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Ultra-high-frequency nanomechanical resonators (fm > 300 MHz) can increase our capacity to study
fast physical phenomena, for example by measuring forces. Their extreme stiffness is also a chance to
access molecular forces in the subpicometer low amplitude of motion limit, but it makes them hard
to drive and control. Here we analyze a method to optomechanically sense a force field with an ultra-
high-frequency and stiff mechanical resonator, where back-action optical forces set the resonator into a
self-sustained stable oscillator trajectory. After elucidating the experimental conditions to obtain optimal
resolution, we carry out controlled experiments where the oscillator senses an optical force generated by
a secondary laser. We analyze and model our results, and illustrate the concrete advantage of the method
in the measurement of such a weak force, which would otherwise remain undetected by the undriven
probe. We establish the thermodynamical limits of the approach, and finally connect it to the class of
feedback-controlled problems, clarifying its assets and limitations.

DOI: 10.1103/PhysRevApplied.14.024079

I. INTRODUCTION

Micro and nanoelectromechanical systems (NEMS)
have been used as mass sensors for biological and chem-
ical applications [1–4], where their miniature dimensions
enable sensitive measurements [5–9]. Thanks to their high
frequencies up to the GHz range, NEMS also also bring
the promise of high-speed operation, beyond that reached
by conventional force or acceleration sensors, and may
allow tracking short time-scale physical interactions. High-
frequency mechanical resonators are often stiff, hence their
Brownian motion is also small, down to a hundred of fem-
tometers for a GHz resonator of picogram mass at room
temperature, which is the perfect scale to measure molec-
ular forces in the low-amplitude nonperturbative limit.
Despite these combined merits, the promising applications
of high-frequency stiff NEMS are hindered by the fact
that their motion is difficult to drive and measure with
ultimate signal to noise using established electrical meth-
ods. Recently, nanomechanical systems have been coupled
to the light confined in an optical cavity, in a plethora
of geometries designed for quantum-physics research [10,
11]. While the resulting optomechanical devices were rec-
ognized early to enable broadband optical detection of
motion [12], their use in sensing technologies is still
under development [13–16]. New optomechanical sensing
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methods are yet to be unveiled that would bring added
functionality and/or performance.

Here we investigate how dynamical optomechanical
effects can facilitate and improve the use of high-frequency
stiff NEMS probes in mechanical sensing. Our experiments
are carried out on ultra-high-frequency (300 MHz < fm <

3 GHz) mechanical resonators with a modal stiffness of
k ∼ 105 N/m. By dynamically coupling such a resonator
to a laser-pumped optical cavity, we generate an oscillatory
mechanical trajectory and observe the trajectory’s pertur-
bation under an applied force. We examine the conditions
to obtain the most stable trajectory, hence the best force
resolution, and use a second laser to apply a weak opti-
cal force. We show that the optically dressed probe can
detect the applied force. We explore the sources of noise
affecting this optomechanical self-oscillation force-sensing
method, show that it can approach the thermodynamical
limit of detection, and elucidate its assets and limitations.
The technique appears as a valuable tool for the mea-
surement of weak forces by ultra-high-frequency NEMS
probes operating in the low amplitude of motion limit. It
works irrespective of the nature of the force, conservative
or dissipative, and may hence be applied to a large variety
of physical interactions.

II. PRINCIPLE

The principle of optomechanical self-oscillation force
sensing is sketched in the frequency domain in the panels
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FIG. 1. (a) A mass on a spring mechanical resonator has a
resonance frequency ωm. (b) Once placed in a force field, the res-
onator experiences to first order a linear spatial variation of the
force. (c) As a consequence, the resonance frequency is shifted
to ω′

m by the gradient of the force. (d) Mechanical spectra of a
GaAs disk with frequency of the first-order RBM fm = ωm/2π ∼
300 MHz. The green curve is measured in the Brownian motion
regime, while the black curve is in the regime of optomechan-
ical self-oscillation, showing strong line narrowing, and hence
capacity to resolve a frequency shift.

of Fig. 1. A mass m on a spring k [Fig. 1(a)] has a res-
onant mechanical frequency ω2

m = k/m and vibrates with
a small amplitude x around an equilibrium position x0.
Once positioned within a force field F(x) [Fig. 1(b)], it
experiences to first order a force F(x0) + ∇F · x and its
frequency is hence shifted to ω′

m = (k − ∇F/m)1/2. The
frequency shift ∼ ωm(∇F/2k), taken as a force gradient
estimator, is easily detected when superior to the spec-
tral line width of the mechanical signal [Fig. 1(c)]. It
can be determined with high resolution by harmonically
forcing and tracking the resonator’s response by electrical
means, which is the most standard approach in resonant
mechanical sensing and atomic force microscopy (AFM).
In the so-called slope-detection method [17], the frequency
of the drive is tuned to a flank of the mechanical reso-
nance, such that small frequency shifts are transduced in
amplitude variations. Since electromechanical forcing and
tracking of ultra-high-frequency (fm > 300 MHz) and stiff
NEMS probes are difficult to implement with an optimal
signal-to-noise ratio set by the thermomechanical limit,
we explore here another strategy. We employ an optical
approach and make use of dynamical couplings in order to
reduce the line width of the mechanical signal and facil-
itate force detection. This idea turns out to be efficiently
implemented using optomechanical effects: above a certain
threshold of optomechanical interaction, the gain provided
by back-action optical forces acting on the mechanical

system surpasses losses and the motion becomes highly
coherent and harmonic [18–24]. In the frequency domain,
the mechanical line narrows abruptly, resembling a lasing
transition [18,21]. Because this oscillation regime relies on
an intrinsic optomechanical feedback effect, the sensing
method explored here can be perceived as an all-optical
analog of the frequency modulation technique introduced
in AFM [25], albeit operating in the ultra-high frequency
range and with no external feedback loop required. Figure
1(d) shows an experimental example of optomechanical
line narrowing obtained on the ultra-high-frequency and
stiff mechanical probe employed in this work. Below, we
explore the optimal conditions to employ this optomechan-
ical self-oscillator in force-sensing applications, and use it
to resolve a weak optical force of dissipative nature. We
finally clarify the assets and limitations of this method.

III. OPTOMECHANICAL DISK

SELF-OSCILLATORS

Our experiments are carried out on semiconductor
optomechanical disk resonators, which couple light stored
in high-Q optical whispering gallery modes (WGMs) to the
mechanical radial breathing modes (RBMs) of the struc-
ture [26–28]. These disks are fabricated out of an epitaxial
wafer of (aluminium) gallium arsenide (Al, Ga)As with the
following composition: GaAs(200 nm)/Al0.8Ga0.2As(1800
nm)/GaAs(substrate). We use electron-beam lithography
and subsequent wet etching to pattern and fabricate the
disk resonators, which are then elevated over the substrate
on a mesa structure in order to be optically addressed
by fiber-taper evanescent coupling techniques [24,28,29].
Figure 2(a) shows a GaAs disk atop an (Al, Ga)As pedestal
positioned over a mesa. Below, without further mention,
the GaAs disk we employ has a radius of 4.5 µm and
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FIG. 2. (a) A GaAs disk atop an (Al, Ga)As pedestal atop a
mesa. The disk radius is 4.5 µm and the thickness 200 nm. (b)
Evolution of the rf mechanical spectrum associated to the first
order RBM of the disk, as a function of the pump laser wave-
length λL. The laser is tuned to the blue flank of the WGM optical
resonance, and the detuning progressively reduced as the pump
wavelength is increased. The power incident on the cavity is of
108 µW.
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a thickness of 200 nm. Let us first examine the condi-
tions to transform such a resonator into an optomechanical
self-oscillator.

Figure 2(b) shows a series of rf spectra of the output
light of the optomechanical system, around the frequency
of the first-order RBM. The spectra are acquired in ambient
conditions, as the pump laser is blue detuned on the flank
of an optical WGM resonance and its wavelength progres-
sively increased to reduce the detuning. As the detuning
is decreased, the number of photons injected into the res-
onator increases, which intensifies optomechanical effects.
Under these conditions, the mechanical RBM motion is
progressively amplified along the series of curves, up to
the point where the amplification overcomes mechanical
losses and the spectral resonance abruptly narrows. At this
point, the motion is self-sustained into an harmonic trajec-
tory (see phase-space representations in Appendix A).

We explore first the optomechanical interactions respon-
sible for this dynamical behavior. The light trapped within
a WGM excites the RBM motion through three optome-
chanical mechanisms: radiation pressure, which pushes the
disk sidewalls apart; electrostriction, which stresses the
resonator’s constitutive material outwards; and the pho-
tothermal force, which is a consequence of light absorption
and thermal expansion of the disk structure. The three
forces act on the RBM in the same direction, but the first
two are conservative while the third is dissipative in nature.
The full dynamics of the system can be modeled by a gen-
eralized set of coupled equations that include these three
mechanisms [24]:

ȧ = −
κ

2
a

+ i

[

�ω + gomx +
ω0

n

dn

dT
�T

]

a

+
√

κexain

mẍ + mŴmẋ + mω2
mx = Fopt + Fpth + FL

�̇T = −
�T

τth
+

Ŵpth |a|2

τth
(1)

with a the cavity field normalized such that |a|2 is
the number of intracavity photons, κ the optical cavity
decay rate, �ω = ωL − ω0 the laser-cavity detuning, ωL =
2πc/λL (ω0) the laser (cavity) frequency, gom = − ∂ω0

∂x
the

frequency-pull parameter, n the refractive index, dn/dT the
thermorefractive coefficient, �T the temperature increase
within the disk and κex the coupling rate of the cavity to the
optical input field ain, normalized such that |ain|2 = PL is
the input laser power. In the second line Fopt = FRP + Fel

is the sum of conservative optical forces (radiation pressure
and electrostriction), while Fpth is the dissipative pho-
tothermal force and FL the Langevin force associated to

TABLE I. Radiation pressure, electrostriction, and photothe-
mal force exerted onto the RBM by a single photon trapped
within the considered WGM, along with the thermal relaxation
time of the disk. All values are for the specific GaAs disk
considered in this work, operated under ambient conditions.

F1
RP (N) F1

el (N) F1
pth (N) τth (µs)

1.45 × 10−14 2.94 × 10−14 6.48 × 10−9 0.20

the mechanical damping rate Ŵm. In the third equation, τth

is the thermal relaxation time of the resonator and Ŵpth =
Rthκabs�ωL, with κabs the intracavity absorption rate and Rth

the thermal resistance of the disk that links the temperature
increase to the intracavity absorbed power κabs�ωL |a|2,
such that in the steady state �T = Ŵpth |a|2.

The set of equations (1) allows full modeling of the
optically induced amplification of mechanical motion, pro-
vided the involved model parameters are known. ω0, κ , κex,
ωm, m, and Ŵm are measured through a linear spectroscopy
of the resonator [26]. The data reported in Fig. 2(b) are
obtained with a WGM of radial order p = 5, whose cou-
pling gom to the first-order RBM of the disk is calculated by
finite-element-method (FEM) simulations [28,30], allow-
ing determination of the force per photon associated to
radiation pressure (F1

RP) and electrostriction (F1
el) through

the relations F1
RP = �g

geo
om (geometric coupling) and F1

el =
�gPE

om (photoelastic coupling) [30]. These forces are listed
in Table I along with the photothermal force per photon
F1

pth, which is evaluated from the known thermoelastic
properties of the resonator and from the parameter Ŵpth.
The latter is independently measured by fitting the thermo-
optic response of the resonator at large optical power
[24,31–33]. Finally τth is obtained from a measurement of
the frequency response of our GaAs disk resonator to a rf
modulation of the input light (see Appendix B), closing the
set of parameters required for the model. Finally, all opti-
cal forces at play if our system are known independently,
as well the mechanical response of the device to them. This
enables a full modeling and analysis of our experiments.

The values reported in Table I show that, under ambient
conditions, the employed RBM mode of the disk expe-
riences an important contribution from the photothermal
force. In the dynamical back-action regime however, the
response time of the force matters on top of its mere static
force amplitude [34]. The complete dynamical analysis
actually shows that the three types of interactions (radi-
ation pressure, electrostriction, and photothermal) partic-
ipate to the amplification of mechanical motion reported
in Fig. 2(b), finally leading to the self-oscillation trajectory
(see an equivalent analysis detailed in Ref. [24]). The exact
nature of the forces triggering the self-oscillation may not
be crucial per se, but is of interest below, where a con-
trolled optical force is generated by a second laser and
sensed by the oscillator.
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IV. PHASE NOISE OF THE OPTOMECHANICAL

SELF-OSCILLATOR

Just like for an electronic oscillator, the performances
of an optomechanical self-oscillator can be characterized
by its phase noise and frequency stability. These parame-
ters are crucial in the proposed force-sensing protocol, as
they set the resolution in force gradient when the oscilla-
tor’s frequency is taken as the estimator. In the absence
of optomechanical effects, the mechanical resonance line
width (δfm = Ŵm/2π ) is determined by geometrical and
structural properties of the disk resonator, along with its
interaction with a possible surrounding fluid [16,35–38].
In the self-oscillation regime however, the oscillator line
width is also determined by the operation conditions and
by the noise sources at play in the system or in its input.
Drawing on an analogy with lasers, the line width of
optomechanical self-oscillators has been described using a
general theory of “line narrowing” in self-sustained oscil-
lators [39], proposing an expression for the “Schawlow-
Townes line width” [40] of an oscillator merely affected
by thermomechanical noise:

δfm,osc =
πkBT

P
(δfm)2, (2)

where T is the bath temperature and P, the oscillator output
power, which can be written in terms of the energy stored
in the resonator P = ŴmEstored such that

δfm,osc =
kBT

2Estored
δfm. (3)

Equation (3) indicates that the oscillator’s line width scales
inversely with the stored energy, pointing towards the
advantage of an energetic oscillator for high resolution.
That said, Eqs. (2) and (3) rely on the assumption of a ther-
momechanical “white noise” and neglect other possible
noise sources [41]. It is hence worth measuring the phase-
noise spectrum of our optomechanical oscillator to better
clarify optimal conditions for force-sensing applications.

Figure 3(a) shows a phase-noise spectrum measured on
our GaAs optomechanical disk of radius 4.5 µm and thick-
ness 200 nm, self-oscillating on its first order RBM at
a frequency fm ≃ 314 MHz. For carrier-frequency offsets
between 104 and 106 Hz, the phase-noise spectral density
varies as 1/f 2 (dashed orange line), which is the signa-
ture of a white-noise source [41]. However, spectral bumps
appear between 102 and 104 Hz, which are observed to dis-
appear when the disk is evanescently coupled to a rigid
on-chip waveguide (see Fig. 8 of Appendix C). They are
associated to fiber taper coupling instabilities in our setup.
As the stored energy Estored increases with the drive opti-
cal power, we measure in Fig. 3(b) the phase-noise spectra
for the same oscillator as in Fig. 3(a), but for varying input
power. We observe that the phase noise reduces as power

10
2

10
3

10
4

10
5

10
6

10
7

-150

-100

-50

0

10
2

10
3

10
4

10
5

10
6

10
7

-120

-80

-40

0

 
(f

) 
(d

B
c
/H

z
)

1/f
2

(f
) 

(d
B

c/
H

z)

(a)

(b)

FIG. 3. (a) Phase-noise spectrum of a GaAs disk optomechan-
ical self-oscillator. The dashed orange line indicates a 1/f 2

dependence of the phase-noise spectral density. The measure-
ments are obtained just above threshold at λL = 1561 nm with
an optical power of 475 µW traveling in the fiber taper and inci-
dent on the cavity. (b) Phase-noise spectra of the same GaAs disk
self-oscillator for varying drive optical power impinging on the
cavity.

increases, as expected from Eq. (3) and observed on other
systems [39,42]. This underlines the interest of operat-
ing disk optomechanical oscillators at large optical power
for high-resolution sensing. At the same time, a too large
optical drive results in nonlinearities in the mechanical
to optical transduction, limiting the range of measure-
ments (see Appendix A). A compromise needs finally to
be chosen to reach optimal conditions, as described in the
following section.

V. FORCE SENSING WITH AN

OPTOMECHANICAL DISK SELF-OSCILLATOR

We now implement the proposed principle of self-
oscillation force detection with the ultra-high-frequency
and stiff optomechanical disk probe, using the experimen-
tal setting shown in Fig. 4(a). A first laser of wavelength
λ1 is used to inject light in a first WGM of the disk (WGM
1 resonating at λ ∼ 1532 nm), in order to drive the res-
onator into optomechanical self-oscillation like reported in
the previous sections. Once the self-oscillation regime is
reached and the optimal drive conditions are selected (see
above), we apply a test force onto the oscillator. We chose
to apply an optical force, because the full and independent
optomechanical characterization of the disk carried above
enables its complete analysis and modeling. A second laser
of wavelength λ2 is hence used to inject light into a sec-
ond WGM of the disk (WGM 2 resonating at λ ∼ 1590
nm), in order to create a weak optical force acting on the

024079-4
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(a)

(b)

FIG. 4. (a) Experimental setup for force-sensing experiment
with a GaAs disk optomechanical self-oscillator. FPC, fiber
polarization controller; WDM, wavelength division multiplexer;
C, collimator; P, linear polarizer; λ/2, half-wave plate; M, mir-
rors; L, lenses; FBF, fibered Bragg filter; PD1 and PD2, pho-
todiodes; DAQ, data acquisition card; OSC, oscilloscope; ESA,
electronic spectrum analyzer; FC, fiber connector. The yellow
lines indicate commercial optical fibers, the gray bare fibers,
the red free-space beams, and the black electric cables. (b) Left
panel: optical spectrum of WGM1 when the disk is at rest. Right
panel: optical spectra of WGM 2, measured by the second laser
when the disk is at rest with the first laser switched off (maroon)
and when the disk is optically driven by the first laser just above
self-oscillation threshold (blue).

oscillating RBM. By tuning λ2 to the flank of the reso-
nance of WGM 2, we generate a gradient for this optical
force, which is then detected by tracking the oscillator’s
frequency. The second laser is operated at much smaller
power than the first (in practice P1/P2 ∼ 40), which guar-
antees that the optomechanical self-oscillation conditions
are not disrupted when applying the force. The two laser
fields propagate through the same fiber taper to reach the
disk resonator, but are then split at the output by a wave-
length division multiplexer device. The strong field of laser
1 is filtered out from the output channel 2 by a fiber Bragg
filter, in order to obtain a precise read-out of the second
laser field alone.

The two employed WGMs, whose spectrum is visible in
Fig. 4(b), are TE polarized of radial order p = 5 but pos-
sess a distinct azimuthal number m − 1 and m + 1 [43].
The left panel shows the resonant optical spectrum of
WGM 1, acquired by scanning the first laser’s wavelength
when the disk is at rest (black curve). The right panel
shows the resonant optical spectrum of WGM 2, acquired
by scanning the second laser’s wavelength when the disk
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FIG. 5. Optical force sensing with a disk optomechanical
self-oscillator. The mechanical frequency shift �fm of the self-
oscillator driven by the first laser (green open circles) is shown
as a function of the wavelength of the second laser (see text). The
gray line is a fit by our model. The black curve represents the
optical fiber taper transmission close to the resonance of WGM
2, acquired by time integrating the optical intensity in the second
output channel when the disk is self-oscillating.

is at rest (maroon curve) and when the disk is set in self-
oscillation by the first laser (blue curve). When the disk
self-oscillates there is a thermo-optic redshift of WGM2
due to heating of the disk by laser 1, and we also observe
an increase of the apparent line width of WGM 2 (�λSO =
140 pm, to compare with �λ = 40 pm when the disk is at
rest). This increase is a consequence of the finite amplitude
of the self-oscillatory motion, which through optomechan-
ical coupling enforces a spectral oscillation (at frequency
fm) of the resonating wavelength of WGM2, and hence a
broadening in the slow spectroscopy reported in Fig. 4(b).
In order to limit this effect and avoid a complete distortion
of the WGM2 resonance, the disk is operated just above
the self-oscillation threshold in subsequent experiments.

Under these conditions, the force-sensing experiment is
carried out by scanning λ2 over the resonance of WGM2
while tracking the self-oscillator frequency. Varying this
way the detuning between the second laser and WGM2,
we vary the gradient of the weak optical force applied onto
the RBM and test in detail our sensing protocol, as well as
our understanding of the experiment. Figure 5 shows the
experimental results, with the self-oscillator’s frequency
shift �fm = f ′

m − fm (green open circles) plotted together
with the optical fiber taper transmission close to the reso-
nance of WGM 2 (black curve), for reference, both being
acquired as function of λ2, after integration on a time
scale ≫ (1/ωm, τth). We observe that the frequency shift
varies with λ2, as expected, and attains a maximal value of
800 Hz (relative shift 2.6 × 10−6). This corresponds to an
applied force gradient of 1.5 N/m, which is easily detected
despite the extreme stiffness of the probe k ∼ 105 N/m.

024079-5



BISWARUP GUHA et al. PHYS. REV. APPLIED 14, 024079 (2020)

The nature and amplitude of the force being sensed
can be analyzed using the dynamical model we introduce
above, which includes radiation pressure, electrostriction,
and photothermal forces [Eq. (1)]. This time the model is
applied to WGM2 instead of WGM1, and it is linearized
around an equilibrium point [24], leading to the following
expression for the shifted mechanical frequency ω′

m:

ω′
m = ωm

[

1 −
| < a > |2�g2

om

2mω2
m

{

ωm − �ω

(�ω − ωm)2 + κ2

4

−
�ω + ωm

(�ω + ωm)2 + κ2

4

}

−
| < a > |2gom

2mω2
m

F1
pth

1 + ω2
mτ 2

th
{

ωm + ωmτth
κ
2 − �ω

(�ω − ωm)2 + κ2

4

−
�ω + ωm + ωmτth

κ
2

(�ω + ωm)2 + κ2

4

}]

,

(4)

where | < a > |2 is the number of intracavity photons at
equilibrium (in WGM2), gom = g

geo
om + gPE

om, �ω = �bω +
gomxeq + (ω2/n)(dn/dt)�Teq with xeq (�Teq) the mean
displacement (temperature increase) associated to the equi-
librium point, and �bω = ωL − ω2 the detuning to the
resonance of the bare WGM2. As discussed above in
the analysis of the self-oscillator and elsewhere [24], the
parameters entering this expression are all evaluated in
an independent manner, which enables fitting experimen-
tal results with in principle no free parameter. In Fig. 5,
the gray line is the result of such a fit, where the parame-
ters Ŵth and τth are let to vary close to their first estimated
value in order to account for the residual uncertainty in
the resonator pedestal’s thermal properties and dimensions
(inferred in the SEM). The parameters entering this lin-
earized model are listed in Table II, and lead to a good
agreement with experiments. Note the asymmetry of the
frequency shift as a function of λ2, which results from
the thermo-optic effect, as detailed in Appendix D. As
already discussed in Table I, the optical force exerted by
photons stored in the WGM, and sensed here by the oscil-
lator, is dominantly a dissipative photothermal force, with
small associated radiation pressure and electrostriction
components.

Our results involve measured frequency shifts �fm of
hundreds of Hz. The RBM we employ having a natural
mechanical line width δfm of 100 kHz (Qm of ∼ 3000),
such frequency shifts would have been impossible to
resolve in the Brownian motion regime. In the experiments
reported in Fig. 5, the minimum detectable shift is shown
as an error bar of the green open circles and amounts
to �fm = 130 Hz, which corresponds to a relative shift
�fm/fm of 4 × 10−7. This corresponds to a detectable force
gradient of 0.9 × 10−1 N/m, out of reach of our extremely
stiff probe when operated in the thermal motion regime

TABLE II. Parameters used in the force-sensing model.

Parameter Measured value

m 67.6 pg
κin,1 6.055 × 1010 rad/s
κex,1 7.705 × 109 rad/s
PL,1 1.04 mW
κin,2 1.176 × 1011 rad/s
κex,2 3.684 × 1010 rad/s
PL,2 2.94 µW
Ŵpth 2.374 × 10−4 K/photon
τth 0.1 µs (fit) (measured 0.2 µs)

(see Appendix D and Fig. 9 for the full force-sensing curve
expressed in force gradient).

This detection capability demonstrates the practical
advantage brought by the self-oscillation approach for
force sensing: it provides us with a high-resolution below
the ppm, but at the same time does not require to sinu-
soidally force the mechanical motion to reach this per-
formance. Such forcing would indeed be challenging to
achieve with satisfying signal-to-noise ratio using elec-
tromechanical methods, given the ultra-high-frequency
range at play (300 MHz ≪ fm < 3 GHz) and the associ-
ated stiffness. Sinusoidal forcing and detection of surface
acoustic waves in the few hundreds of MHz range was, for
example, used for gas sensing, but with a signal-to-noise
ratio that did not reach the thermodynamical limit [44,45].
Optomechanical self-oscillation force sensing seems to
provide here a convenient solution. In the next section,
we clarify how far this sensing method could be further
developed.

VI. RESOLUTION OF FORCE SENSING WITH

OPTOMECHANICAL SELF-OSCILLATION

In this last section, we clarify the ultimate resolution
capabilities of the optomechanical self-oscillation force-
sensing method. We consider the ideal case where the
self-oscillator’s noise is solely governed by a white-noise
source, leading to the following power spectral density of
phase noise [41]:

L (f ) =
1

π

δfosc

δf 2
osc + f 2

, (5)

with δfosc the line width of oscillation and f the frequency
offset from the carrier. In the limit f ≫ δfosc, Eq. (5) is
approximated as

L (f ) ≃
1

π

δfosc

f 2
. (6)
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In the power-law expansion of the phase-noise spectrum,
the white-noise frequency component is given by [41]

L (f ) =
1

2
b−2f −2, (7)

which together with Eqs. (6) and (3) leads to the relation

b−2 =
1

π

kBT

Estored
δfm. (8)

Knowing that the frequency jitter of an oscillator affected
by a white-noise source is characterized by an Allan
variance given by [41]

σ 2
fm

(τ ) =
b−2

2τ
. (9)

We finally obtain the minimum resolvable frequency shift
of an ideal optomechanical self-oscillator:

σωm(τ )

ωm

=

√

kBT

Estored

√

B

2πQmfm
, (10)

where B = 1/τ is the measurement bandwidth and τ the
acquisition time.

Equation (10) turns out to be exactly equal to the ther-
momechanical limit established for the slope-detection
method, standardly employed in mechanical sensing at low
frequency, where the mechanical resonator is resonantly
driven by a sinusoidal force and its frequency tracked
by monitoring the motion’s amplitude or phase [17]. As
the minimum detectable shift determines the resolvable
force gradient, the outcome of our analysis is that the
optomechanical self-oscillation force sensing method has
the exact same thermodynamical force resolution as the
slope-detection method. Our finding can actually be under-
stood back from established results on feedback-controlled
systems. The optomechanical dynamical back-action effect
leading to optical cooling or amplification of motion can
indeed be depicted as an intrinsic closed-loop feedback
effect, where optical forces are linearly acting back on the
mechanical resonator [10]. It is an established result that
as long as the feedback is linear, there is in principle no
gain in resolution to expect from a feedback-controlled
mechanical device, as pointed out by independent works
on optically cooled mechanical resonators [46,47]. Indeed,
if the feedback cooling reduces the amount of fluctua-
tions of the resonator, it reduces at the same time the
resonator’s susceptibility to external forces by the same
amount, finally canceling any advantage. The optomechan-
ical amplification regime, which just as cooling results
from a linear feedback mechanism but with an opposite
sign, cannot increase the ultimate force-gradient resolution
either. As the present method employs the optomechan-
ical self-oscillation regime, which lies beyond the mere

regime of amplification, the question of a potential reso-
lution increase must a priori be reconsidered. Our analysis
indicates that as long as the amplitude of self-oscillation
remains moderate the dynamics of the system can still
be described by a linear optomechanical coupling, hence
general results on linear feedbacks must hold true. Note
finally that a similar conclusion was reached in the con-
text of frequency modulation atomic force microscopy:
kHz cantilevers set in oscillation using an external elec-
tronic feedback loop showed the same thermodynamical
limit of force detection as cantilevers operated with the
slope-detection technique [25].

VII. CONCLUSION

In conclusion, we investigate in detail the idea of using
an optomechanical self-oscillator as an efficient mechani-
cal force sensor, clarifying the optimal conditions to reach
performance. Even though the principles of operation com-
pletely differ from the conventional slope-detection tech-
nique, we establish the important result that the optome-
chanical self-oscillation method meets the same theoretical
thermodynamical limit in resolution. However, by per-
forming and modeling experiments on a concrete device,
we demonstrate that the method leads in practice to an
appreciable enhancement of the detection capability in sit-
uations where the slope-detection technique cannot be effi-
ciently implemented to reach ultimate limits of detection.
This is, in particular, relevant for ultra-high-frequency and
very stiff mechanical resonators, which have the potential
to resolve fast phenomena in the low-amplitude of motion
regime. While very high frequency (approximately MHz)
electronanomechanical oscillators were already employed
in sensing applications [48–50], they did not operate at the
thermomechanical noise limit. In contrast, optomechanical
detection has a quasi-infinite bandwidth and allows resolv-
ing thermomechanical fluctuations with a large signal-
to-noise ratio. This enables ultra-high-frequency optome-
chanical oscillators to approach the thermodynamical limit
of force detection (see Appendix D), and may open a path
to force-sensing bandwidths that approach the oscillation
frequency [51,52].

The optomechanical self-oscillation sensing technique
brings additionally an advantage of compactness, as it
requires a single continuous-wave laser and a single detec-
tor. It could hence be integrated in an autonomous opto-
electronics architecture. Finally, it does run irrespective
of the nature of the force being sensed, and can hence
be applied to the investigation of dissipative forces. Such
forces are of utmost importance in molecular physics and
biology, because they provide information about confor-
mation changes and their functional role: the possibility
to track them at high speed constitutes a scientific chal-
lenge. Questions are still open regarding the extension of
the optomechanical self-oscillation force-sensing method
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to nonlinear regimes, which are already touched at large
optical power (see Appendix A), or to the quantum regime,
where the noise merely results from vacuum fluctuations
[53,54]. Optomechanical sensing approaches will certainly
yet broaden their range of application, combining the pre-
cision of optical techniques with ultimately fast and low
perturbative mechanical devices.
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APPENDIX A: SELF-OSCILLATION IN PHASE

SPACE

In self-oscillation, the cavity resonance frequency ω0

is modulated in time by the large amplitude of mechani-
cal motion, following the relation ωcav(t) = ω0 − gomx(t).
This results in a large temporal modulation of the cav-
ity transmission T(t), which follows the dynamics of the
mechanical motion x(t). Figures 6(a) and 6(b) show the
temporal behavior of T and the corresponding phase-space
trajectory, when the detuning is such that the system sits
just above the self-oscillation threshold. The 2D phase-
space trajectory is obtained by considering the transmis-
sion T and its time derivative dT/dt as two conjugated
degrees of freedom.

-10 -5 0 5 10

0.93

0.96

0.99

0.93 0.96 0.99

-0.05

0.00

0.05

-10 -5 0 5 10

0.93

0.96

0.99

0.93 0.96 0.99

-0.05

0.00

0.05

(d)

T
ra

n
sm

is
si

o
n

 T

(c)

(b)(a)

d
t

d
T

(n
s-1

)
d

td
T

(n
s-1

)

T
ra

n
sm

is
si

o
n

 T

Time (ns) Transmission T

FIG. 6. Dynamics of optomechanical self-oscillation of a
GaAs disk. (a) Measured normalized transmission T as a function
of time. (b) Phase-space representation of the measured dynam-
ics. (c) Normalized transmission T as a function of time from
model. (d) Phase-space representation of the dynamics evaluated
from the model.

To model this self-oscillation dynamics, we write the
self-oscillation trajectory as a sinusoidal function:

x(t) = A cos(ωmt + φ) (A1)

and the time-varying transmission is evaluated using the
relation:

T(t) =
[�ω(t)]2 + (κin/2 − κext/2)2

[�ω(t)]2 + (κin/2 + κext/2)2
. (A2)

The lower panels of Fig. 6 present the results of such mod-
eling, which shows a good agreement with experimental
results. The outcome of this analysis is that the nonlinearity
of the mechanical-to-optical transduction, which is natu-
rally embedded in Eq. (A2), is responsible for the distorted
phase-space trajectories of Fig. 6 that depart from har-
monic circles. This indicates that a nonlinear optical force
feedback could already be at play in some self-oscillations
trajectories, with implications for force sensing that are to
be investigated.

APPENDIX B: THERMAL RELAXATION TIME τth

The thermal relaxation time τth is directly inferred from
a measurement of the frequency response of the GaAs
disk under illumination. To that purpose, the intensity of
the laser light injected into the disk is modulated and
the coherent amplitude response of the system monitored
using a network analyzer plugged onto the output pho-
todetector. Figure 7 shows the normalized response at low
frequency, which is governed by the thermo-optic effect
and hence reveals the thermal dynamics. τth is obtained by
fitting the response function by A + B/(1 + iωτth), where
A and B are real numbers and ω is the modulation fre-
quency. The fit provides the value of τth = 0.2 µs, which
is also in agreement with independent FEM simulations.

APPENDIX C: PHASE NOISE OF GAAS DISK

OPTOMECHANICAL SELF-OSCILLATORS

To complete informations given in the body of the text,
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FIG. 7. Normalized frequency response of a GaAs disk opti-
cally pumped by a laser whose intensity is sinusoidally modu-
lated.
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FIG. 8. (a) Phase-noise spectrum of a GaAs disk optomechan-
ical self-oscillator integrated on the chip with a suspended GaAs
taper waveguide. The dashed orange lines indicate the 1/f 3 and
1/f 2 dependences. (b) Phase-noise spectra of the same disk for
varying optical drive power. The quoted power is measured at
the output of the employed taper waveguide.

we show in Fig. 8 phase-noise spectra acquired on a self-
oscillating GaAs disk fully integrated on the chip, with a
suspended GaAs waveguide replacing the fiber taper [55].
The measurements are carried on a disk of radius 1.5 µm
and thickness 320 nm. We observe in Fig. 8(a) that close to
the carrier the phase noise varies as 1/f 3, while it recovers
a 1/f 2 dependence at higher frequency offsets. The 1/f 3

dependence is a signature of “flicker noise” (alternatively
known as “pink noise”), while the 1/f 2 regime still cor-
responds to the “white-noise” component [41]. Unlike the
fiber-coupled disks shown in the main text, we notice the
absence of spectral ‘bumps’ below 2 × 104 Hz, probably
as a consequence of more stable evanescent coupling con-
ditions enabled by the on-chip waveguide. In Fig. 8(b), we
observe again that the phase noise improves at higher drive
power.

APPENDIX D: FORCE GRADIENTS RESOLVED

BY THE VERY STIFF PROBE

We show in Fig. 9, in correspondance with Fig. 5, the
external force gradient �k = ∇F measured by the probe.
In the optomechanical self-oscillation regime, we observe
that an external force gradient as small as (�k ∼ 0.9 ×
10−1 N/m) can be resolved. While this value is usual for a
low-frequency cantilever type of resonator, it is unusual for
a stiff (k ∼ 105 N/m) and ultra-high-frequency resonator
of the kind explored here. The minimum detectable force
variation can be estimated through the relation Fmin =
A × ∇Fmin, with A the amplitude of the oscillatory motion.
We inferred an amplitude of oscillation of 7 pm, leading
to Fmin = 6 × 10−13N , which comes close to the ampli-
tude of Langevin forces in the measurement bandwidth
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FIG. 9. Force sensing with the optomechanical self-oscillator.
The force gradient �k sensed by the self-oscillator (green open
circles) is shown as a function of the wavelength of the sec-
ond laser (see text). The black curve represents the optical fiber
taper transmission close to the resonance of WGM 2, acquired by
time integrating the optical intensity in the second output channel
when the disk is self-oscillating.

B = 300 Hz (4.7 × 10−13N ), showing that the force sensor
is approaching its thermodynamical limit.

In Fig. 10, we plot the photon number in WGM2 at
equilibrium, after thermal relaxation, as a function of the
wavelength λ2 of the second laser. The asymmetry of the
curve results from the thermo-optic effect, and is modeled
here with the parameters of the above experiment and the
mechanical resonator at rest, following a model employed
in Ref. [31]. The thermo-optic effects is at the root of the
asymmetry of the frequency shift observed in Fig. 5, as is
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FIG. 10. Photon number in WGM2 as a function of the wave-
length of the second laser, evaluated at equilibrium after thermal
relaxation.
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already apparent in Eq. (4), which is linear in the equilib-
rium photon number. The asymmetry of the frequency shift
can also be understood within the delayed-force model
of optomechanics, which describes linear optomechani-
cal feedback effects such as dynamical back action and
the optical spring by subjecting the mechanical oscilla-
tor to a time-delayed force [34,56,57]. In the limit where
κ ≫ (ωm, 1/τth), which is valid here, this delayed-force
model recovers the results obtained from the lineariza-
tion of coupled equations Eq. (1) [24]. The model predicts
a spring frequency shift proportional to the derivative of
the steady-state force (at equilibrium) with respect to the
mechanical displacement [34]. In the situation consid-
ered here this implies a frequency shift proportional to
the derivative of the intracavity photon number plotted
in Fig. 10 with respect to λ2. The force gradient experi-
enced by the mechanical oscillator in our experiments is
hence asymmetric in the wavelength λ2. Note, however,
that integrated on a time scale ≫ (1/ωm, τth), the optical
output response recovers in contrast a symmetric profile
(black curve in Fig. 9). This feature is reproduced when
directly solving the set of nonlinear equations Eq. (1) with
an oscillatory motion x(t) as input.
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