of an adaptive 

system that is characterizing an oscillation requires on the order of ten or more 

periods to attain convergence, thus if the lowest order period is N seconds, 

convergence can be expected to take at least 10•N seconds. 

 

Effects of High Adaptive Gains 

The adaptive gains in an adaptive observer are an example of variables that may 

be manipulated by the designer.  The rate of adaptation of system parameters is 

determined by the adaptive gains.  Increasing the adaptive gains beyond certain 

thresholds causes instability in the adaptive process and parameter estimates 

diverge.  However, maintaining high gains that are below the point of instability 

does not ensure correct operation of an adaptive observer.  When gains are set too 

high, adaptive observers can change the parameters to fit the local behavior of the 

signal being learned.  Thus, it may appear as though an observer has converged 

but in reality it is constantly changing parameter estimates to fit the local 

behavior.   

 

Testing for this condition is simple.  By holding current parameter values constant 

and continuing to estimate output state, output estimates will quickly diverge. 

 

Persistence of Excitation for Continuous Systems 

The application of a persistently exciting signal to a discrete plant being modeled 

by an adaptive observer ensures fast convergence of parameters to their correct 

values.  However, attempting to achieving persistence of excitation for continuous 

systems can result in protracted convergence times.  Consider, for example, a 
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bending beam.  This continuous system has an infinite number of modes.  In a 

particular assembly operation, designers may only be interested in the first N 

modes of a system, thus an adaptive observer of a suitable order is chosen.  The 

process of trying to persistently excite those N modes inevitably leads to the 

excitation of higher modes.  The presence of higher modes in the signal may be 

considered noise and prevents the timely and accurate convergence of a model.  

Thus applying a persistently exciting signal to a continuous system with the goal 

of promoting accurate and fast convergence actually impedes convergence. 

Noise sensitivity 

The presence of noise in an input signal of an adaptive observer has a significant 

and detrimental effect on parameter and estimate convergence.  The magnitude of 

this effect was greater than expected.  In the cases examined, using an analog 

output force/torque sensor, the noise prevented accurate estimation of connector 

position in all cases. 

 

Connector Design 

Examination of the equation for minimum necessary force shows that the dimensions of a 

connector have an effect on the minimum force needed for unambiguous detection of 

contact location.  These dimensions, including distance from sensor to the center of 

contact and the center distance, have opposing effects when increased.  Increasing the 

distance to the sensor increases the minimum necessary force while increasing the center 

distance decreases it.  Determining the relative effect of each of these distances is 

dependant on the particular force and torque errors anticipated.  Thus, general rules for 

connector design are not established but the adoption of a particular set of connector 

dimensions should be conducted with anticipated errors in mind. 

 

Limitations of Force / Torque Sensors 

Force/torque sensors suffer from a number of limitations that must be overcome before 

they may be effectively applied for force guided assembly under bias.  Sensitivity to 
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external strains is one such limitation.  This sensitivity was clearly illustrated during the 

course of this research.   

 

The manipulators used to perform the bending beam and independent pendulum 

assembly tasks have seven degrees of freedom.  The final degree of freedom is a 

harmonic drive with the flexspline oriented in the distal direction.  An aluminum plate is 

attached to the flexspline and a sensor is mounted to the plate.  Nominal operation of 

harmonic drives involves flexure of the flexspline.  This flexure induces stresses in the 

aluminum plate and consequently the sensor.  The resultant effect of this flexure is the 

sensing of forces and torques that are not actually applied to the end effector. 

 

Future Work 
There are many paths future research in bias compensation may take.  Three topics that 

emerged from this dissertation are the application of bias compensation to 

spatial/temporal domain bias sources, development of the bias number for the three 

dimensional case, and application to and understanding of this approach for the statically 

indeterminate case. 

 

Application to Spatial/Temporal Domain Bias Sources 

This work reveals some of the difficulties associated with identifying and emulating 

wrenches from bias sources that belong to the spatial/temporal domain.  Future work 

should explore alternative approaches to bias emulation that bypass the theoretical and 

practical limitations encountered in this work. 

 

Bias Number for the Three Dimensional Case  

Although the planar derivation of the bias number may be applied to three dimensional 

connectors (as shown in section 5.5) this document does not explore the development and 

application of the bias number to the general three dimensional case.  Future work should 
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include the derivation of the bias number for three dimensions and an effort to understand 

what distinguishes the three dimensional case from the planar case. 

 

Statically Indeterminate Case 

The limitations of the experimental setups used in this dissertation prevent the 

experimental application of this approach to cases in which bias sources are statically 

indeterminate.  Future work should explore the requirements for applying the proposed 

approach to the statically indeterminate case and seek to better understand the application 

of the technology to realistic assembly scenarios. 


