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Abstract—Humans can skilfully use tools and interact with the
environment by adapting their movement trajectory, contact force,
and impedance. Motivated by the human versatility, we develop
here a robot controller that concurrently adapts feedforward force,
impedance, and reference trajectory when interacting with an un-
known environment. In particular, the robot’s reference trajectory
is adapted to limit the interaction force and maintain it at a desired
level, while feedforward force and impedance adaptation compen-
sates for the interaction with the environment. An analysis of the
interaction dynamics using Lyapunov theory yields the conditions
for convergence of the closed-loop interaction mediated by this con-
troller. Simulations exhibit adaptive properties similar to human
motor adaptation. The implementation of this controller for typical
interaction tasks including drilling, cutting, and haptic exploration
shows that this controller can outperform conventional controllers
in contact tooling.

Index Terms—Adaptive control, biological systems control, con-
tact tasks, force control, iterative learning control, robot control.
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to the work. This work was supported by the European Commission Grants
EU-FP7 VIACTORS (ICT 231554) and CONTEST (ITN 317488), and EU-
H2020 COGIMON (644727). (Corresponding author: Yanan Li.)

Y. Li was with the Department of Bioengineering, Imperial College of Sci-
ence, Technology and Medicine, London SW7 2AZ, U.K. He is now with the
Department of Engineering and Design, University of Sussex, Brighton, BN1
9RH, U.K. (e-mail:,hit.li.yn@gmail.com).

G. Ganesh was with the Department of Bioengineering, Imperial College of
Science, Technology and Medicine, London SW7 2AZ, U.K. He is now with
the CNRS-AIST Joint Robotics Lab, Intelligent Systems and Research Institute,
Tsukuba 305-0046, Japan (e-mail:,gans_gs@hotmail.com).
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I. INTRODUCTION

C
ONTACT tooling, such as drilling and carving, require

dealing with the intrinsic instability resulting from the

surface irregularities, unknown material properties, and motor

noise. This control problem is exacerbated by the large forces

often encountered during these tasks. Furthermore, contact tool-

ing involves deformation or penetration of an object’s surface,

such that visual feedback is of little help to controllers. All these

issues requisite the development of a suitable control strategy

for regulating the movement and interaction force during contact

tooling tasks.

Various interaction control techniques have been proposed by

previous works. These include the hybrid force-position control

[1] that decouples the force and position control in space, reg-

ulating position along the surface of an object and force nor-

mal to it. Good performance with this technique thus requires

knowledge or good estimation of the surface geometry [2]. For

instance, in [2] and [3], the surface geometry is estimated from

the interaction force and position information. By regulating

the relationship between the environment deformation and the

force response, impedance control [4] can deal with environ-

ments that are not precisely known. However, controllers with

fixed impedance do not a priori consider the instability arising

from tool use, nor can they adapt to unknown surface conditions

[5]–[7].

In contrast, humans can carry out unstable tooling tasks with

ease, such as carving wooden pieces with knots, using a screw-

driver, cutting with a knife, etc. This is arguably due to their

capability to automatically compensate for the forces and in-

stability in their environment [8]–[10]. We recently developed

a computational model of this learning, which enabled us to

simulate the characteristics of human motor learning in various

stable and unstable dynamic environments [11], [12].

The dynamic properties of this learning controller were an-

alyzed in [13], and used to demonstrate its capabilities for

robot interaction control. This new robot behavior can adapt

its end-point force and impedance to compensate for environ-

mental disturbances. This controller increases robot force with

the signed error relative to a given planned trajectory, increases

the impedance when the unsigned error magnitude is large, and

decreases impedance when the magnitude is small. While our

previous controller in [13] can adapt to various environments,

an obstacle on the robot reference trajectory can lead the force

to increase and become very large.
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How does the human sensorimotor control address this issue?

Recent works that examined how humans interact with rigid ob-

jects [14], [15] found that the reference trajectory is deformed

by the interaction with the object’s surface, which limits and

regulates the interaction force. We introduced in [16] a model

of the concurrent adaptation of impedance, force, and trajectory

characterizing the human adaptive behavior, and showed in sim-

ulation how it could predict human motor adaptation in various

conditions. The extended nonlinear adaptive controller imple-

menting this model adapts impedance and force, and guarantees

the interaction stability by compensating for the disturbance

from the environment, as is analyzed in the present paper. The

interaction force is continuously estimated and used to adapt

the reference trajectory so that the actual interaction force can

be maintained at a desired level.

The model of human motor adaptation in [16] can be analyzed

using Lyapunov theory, and used as a novel iterative learning

controller (ILC) for robots. Specifically, we show in the present

manuscript how the coupling between force/impedance adapta-

tion and trajectory adaptation can be resolved. Simulations are

used to study and exhibit the adaptation features. Implementa-

tions on DLR’s 7-degree-of-freedom light weight robot (LWR)

[17], [18] explore its use for representative tasks such as cutting,

drilling, and haptic exploration similar to polishing, and demon-

strate its versatility. Initial results were reported in [19] and [20],

while extensive results are presented and analyzed in this paper1.

While ILC has been investigated extensively [21]–[24], the

present paper analyzes for the first time the coupling between

impedance and/or force adaptation and trajectory adaptation.

This coupling is interesting, since the updated impedance

and/or force is used to adapt the reference trajectory and

conversely the updated reference trajectory is also used to adapt

the impedance/force. Section II and Appendix A extend the al-

gorithm of [13] with trajectory adaptation to yield force control

and adaptation of the shape and impedance of the environment.

Section III interprets the theoretical results of Section II,

Section IV illustrates the controller’s functions through

simulations, and Section V demonstrates its efficiency in

implementations.

II. ADAPTATION OF FORCE, IMPEDANCE, AND

PLANNED TRAJECTORY

In the following, we derive a general ILC for the interaction of

a robot with an environment solely characterized by its stiffness

and damping, using Lyapunov theory. The nomenclatures that

will be used are summarized in Table I.

A. Controller Design

The dynamics of a n-DOF robot in the operational space are

given by

M(q) ẍ + C(q, q̇) ẋ + G(q) = u + f (1)

where x is the position of the robot and q the vector of joint

angle. u is the control input and f the interaction force applied

1A video illustrating the experiments can be found at https://www.
youtube.com/watch?v=UZFL6oTHQBg or on last author’s website.

TABLE I
NOMENCLATURE

by the environment. M(q) denotes the inertia matrix, C(q, q̇)ẋ
the Coriolis and centrifugal forces, and G(q) the gravitational

force, which can be identified using, e.g., nonlinear adaptive

control [25].

The control input u is separated in two parts

u = v + w . (2)

In this equation, v is designed using a feedback linearization

approach to track the reference trajectory xr by compensating

for the robot’s dynamics, i.e.,

v = M(q) ẍe + C(q, q̇) ẋe + G(q) − Γε (3)

where

ẋe = ẋr − αe , e ≡ x − xr , α > 0. (4)

ẋe is an auxiliary variable and e is the tracking error. Γ is a

symmetric positive-definite matrix having minimal eigenvalue

λmin(Γ) � λΓ > 0 and ε is the sliding error

ε ≡ ė + α e . (5)

w, the second part of the control input u, is to adapt impedance

and force in order to compensate for the unknown interaction

dynamics with the environment, as will be described in this

paragraph. Assuming that the environment can be character-

ized (locally) by its viscoelasticity, the interaction force can be

expanded as

f = F ∗
0 + K∗

S (x − x∗
0) + K∗

D ẋ (6)

where F ∗
0 (t), K∗

S (t), and K∗
D (t) are force, stiffness, and

damping experienced during interaction with the environment,
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respectively, x∗
0(t) is the rest position of the environment vis-

coelasticity. We use (6) to describe a general environment, which

can be either passive with the force component F ∗
0 = 0 or active,

such as a human arm or another robot. In this paper, we consider

that the environment parameters are unknown but periodic with

T

F ∗
0 (t + T ) ≡ F ∗

0 (t) , K∗
S (t + T ) ≡ K∗

S (t) ,

K∗
D (t + T ) ≡ K∗

D (t) , x∗
0(t + T ) ≡ x∗

0(t) . (7)

The periodicity of the environment parameters is a realistic

assumption for a repeatable interaction task, e.g., the surface

exploration presented in the simulation of Section IV. In this

example, the properties of the environment surface are the same

for every session, so they are periodic along the time axis. In

many applications, the environment parameters are constant thus

also periodic. To simplify the analysis, we rewrite the interaction

force of (6) as

f ≡ F ∗ + K∗
S x + K∗

D ẋ (8)

with F ∗ ≡ F ∗
0 − K∗

S x∗
0 the feedforward force component of the

environment. w in (2) is then defined as

w = −F − KS x − KD ẋ (9)

where F , KS , and KD are feedforward force, stiffness, and

damping components in the control input. As explained in the

next paragraph, the contact stability is ensured through adapting

F,KS ,KD to match the environment’s values F ∗,K∗
S ,K∗

D .

B. Force and Impedance Adaptation

By substituting the control input u into (1), the closed-loop

system dynamics are described by

M(q) ε̇ + C(q, q̇) ε + Γε = F̃ + K̃S x + K̃D ẋ, (10)

F̃ ≡ F ∗ − F , K̃S ≡ K∗
S − KS , K̃D ≡ K∗

D − KD .

In this equation, we see that the feedforward force F , stiffness

KS and damping KD ensure contact stability by compensating

for the interaction dynamics. Therefore, the objective of force

and impedance adaptation is to minimize these residual errors.

This can be carried out through minimizing the cost function

Jc(t) ≡
1

2

∫ t

t−T

F̃ T Q−1
F F̃ + vecT (K̃S )Q−1

S vec(K̃S )

+vecT (K̃D )Q−1
D vec(K̃D ) dτ (11)

where QF , QS , and QD are symmetric positive-definite matri-

ces, and vec(·) stands for the column vectorization operation.

This objective is achieved through the following update laws:

∆F (t) ≡ F (t) − F (t − T ) = QF [ε(t) − β(t)F (t)] (12)

∆KS (t) ≡ KS (t) − KS (t − T )

= QS [ε(t)x(t)T − β(t)KS (t)]

∆KD (t) ≡ KD (t) − KD (t − T )

= QD [ε ẋ(t)T − β(t)KD (t)]

where F , KS , and KD are initialized as zero matrices/vectors

with proper dimensions when their arguments are within [0, T ),
and β is a decay factor. Concurrent adaptation of force and

impedance in (12) corresponds to the computational model of

human motor adaptation of [11]–[13].

Now that we have dealt with the interaction dynamics, tra-

jectory tracking control can be obtained by minimizing the cost

function

Je(t) ≡
1

2
ε(t)T M(q) ε(t) . (13)

Consequently, we use a combined cost function

J ≡ Jc + Je (14)

that yields concurrent minimization of tracking error and resid-

ual impedance errors to adapt force and mechanical impedance

during movement.

C. Trajectory Adaptation

The investigation of adaptation to stiff and compliant en-

vironments of [14] has shown that humans tend to apply a

constant force on the surface, resulting in a different trajec-

tory adaptation strategy depending on the surface stiffness. To

model this behavior, we assume that the trajectory is adapted to

maintain a desired contact force Fd with the environment’s sur-

face. In particular, assuming that there exists a desired trajectory

xd yielding Fd , i.e., from (6)

Fd = F ∗
0 + K∗

S (xd − x∗
0) + K∗

D ẋd

= F ∗ + K∗
S xd + K∗

D ẋd , (15)

we propose to adapt the reference xr in order to track xd . How-

ever, xd is unknown, because the parameters F ∗, K∗
S , and K∗

D

in the interaction force are unknown. Nevertheless, we know

that xd is periodic with T , as F ∗, K∗
S , and K∗

D are periodic with

T and we also set Fd to be periodic with T .

In the following, we develop an update law to learn the desired

trajectory xd . First, we define

ξd ≡ K∗
S xd + K∗

D ẋd , ξr ≡ KS xr + KD ẋr . (16)

Then, we develop the following update law:

∆ξr (t) ≡ ξr (t) − ξr (t − T ) ≡ L−T Qr [Fd(t) − F (t) − ξr (t)]
(17)

where Qr and L are positive-definite constant gain matrices.

This update law is developed to minimize the error between the

desired force Fd and control force −w = F + ξr as detailed in

Appendix A. To consider the coupling of adaptation of force and

impedance and trajectory adaptation, we modify the adaptation

of feedforward force (12) to

∆F (t) = QF [ε(t) − β(t)F (t) + QT
r ∆ξr (t)] . (18)

Then, we obtain the update law for trajectory adaptation

∆xr ≡ xr (t) − xr (t − T ) (19)

by solving

∆ξr = KS ∆xr + KD ∆ẋr + ∆KS xr + ∆KD ẋr (20)
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Fig. 1. Block diagram of proposed controller for dynamic interaction with, and
adaptation to, unknown environments. The controller has three components: the
dotted block represents the component to learn feedforward force and impedance
in order to compensate for the interaction force from the environment; the
trajectory adaptation component is to maintain a desired interaction force; and
the compensation component compensates for the robot dynamics.

using ∆ξr (t) from (17), and ∆KS ,∆KD from (12).

With (12), (17), and (18), we now have an algorithm able

to adapt force, impedance, and trajectory in various dynamic

environments. This is carried out by minimizing the overall cost

J ≡ Jc + Je + Jr where

Jr ≡
1

2

∫ t

t−T

(ξr − ξd)
T QT

r (ξr − ξd) dτ . (21)

The result of this minimization is summarized in the following

theorem.

Theorem 1: Considering the robot dynamics (1) and the in-

teraction force model (8), the controller (2) with the update laws

for stiffness and damping (12), feedforward force (18), and ref-

erence trajectory (17) will guarantee that the trajectory error

∆ξr and tracking error ε are bounded and satisfy

λΓ‖ε‖
2 + λL‖∆ξr‖

2

≤
β

2

(
‖F ∗‖2 + ‖vec(K∗

S )‖2 + ‖vec(K∗
D )‖2

)
(22)

for t → ∞, where λΓ and λL are the minimal eigenvalues of

Γ and L, respectively. It follows that ∆ξr and ε can be made

arbitrarily small by choosing sufficiently large λΓ and λL . More-

over, ∆ξr and ε will converge to zero for β ≡ 0.

A proof of Theorem 1 is given in Appendix A, which is based

on the Lyapunov theory. The structure of the novel controller is

illustrated in Fig. 1.

III. INTERPRETATION OF THEOREM 1

A. Parameters Convergence

To simplify the interpretation of Theorem 1, let us loosely

state that for t → ∞, ∆ξr = ε = 0 (thus ε̇ = 0 if limt→∞ ε̇

exists). With (17), we obtain Fd = F + ξr . According to the

definitions of w in (9) and ξr in (16), we have F + ξr = −w

thus

Fd = −w. (23)

On the other hand, the right-hand side of (10) is zero. According

to the definitions of f in (8) and w in (9), we have

− w = f. (24)

It follows f = Fd , which indicates that the desired interaction

force Fd is maintained between the robot and the environ-

ment. According to the definitions of f and Fd in (8) and (15),

respectively, we thus have

K∗
S xd + K∗

D ẋd = K∗
S x + K∗

D ẋ (25)

which leads to x → xd if K∗
S and K∗

D are both positive definite.

However, note that the analysis of Appendix A does not show

that F , KS , and KD converge to the respective values F ∗,

K∗
S , and K∗

D of the environment. This can be seen from (10):

F̃ + K̃S x + K̃D ẋ = 0 does not imply that F̃ , K̃S , and K̃D

become negligible. In order to achieve the convergence of F̃ ,

K̃S , and K̃D to zero, the signals x and ẋ need to satisfy the

condition of persistent excitation (PE) as in traditional adaptive

control [26]. This will be illustrated in Section IV.

In summary, the proposed controller ensures that the interac-

tion force f follows the desired force Fd and that the reference

trajectory xr follows xd , the trajectory which yields Fd due

to the physical properties of the environment. The controller

parameters F , KS , and KD can track F ∗, K∗
S , and K∗

D , respec-

tively, if the signals x and ẋ are persistently exciting.

B. Important Special Cases

If no force is exerted on the environment: f = 0, the controller

component w = 0 from (24). According to the definitions of w

in (9) and ξr in (16), we have F + ξr = −w = 0. Therefore,

if we choose Fd = 0, according to the update law (17), the

reference trajectory will not adapt, as expected.

Another important case is when the feedforward force F ∗
0 =

0, damping K∗
D = 0, and stiffness K∗

S �= 0, then (8) yields x =
x∗

0 if we choose Fd = 0 since f = Fd . This indicates that the

actual position follows the rest position of the environment, i.e.,

its surface.

If we neglect the damping component in the interaction force

f of (8), the trajectory adaptation described by (17) and (20)

can be simplified to

∆xr = L−T Qr (Fd − F − KS xr ). (26)

Correspondingly, the update laws for force and impedance in

(12) need to be modified as

∆F ≡ QF (ε − βF + QT
r ∆xr ) ,

∆KS ≡ QS (ε xT − βKS + xT
r QT

r ∆xr ) (27)

in order to obtain results similar to those described in Theorem 1.

The interaction dynamics analysis, similar to the case with

damping, is detailed in Appendix B.

C. Implicit and Explicit Force Sensing

In contrast to traditional methods for surface following where

the force feedback is used to regulate the interaction force, e.g.,

[27], force sensing is not required in the above framework. In
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particular, force and impedance adaptation [(12) and (18)] is

used to compensate for the interaction force from the environ-

ment. During this process, the unknown actual interaction force

is estimated when the tracking error ε goes to zero, i.e., (24).

Using this estimated interaction force, a desired force in (15)

can then be rendered by adaptation of the reference trajectory

xr [(17) and (20)].

If the robot system is equipped with a force sensor, force

feedback can replace the force and impedance adaptation. In

this way, trajectory adaptation will not depend on the force

estimation process and can in principle happen faster. However,

the potential advantages of a force sensor depend on the quality

of its signal, its cost, and the difficulty of its installation and use.

IV. SIMULATIONS

We will now illustrate how the learning controller of previous

section functions, by simulating the human motor adaptation

in a representative interaction task [15]. This study observed

the adaptation of force and trajectory in humans during con-

tact with a rigid or compliant environment. Similarly, we simu-

lated the adaptation of the reference trajectory occurring when

one is required to push against environments of various stiff-

ness. In this simulation, the desired force in forward direction is

specified as

Fd =

{
−5[1 − cos(πt)]N, 0 ≤ t ≤ 1s;
−10N, otherwise.

(28)

The interaction force of (8) is computed as

f = F ∗ + K∗
S y (29)

corresponding to the rest position 0. The rigid environment is

characterized by F ∗ = −4N and K∗
S = −1000 N/m and the

compliant environment by F ∗ = −3N and K∗
S = −300 N/m.

The environment is rigid for the first 200 trials j = 1 . . . 200
and compliant for another 200 trials j = 201 . . . 400. The con-

trol and learning parameters used for simulation are α = 10,
Γ = 200, β = 0, QS = 6 × 104 , QF = 3.6, Qr = 0.02.

Simulation results are shown in Fig. 2(a). The left

column/panels exhibit that the desired force is achieved in the

case of a rigid environment. The middle panels illustrate that

when the environment suddenly becomes compliant, the de-

sired force cannot be reached because of the trajectory control

component. However, the trajectory iteratively moves forward

and the interaction force increases. After learning, the reference

trajectory has adapted to penetrate the environment surface and

the desired interaction force is achieved again. Note that while

the same desired force is achieved in the rigid environment, the

reference trajectory changes with the different environments.

The right panels illustrate the “after-effects” of the learning:

when the environment becomes rigid again, the interaction force

surpasses the desired force.

These results correspond to the behavior observed in human

experiments [16]. Note the adaptation of force, impedance, and

trajectory involved in the evolution: the reference trajectory

adapts to achieve the desired force, while feedforward force

and impedance adapt to track the updated reference trajectory.

However, in Fig. 2(a), the updated feedforward force and

impedance do not converge to the values of the environment.

This is due to the redundancy between the feedforward

force and impedance as explained in Section III-A. While

the combination of the feedforward force and impedance

guarantees compensation for the interaction dynamics, it is not

set to identify each component’s contribution.

The identification of the environment’s parameters can be

addressed by introducing a PE signal yielding sufficiently rich

information of the system. We illustrate this by adding a random

binary excitation to the system as exhibited in Fig. 2(b). It can

be seen that the identified interaction force and position values

are similar to those in Fig. 2(a), but in this case the updated

feedforward force and impedance converge to the environment’s

values. The results in Fig. 2(a) and (b) also illustrate the meaning

of redundancy between the feedforward force and impedance, as

different values of feedforward force and impedance lead to the

same interaction force and position. In practice, noise leading to

the environment identification could stem from a rough surface

along which the robot is moving [see Fig. 2(b)], while sliding on

a smooth surface would lead to results similar to that in Fig. 2(a).

These results, together with the results of [16], show that the

model of Section II predicts the adaptation of force, impedance,

and trajectory observed when humans interact with various sta-

ble, unstable, stiff, and compliant environments [8], [11], [14],

[15], [28], [29].

To illustrate the difference of the new controller relative to

the adaptive controller of [13], Fig. 3 presents a simulation

of polishing along (the x-axis of) a curved surface with both

of these controllers. As shown in Fig. 3(a), as the controller

of [13] tries to track the original reference trajectory (which

is set as a straight line along the x-axis), this leads to a large

contact force of around 20 N, which is undesirable. In contrast,

Fig. 3(b) shows that with the new controller the robot’s trajectory

comes close to the surface with learning (see “150th trial”),

by tracking the updated reference trajectory, while the contact

force tends to the desired force of about 1 N. Therefore, the

new adaptive controller is extending the controller of [13]. It is

able to successfully perform tasks requiring contact with rigid

surfaces of unknown shape, and to identify the geometry and

impedance properties of the surface it is interacting with.

V. ROBOTIC VALIDATION

The proposed controller was implemented on the DLR LWR

shown in Fig. 4 [17], [18] and tested in various experiments.

Four tasks were carried out: adaptation to a rigid surface, cut-

ting, drilling, and haptic exploration, which are described in this

section.

A. Adaptive Interaction With a Rigid Surface

To illustrate the trajectory adaptation to a rigid environment,

one axis of the robot was programed to repeat a movement of

0.7 radian amplitude following a smooth fifth-order polynomial

reference, with zero start and end velocity and acceleration as

shown in Fig. 5. After the robot converged on the reference

trajectory (dashed blue trace), it was presented with a virtual
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Fig. 2. Concurrent adaption of force, impedance, and trajectory (a) without noise and (b) with noise satisfying PE. From top to bottom: interaction force, actual
trajectory (solid) and updated reference trajectory (dotted), updated stiffness, and updated feedforward force. From left to right: after learning in a rigid environment,
in a compliant environment (plotted from blue to red in every 16 trials), and exposition to a rigid environment after learning in the compliant environment.

Fig. 3. Simulation of haptic exploration of a surface of unknown shape and mechanical properties along x-axis (a) with the controller of [13] and (b) with the
new controller. The top panels show the robot’s trajectory and the bottom panels the contact force. The new controller avoids large interaction force and enables
regulation of the force, while identifying the interaction surface geometry.
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Fig. 4. Setup of experiments described in Section V with the DLR LWR, the
Dremel driller attached to the robot end-effector in the zoomed end-effector and
the scalpel in the main panel.

Fig. 5. Adaptation to a rigid surface. (a) 1-DOF robot. (b) Actual and reference
trajectories.

obstacle in velocity space (blue trace) that prevented it from

following the reference. This obstacle was generated by dis-

connecting the proposed controller output to the motor, and

instead moving the robot along the obstacle using a high-gain

PD controller, while the proposed controller was still active in

the background. This simulated a situation where the controller

was unable to generate sufficient motor output to overcome the

obstacle.

When the obstacle was suddenly removed in the fifth adapta-

tion trial, the robot movement was found to mirror the obstacle

(red trace), as the robot initially tried to increase the torque to

counter the obstacle. The obstacle was then reintroduced from

the sixth trial onwards. When the obstacle was removed again

in the 25th trial, the actual trajectory (black trace) and refer-

ence trajectory (dashed black trace) can be clearly seen to have

adapted to the shape of the obstacle. The robot movement no

longer mirrored the obstacle, i.e., it has learned not to apply

a too large force in order to counter the obstacle, but instead

has adapted its reference trajectory. The actual trajectory (black

trace) can be seen to lie to the right-hand side of the plan (dashed

black trace), indicating that the robot still did apply some contact

force onto the obstacle after 25 trials. This behavior is similar to

the adaptation observed in humans [14] as was analyzed in [16].

B. Cutting Experiment

Several experiments were then carried out to test adaptation

of impedance and force during the interaction with unknown

environments. For this purpose, a cutter or a drill was mounted

on the LWR as shown in Fig. 4. Different from the previous

simulation and the first experiment, in the next experiments it-

eration was in time rather than by repeating a trajectory. In this

case, the LWR moved at low speed so that adaptation could

catch the environment characteristics along the trajectory. The

controller was programed to tune the adaptation gains differ-

ently along each axis of the end-effector frame {ex , ey , ez}. A

fixed high stiffness (2000 N/m) was maintained at the robot end

effector in the {y ≡ 0} plane, while the adaptive controller was

used in the x- and z-directions. Stiffness saturation was set at

2000 N/m in all directions during the experiments. The same

set of adaptation gains of β = 0.01, QF = 5, QS = 120, and

Qr = 0.01 was used during all the experiments in order to test

the versatility of the adaptive controller in dealing with different

tasks and environments without any manual tuning of the learn-

ing parameters. Qr was set as zero in the cutting and drilling

experiments.

We performed two cutting experiments using a scalpel that

was fixed on the LWR end effector using a customized tool

holder. The scalpel blade was maintained at a 65◦ angle to the

surface. We used a heterogeneous test object in the first exper-

iment that was made of a 2-mm balsa wood layer covered by a

2 mm layer of materials with different mechanical properties:

balsa wood, plastic honeycomb panel, and brown corrugated

cardboard. As can be seen in Fig. 6(b), the stiffness and feed-

forward force were automatically adapted during the task to the

specific material; stiffness increased due to the vibrations gener-

ated during the crossing of the carton and honeycomb sections

and decreased during the crossing of the balsa wood section.

On the other hand, the feedforward force increased during the

crossing of the balsa wood section, because the wood is dense

and generates a constant resistance to cutting.

The second cutting experiment was performed on a 3-cm

thick expanded styrofoam board (made of 4 mm polystyrene

balls agglomerated together, but with a smooth surface). The

top surface of the board was painted in black to illustrate the

damage done to the surface by the scalpel. Due to the material

properties of styrofoam, it tends to stick to the blade and tear

when the depth is too large for a given speed. We first deter-

mined a constant “depth/velocity” pair for our blade that leads to

material tear (due to stick-slip) during cutting. Cutting was then

carried out with this “depth/velocity” pair, first using a fixed

high impedance (1500 N/m), then with the proposed adaptive

controller starting from the same 1500 N/m stiffness value. As

it can be seen in Fig. 6(c), our adaptive controller avoided the

tearing phenomenon generated by the specific set of parameters

(e.g., blade angle, velocity, and depth) though lowering the robot

stiffness.

C. Drilling

We then compared drilling of a heterogeneous material using

a fixed impedance (1500 N/m), and with adaptation using the
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Fig. 6. Cutting through different materials. (a) View of the surface assem-
bled with different materials (balsa wood, cardboard, and honeycomb plastic).
(b) From top to bottom: blade trajectory across the section of the surface in the
vertical plane; variations of the forces Fx and Fz along x- and z-directions,
recorded by the 6-DOF force/torque sensor mounted between the robot and the
scalpel; stiffness (Kx and Kz ) and feedforward force (FFx and FFz ) adapta-
tion during the cutting task. (c) Visual results of cutting expanded styrofoam
with/out biomimetic adaptation and associated force profile (along the cutting
direction x).

proposed controller. Drilling was tested using a Dremel hand

driller attached to the end-effector (through the force/torque

sensor) at approximately 18 cm from the end-effector main axis.

The force/torque sensor was used for the purpose of recording

but not used in the proposed controller. The 3.2-mm diameter

drill had to penetrate a heterogeneous block of material made of

balsa wood layers (easy to drill) and some dense carton layers

(requiring larger forces for drilling). As can be seen in Fig. 7,

our controller was able to perform the task with results similar

to the rigid impedance controller. However, at certain drilling

speeds, the rigid impedance controller exhibited a “resonance”

phenomenon [see Fig. 7(b)] that generated large vibrations in

the horizontal plane (whose amplitude was proportional to the

penetration of the drill bit), and consequently poorer quality of

the drilled hole [larger variations in the diameter of the hole,

Fig. 7. Drilling heterogeneous material. (a) Section of the block. (b) Compar-
ison of vibrations level in the horizontal plane transmitted to the robot structure
(read on the force sensor) when using a driller speed generating “resonance,”
without (red) and with (green) stiffness adaptation. (c) Adapting impedance
reduced the hole carried out by the drill.

as seen in the bottom of Fig. 7(c)]. The proposed controller

attenuated these vibrations, resulting in a hole with a diameter

closer to the real drill bit diameter.

D. Haptic Identification

To test concurrent adaptation of force, impedance, and tra-

jectory, we implemented a haptic exploration experiment. The

robot was required to traverse various surface profiles on a test

surface while maintaining a constant contact force, a task that is

similar to the polishing of an unknown surface. However, we de-

signed the task to test the ability of the new controller to “skim”

a surface with minimum force. We purposely used a very low

desired interaction force level of 0.05 N and a soft foam surface

so as to be able to visually check whether the robot would push

and deform this surface.2

The test surface was developed on a wooden plank

sized 85 × 95 cm. Various profiles, including convex bumps,

concave troughs, and cylindrical obstacles, were created on this

surface by fixing metal and plastic objects [see Fig. 8(a)]. A

3-cm thick layer of packing foam was then overlaid on the sur-

face. The test surface included a high friction pad created using

twisted nylon ropes and a hole in the surface. The test surface

was placed on a table under the robot, which was equipped with

a 12-cm long aluminium finger at the end-effector. The robot

reference was set to scan the plane of the table over a range

of 120 cm and with a constant speed of 0.1 m/s (except for

the accelerations and de-accelerations in the movement limits).

The reference was set in the task space and the trajectory was

developed using the interpolator of the manipulator.

Fig. 8(b) shows the surface traced by the robot. Fig. 8(c)

shows the tool-tip coordinates of the robot in the x–y plane of

the table with the color gradient representing the z-coordinate

(height above the table). Fig. 8(d) plots the endpoint stiffness of

the robot as it performed the surface exploration while Fig. 8(e)

2See the video in https://www.youtube.com/watch?v=UZFL6oTHQBg.
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Fig. 8. Haptic exploration of a surface with unknown geometry and mechanics. From left to right: (a) Photo of the test surface that was used for the pilot
experiment. (b) 3-D scan of the test surface. (c) Volume identified by the robot while scanning the surface along the line superimposed on top and two lateral
views. (d) End point stiffness during exploration. (e) Nearly constant interaction force of about 0.05 N maintained on the surface.

shows the contact force along the vertical z-axis as measured

from the end-point force/torque sensor (not used for control).

We conducted an analysis of the force sensor inside the surface

boundaries, which exhibit a force of 0.0338 N in average with

a standard deviation of 0.0088 N. To show that this is not an

offset on the force sensor, or noise, we compared this value to the

one from outside the surface in the same experiment. The value

from outside the surface (when there is no contact) is 0.0151 N

in average with a standard deviation of 0.0109 N, which is

statistically smaller than the one inside the surface boundaries

(p < 0.001). Stiffness is maintained at a low value throughout

the exploration and increases only in the edges of the surface

and in the region with irregularities. The stiffness change thus

indicates the texture properties of the surface.

VI. DISCUSSION

Many tasks with end-effector held tools are inherently unsta-

ble, require large contact forces, and are subject to disturbances

due to the irregularities on the tooled surface. While robots

have been conceived to address these challenges in specific and

well-defined situations, humans routinely use tools in different

tasks such as drilling, cutting, and polishing, adapting to various

environments, despite large sensorimotor noise. In fact, human

intelligence has been characterized by the skilful use of tools

[30], and specific neural structures could be identified in humans

[31] that correspond to force and impedance adaptations. While

we do not pretend to match such manipulation intelligence, the

controller analyzed in this paper exhibited a versatile interac-

tion behavior, and was also shown to model human interaction

properties in typical situations [16].

Our controller for contact tooling and haptic identification au-

tomatically adapts feedforward force, mechanical impedance,

and trajectory to the environment dynamics in order to mini-

mize trajectory error and effort while applying a desired force.

It compensates for the interaction force and instability to track

the planned reference trajectory. During this process, the con-

troller is able to estimate the interaction force with the un-

known environment through adaptation of feedforward force

and impedance. It extends the functionality of the controller

introduced in [13], by automatically adapting its reference tra-

jectory to comply with rigid environments, and to maintain a

desired interaction force.

The proposed controller, developed based on the assumption

of a linearized interaction force [(6)], can interact with a rigid

environment or a compliant force field, or with humans. It can

be used to automatically tune physical assistance in, e.g., a

rehabilitation robot [32]. It does not require a force sensor as

the force is estimated by the algorithm. Using a force sensor will

however speed up the adaptation of feedforward force, stiffness,

and trajectory, although this may depend on the quality of the

force signal and on its noise.

The stability and convergence of this novel nonlinear

adaptive controller have been rigorously analyzed using the

Lyapunov theory. An implementation on the DLR 7-DOF LWR

demonstrated its effectiveness and versatility in representative

interaction tasks including cutting, drilling, and haptic explo-

ration. With this controller, the robot constantly adapts its

behavior to the environment, rather than rigidly trying to go

through. Feedforward force adaptation is essential for tasks like

cutting, where the material irregularities continuously modify

the required cutting force. Impedance adaptation helps counter

these variations, while maintaining minimum stiffness of the

cutting tool. Trajectory adaptation enables maintenance of con-

tact force during tasks like polishing and prevents the robot

from applying very high forces in the presence of unforeseen

obstacles.
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Experimental results demonstrated superior performance of

the novel adaptive controller relative to a fixed impedance con-

troller: smoother interaction, reduced control effort, and au-

tomatic adaptation (avoiding tedious trial-and-error and fine

tuning). Moreover, the properties of the unknown environment

could be identified through adaptation during slow interaction

movements yielding haptic exploration. As in any tooling task,

our algorithm does require some basic parameter definition for

each tooling operation such as cutting speed and depth of cut

prescribed by tool manufacturer for a given tool-surface combi-

nation. However, it does not require any information or model

of the surface irregularities, material, and shape of the tooled

surface.

The proposed controller can be applied to interact with en-

vironments that can be described by (6), characterized by peri-

odic or constant parameters. If the environment parameters keep

changing and the periodicity condition is not satisfied, e.g., when

interacting with a human arm, the controller can still success-

fully adapt as long as the environment parameter changes are

slow, but may fail otherwise. Larger controller learning rates

(QF , QK , QD , Qr ) may enable it to adapt to fast changing en-

vironments, although too large learning rates may reduce the

system robustness. On the other hand, improper choice of ini-

tial controller parameters may lead to task failure. For instance,

during a surface polishing task, a controller with high initial

stiffness can make the robot get stuck in rough stiff surface.

The interesting meta learning issue of choosing the appropriate

learning rates and initial parameters need to be investigated in

further studies.

APPENDIX

A. Proof of Theorem 1

A Lyapunov-like analysis of the closed-loop learning con-

trol is carried out here in four steps. The first three steps con-

sider the difference between two consecutive periods of the Lya-

punov function candidates Jr (error of contact force), Jc (resid-

ual impedance errors), and Je (tracking error), respectively.

Step 4 then uses the results of the first three steps to examine the

difference between two consecutive periods of the overall cost

J ≡ Jr + Jc + Je .

Step 1: Contact force error

Considering the definition of Jr in (21), we have

∆Jr (t) ≡ Jr (t) − Jr (t − T )

=
1

2

∫ t

t−T

[ξr (τ) − ξd(τ)]T QT
r [ξr (τ) − ξd(τ)] dτ

−
1

2

∫ t

t−T

[ξr (τ) − ξd(τ)]T QT
r [ξr (τ − T ) − ξd(τ − T )] dτ

+
1

2

∫ t

t−T

[ξr (τ) − ξd(τ)]T QT
r [ξr (τ − T ) − ξd(τ − T )] dτ

−
1

2

∫ t

t−T

[ξr (τ − T ) − ξd(τ − T )]T QT
r ×

[ξr (τ − T ) − ξd(τ − T )] dτ

=
1

2

∫ t

t−T

[ξr (τ) − ξd(τ)]T QT
r ∆ξr (τ) dτ

+
1

2

∫ t

t−T

[ξr (τ − T ) − ξd(τ − T )]T QT
r ∆ξr (τ) dτ

=

∫ t

t−T

[ξr − ξd −
1

2
∆ξr ]

T QT
r ∆ξr dτ (as ξd(t) = ξd(t − T ))

�

∫ t

t−T

[Qr (ξr (τ) − ξd(τ))]T ∆ξr (τ) dτ . (30)

According to (15) to (17), we rewrite this inequality as

∆Jr �

∫ t

t−T

[Qr (ξr − Fd + F + F̃ )]T ∆ξr dτ

=

∫ t

t−T

(−LT ∆ξr + Qr F̃ )T ∆ξr dτ. (31)

Step 2: Residual impedance error

Consider the difference between Jc of two consecutive

periods

∆Jc ≡ Jc − Jc(t − T ) (32)

=
1

2

∫ t

t−T

[(F̃ T Q−1
F F̃ − F̃ T (τ − T )Q−1

F F̃ (τ − T ))

+tr(K̃T
S Q−1

S K̃S − K̃T
S (τ − T )Q−1

S K̃S (τ − T )

+(K̃T
D Q−1

D K̃D − K̃T
D (τ − T )Q−1

D K̃D (τ − T ))] dτ

where tr(·) stands for the trace of a matrix. We compute

F̃ T (τ)Q−1
F F̃ (τ) − F̃ T (τ − T )Q−1

F F̃ (τ − T )

= [F̃ T (τ)Q−1
F F̃ (τ) − F̃ T (τ)Q−1

F F̃ (τ − T )]

+ [F̃ T (τ)Q−1
F F̃ (τ − T ) − F̃ T (τ − T )Q−1

F F̃ (τ − T )]

= −F̃ T (τ)Q−1
F ∆F (τ) − F̃ T (τ − T )Q−1

F ∆F (τ)

= −(2F̃ T (τ) + ∆F (τ))Q−1
F ∆F (τ)

� −2F̃ T (τ)Q−1
F ∆F (τ)

= −2F̃ T (τ)[ε(τ) − β(τ)F (τ) + QT
r ∆ξr (τ)] . (33)

Similarly we have

tr[K̃T
S (τ)Q−1

S K̃S (τ) − K̃T
S (τ)(τ − T )Q−1

S K̃S (τ − T )]

� −2tr{K̃T
S (τ)[ε(τ)xT (τ) − β(τ)KS (τ)]}

tr[K̃T
D (τ)Q−1

d K̃D (τ) − K̃T
D (τ − T )Q−1

D K̃D (τ − T )]

� −2tr[K̃T
D (τ)(ε(τ)ẋT (τ) − β(τ)KD (τ))] . (34)

Substituting (33) and (34) into (32) and considering (31), we

obtain

∆Jr + ∆Jc �

∫ t

t−T

−∆ξT
r L∆ξr − F̃ T (ε − βF ) (35)

− tr[K̃T
S (εxT − βKS )] − tr[K̃T

D (εẋT − βKD )] dτ .



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: FORCE, IMPEDANCE, AND TRAJECTORY LEARNING FOR CONTACT TOOLING AND HAPTIC IDENTIFICATION 11

Step 3: Tracking error

The rest of the derivations deals with the residual in above

inequality, which is similar to that in [13]. For completeness,

we outline this in the following. In particular, we consider the

time derivative of Je

J̇e = εT Mε̇ +
1

2
εT Ṁε = εT Mε̇ + εT Cε (36)

as [33]

zT Ṁz ≡ 2zT Cz ∀z . (37)

Considering the closed-loop dynamics (10), above equation can

be written as

J̇e(t) ≡ εT (F̃ T + K̃T
S x + K̃T

D ẋ − Γε) . (38)

Integrating J̇e from t − T to t and considering (35), we obtain

∆Je =

∫ t

t−T

−εT Γε + F̃ T ε + tr(K̃T
S εxT ) + tr(K̃T

D εẋT ) dτ .

(39)

Step 4: Overall cost J

Considering (35) and (39), we can now calculate

∆J = ∆Jc + ∆Jr + ∆Je

�

∫ t

t−T

−εT Γε − ∆ξT
r L∆ξr

+ β[F̃ T F + tr(K̃T
S KS + K̃T

D KD )] dτ

=

∫ t

t−T

−εT Γε − ∆ξT
r L∆ξr − β[F̃ T F̃

+ tr(K̃T
S K̃S + K̃T

D K̃D )]

+ β[F̃ T F ∗ + tr(K̃T
S K∗

S + K̃T
D K∗

D )] dτ . (40)

According to (40), a sufficient condition for ∆J � 0 is

λΓ‖ε‖
2 + λL‖∆ξr‖

2 + β(‖F̃‖2 + ‖vec(K̃S )‖2

+‖vec(K̃D )‖2) − β(‖F̃‖‖F ∗‖ + ‖vec(K̃S )‖‖vec(K∗
S )‖

+‖vec(K̃D )‖‖vec(K∗
D )‖) ≥ 0. (41)

Therefore, the following inequality is satisfied:

λΓ‖ε‖
2 + λL‖∆ξr‖

2 +
β

2
(‖F̃‖2 + ‖vec(K̃S )‖2

+ ‖vec(K̃D )‖2) ≤
β

2
(‖F ∗‖2 + ‖vec(K∗

S )‖2 + ‖vec(K∗
D )‖2).

(42)

The above inequality can be proved by contradiction: assum-

ing the above inequality is invalid yields ∆J < 0 and thus

J decreases iteratively. This indicates that ‖ε‖, ‖∆ξr‖, ‖F̃‖,

‖vec(K̃S )‖ or ‖vec(K̃D )‖ (and thus the left-hand side of the

above inequality) become even smaller, which contradicts the

hypothesis.

From the above inequality, we obtain (22), which indicates

that ∆ξr and ε can be made arbitrarily small by choosing suffi-

ciently large λΓ and λL . Moreover, if we select β ≡ 0, ∆ξr and

ε will converge to zero.

B. Stability Analysis When Neglecting Damping

Consider the cost function

J ′
r ≡

1

2

∫ t

t−T

(xr − xd)
T K∗T

S QT
r (xr − xd) dτ . (43)

Following similar procedures to (30) and (31), we obtain

∆J ′
r �

∫ t

t−T

[−LT ∆xr + Qr (F̃ + K̃S xr )]
T ∆xr dτ . (44)

Considering further the cost function

J ′
c ≡

1

2

∫ t

t−T

F̃ T Q−1
F F̃ + vecT (K̃S )Q−1

S vec(K̃S ) dτ (45)

and following similar procedures from (32) to (35), we obtain

∆J ′
r + ∆J ′

c �

∫ t

t−T

−∆xT
r L∆xr − F̃ T (ε − βF )

−tr[K̃T
S (ε xT − βKS )] dτ . (46)

The rest is similar to the case with damping and thus omitted.
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with the Centre National de la Recherché Scientifique (CNRS), and is currently
located at the CNRS-AIST Joint Robotics Lab, Tsukuba, Japan. He is a Visit-
ing Researcher with the National Institute of Advanced Industrial Science and
Technology, Centre for Information and Neural Networks, Osaka, Japan, ATR,
and the Laboratoire d’Informatique, de Robotique et de Microélectronique de
Montpellier, Montpellier, France. His research interests include human sensory-
motor control and learning, robot control, social neuroscience, and robot–human
interactions.
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