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Abstract—In this paper, a force sensorless control scheme based
on neural networks (NNs) is developed for interaction between
robot manipulators and human arms in physical collision. In
this scheme, the trajectory is generated by using geometry vec-
tor method with Kinect sensor. To comply with the external
torque from the environment, this paper presents a sensorless
admittance control approach in joint space based on an observer
approach, which is used to estimate external torques applied by
the operator. To deal with the tracking problem of the uncertain
manipulator, an adaptive controller combined with the radial
basis function NN (RBFNN) is designed. The RBFNN is used to
compensate for uncertainties in the system. In order to achieve
the prescribed tracking precision, an error transformation algo-
rithm is integrated into the controller. The Lyapunov functions
are used to analyze the stability of the control system. The exper-
iments on the Baxter robot are carried out to demonstrate the
effectiveness and correctness of the proposed control scheme.

Index Terms—Admittance control, error transformation, force
observer, Kinect, neural adaptive control, neural networks (NNs),
robot.

I. INTRODUCTION

I
N THE last few decades, robots have become widely

used in various fields, such as industry, service, and med-

ical [1]–[5]. The robot can not only improve the quality of
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life but also can improve work efficiency and complete work

that operators cannot finish under certain condition. However,

traditional operating methods of robot usually need to use the

external devices and softwares, and will bring inconvenience

to the operator and reduce the production rates. An alternative

method to make the robot interact with the human directly is

letting robot learn human skills.

Traditional motion capture methods require operators to fix

sensors on each joint of human body, but this will bring a

lot of inconvenience [6]. In recent years, the vision-based

motion capture scheme for motion recognition provides us

another idea to achieve this goal [7], [8]. Because of its conve-

nience and accuracy, this vision-based scheme has been widely

adopted in robotics [9]. This control scheme uses a camera

to capture human motion, which can avoid operators wear-

ing a large number of wearable accessories. In this paper,

the camera used for motion capture is Kinect (version 2.0)

developed by Microsoft Company [10], [11]. Due to an RGB

camera and depth sensor embedded in Kinect sensor, we can

get three-dimensional (3-D) coordinates of each joint of human

body. Based on this, we used a geometry vector-based method

proposed in [12] to calculate each joint angle of human arm

and generate a desired trajectory.

In practical teleoperation control system, robots may

encounter external force from the environment. One approach

to achieve compliant behavior is impedance control. The con-

cept of impedance control in physical human robot interactions

was introduced by Hogan [13]. Nowadays, this approach has

become a classical control approach in robotics. The core idea

of the impedance control methodology is to map generalized

positions and velocities to generalized force. When controlling

the impedance of a mechanism, we are controlling the force

of resistance to external motions that are imposed by the envi-

ronment. From a practical point of view, we usually view the

behavior of the robot as the pose of the end-effector, which is

defined in the Cartesian coordinates. Typically, the Cartesian

position and velocity are the input of the controller and the

motor torque is the output. Another approach is an admittance

control, which is widely used in industrial robots. As shown

in Fig. 1, admittance control is the inverse of impedance: it

defines motions that result from a force input. An admittance

control architecture is able to receive external force in each

joint as inputs and generate the new motion. Therefore, force

sensors which are applied to receive external force have been
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Fig. 1. Diagram of impedance and admittance control.

widely used in admittance control systems. The general idea of

measuring the external force is to fix force sensors on manipu-

lators. However, these sensors added to the system are fragile

and costly. For these reasons, the related techniques of esti-

mating external force have received great attention and various

schemes have been proposed. In [14], early estimation methods

for robot application have been presented. In [15], disturbance

observer approaches based on motor torques, joint angles, and

velocities have been analyzed. In [16], a sensorless robot col-

lision detection approach based on generalized momentum has

been introduced.

Under an admittance control, with the measurement of

external force, a desired trajectory will be modified. Then,

a modified desired trajectory is obtained and tracked. In

teleoperation control systems, tracking precision is of great

importance for robotic manipulation. Model-free control and

model-based control are the two main categories of controlling

a robot manipulator. Compared with the model-free control

methods, the model-based control methods usually have bet-

ter control performance [17]. However, due to existence of

uncertainties, it is hard for us to obtain an accurate dynamic

model of a robot [18], [19]. How to deal with uncertainties

has become a core issue in control design [20]. Generally,

one of the most commonly used methods is adaptive control

without prior information of system parameters. In [21], adap-

tation laws are designed to handle parametric uncertainties of

the system.

In recent years, with the development of the neural networks

(NNs) technology, adaptive control schemes with NNs have

been widely employed in many systems [22]–[25]. In [26],

NNs are integrated into control design to solve control problem

in discrete-time systems with dead zone. In [27], an adaptive

neural control is used to achieve a good result with unknown

prior knowledge of system dynamics. In [28], a novel adaptive

control scheme is presented for an autonomous helicopter and

an NNs mechanism is employed into system to identify the

unknown inertial matrix. NNs have a variety of models, one of

the widely used network models is radial basis function NN

(RBFNN), which has a good generalization ability and fast

learning convergence speed. In [29], RBFNN is used to esti-

mate unknown functions in WMR system. In [30] and [31],

NN has been applied to handle the system uncertainties to get

a desired result. In [32], RBFNN is to approximate unknown

dynamics in the robot system. In [33], RBFNN is employed

to approximate unknown functions in nonlinear systems. NNs

are also used in other areas, such as image processing [34],

Fig. 2. Diagram of the control system.

function approximation [35], [36], and optimization [37]. The

system uncertainties can also be estimated by other intelligent

tools, such as fuzzy logic system, etc. [38], [39]. In prac-

tice, the rigorous precision requires that both the transient and

steady performance should be taken into account. However,

most general adaptive control methods can only guarantee

the steady performance, while difficult to solve the transient

problem [40]. For this purpose, we use error transformation

technique proposed in [41] and [42] to govern the tracking

errors into a desired level.

The contributions of this paper are presented as follows.

1) Combination of the admittance control and the force

observer shows an effective way to make the robot have

a compliant behavior subject to the external force.

2) Kinect sensor is used to generate trajectory to teleoperate

the robot. The error transformation technique and NN

are used in teleoperation system so that both transient

and stable tracking performance are guaranteed.

3) Analysis of signals in the admittance control system are

given to prove that all signals are bounded.

The rest of this paper is structured as follows. After giving the

preliminaries of the system in Section II. Section III gives the

design and analysis of the control design. The experimental

results are given in Section IV, before a conclusion is drawn

in Section V.

II. PRELIMINARIES

A. System Configuration

The teleoperation control system is shown in Fig. 2. Using

the Kinect sensor, a desired trajectory will be generated.

Kinect V2 is a human–machine interaction device launched

by Microsoft. It contains an RGB camera and depth sensor,

which are based on IR emitters. The RGB camera is used

to shoot color images within the scope of view and the depth

sensor can obtain and analyze spectra and create depth images

of the human body.

Without external torque from the environment, the robot

will follow the trajectory of the operator. If external torque

exists, the desired trajectory will be modified. The robot will

track the modified trajectory affected by the external torque

from the environment.

B. Human Arm Geometry Vector Approach

Most geometry approaches are based on locations of the

movements. With Kinect sensor, each joint of human body

is represented by 3-D point in the Kinect coordinate frame,

which follows the right-hand rule, as shown in Fig. 4. The

Kinect sensor is regarded as the origin of the coordinate
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Fig. 3. Geometry model of human left arm.

Fig. 4. Points representation in the Kinect coordinate frame modified
from [50].

frame and the z-axis is consistent with the direction of Kinect

induction. The geometry model of human left arm is built in

Fig. 3.

Since the vector method is not applicable to the Kinect coor-

dinate frame, we should map the coordinate frame of Kinect

to the mathematical coordinate frame.

From the skeleton data, we can transform two different

points into a vector, which is in the mathematical coordinate

frame. The transformation can be provided as

−→
AB = (x2 − x1, y2 − y1, z2 − z1)

T (1)

where A(x1, y1, z1) and B(x2, y2, z2) are the two different

points in the coordinate frame of Kinect.

After the vector of the mathematical coordinate frame is

obtained, based on the geometry vector approach [12], we can

calculate desired angle values using the vector angle formula

cos
〈
−→
V1,

−→
V2

〉

=

−→
V1 ·

−→
V2

|
−→
V1| · |

−→
V2|

. (2)

1) Calculation of Shoulder Angle: As shown in Fig. 3, the

shoulder yaw (∠DEA) can be obtained by calculating angle

between plane OEA and OED. The shoulder roll is the angle

of plane OEA and EAB.

The shoulder pitch angle (∠OEA) is the angle between vec-

tor EO and EA which can be calculated by passing EO and

EA into (2).

2) Calculation of Elbow Angle: There are two angles

related with the elbow joint. Elbow pitch (∠EAB) and elbow

roll is the angle between plane EAB and ABI.

3) Calculation of Wrist Angle: Now, we are coming to

solve angle of wrist. The wrist yaw angle is the angle between

lower arm and hand plane. The angle of wrist pitch can

be viewed as the angle between vector
−→
X5 and

−→
Y7 , we can

calculate it by employing following equations:

−→
Z7 =

−→
Y7 ×

−→
X7,

−→
X7 =

−→
BK
−−→
|BK|

,
−→
Z7 =

−→
BK ×

−→
BI

|
−→
BK| × |

−→
BI |

(3a)

−→
X5 = k1 ·

−→
BI + k2 ·

−→
BK (3b)

(

k1 ·
−→
BI + k2 ·

−→
BK·

)−→
AB = 0 (3c)

∣
∣
∣k1 ·

−→
BI + k2 ·

−→
BK

∣
∣
∣ = 1. (3d)

Until now, we get all seven joint angles. They are shoul-

der yaw, shoulder pitch, shoulder roll, elbow pitch, elbow

roll, wrist yaw, and wrist pitch, which can be defined as

qd1, qd2, qd3, qd4, qd5, qd6, and qd7.

C. External Torque Estimation: Observer Approach

In this section, the way to estimate an external torque in

joint space is using a force observer based on the gener-

alized momentum approach. Compared with the traditional

methods requiring computation of joint accelerations or the

inversion of the inertia matrix [43], this observer avoid reduce

the computing burden and noise with the acceleration of joint

angle.

The system dynamics can be described by

M(q)q̈ + C(q, q̇)q̇ + G(q) + τext = τ (4)

where q ∈ Rn and q̇ ∈ Rn denote the joint angle and velocity

vector, C ∈ Rn×n, M ∈ Rn×n, and G ∈ Rn are the system-

atic dynamics, representing Coriolis matrix, inertia matrix, and

gravity load, respectively. τext ∈ Rn is the external torque on

joints, and τ is the joint torque on robotic arms. In [43], the

generalized momentum is expressed as

p = M(q)q̇. (5)

Its time derivative form

ṗ = Ṁq̇ + Mq̈. (6)

Substituting (6) into (4), we have

ṗ = Ṁ(q, q̇)q̇ + τ − C(q, q̇)q̇ − G(q) − τext. (7)

Then, the inertia matrix M and can be written as [44]

Ṁ = C + CT . (8)

Substituting (8) into (7) results in

ṗ = CT(q, q̇)q̇ + τ − G(q) − τext. (9)

The advantage of this method is that (9) based on the general-

ized momentum does not involve joint angle accelerations q̈.

In the end, the external torque can be modeled as

τ̇ext = Aτ τext + wτ (10)

where wτ is the uncertainty, wτ ∼ N(0, Qτ ). Usually, Aτ is

defined as Aτ = 0n×n. However, a negative diagonal matrix

can reduce the offset of the estimation of disturbances. Then,

(9) can be reformulated as

ṗ = u − τext (11)
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Fig. 5. Overview of force observer based on generalized momentum
approach.

where

u = τ + CT(q, q̇)q̇ − G(q). (12)

The above equations can be combined and reformulated in the

state-space form

[

ṗ

τ̇ext

]

︸ ︷︷ ︸

ẋ

=

[

0n −In

0n Aτ

]

︸ ︷︷ ︸

Ac

[

p

τext

]

︸ ︷︷ ︸

x

+

[

In

0n

]

︸ ︷︷ ︸

Bc

u +

[

0

wτ

]

︸ ︷︷ ︸

w

y =
[

In 0n

]

︸ ︷︷ ︸

Cc

[

p

τext

]

+ v (13)

where v is the measurement noise v ∼ N(0, Rc). It can be

easily proved that this system is observable. Since q and q̇ are

able to be measured, the generalized momentum defined in (5)

can be regarded as a measurement. Then, a state observer is

designed

{
˙̂x = Acx̂ + Bcu + L

(

y − ŷ
)

ŷ = Ccx̂.
(14)

Solving the L is to design a gain matrix for the system, and

L can be calculated as

L = PCc
TR−1

c (15)

where the matrix P can be calculated by the algebraic Riccati

equation (ARE) [45]

AcP + PAc
T − PCc

TR−1
c CcP + Qc = 0 (16)

where Qc is the uncertainty of the state, written as

Qc = diag([0, Qτ ]). (17)

A schematic overview of the force observer is shown in

Fig. 5. As shown in Fig. 5, the output y = Ccx(t) is com-

pared with Ccx̂(t). Their difference, passing through the gain

matrix L, is used as a correcting term. If the gain matrix L is

properly designed, the difference will drive the estimated state

to actual state. From the above analysis, we can see that the

estimation of states can be obtained from observer, which can

be written as

τ̂ext =

[

0 0 1 0

0 0 0 1

]

x̂

p̂ =

[

1 0 0 0

0 1 0 0

]

x̂. (18)

D. Admittance Control

In this section, an admittance control method using the

estimated external torque is presented. We assume that the

manipulator will modify its desired trajectory when the exter-

nal torque is imposed on the robot. In this case, we use an

admittance control to receive the external torque. Based on the

measurements of the external torque τ̂ext and the initial desired

trajectory qd obtained from the Kinect, a modified trajectory

qr is generated. Therefore, the controller has the causality of

mapping τ̂ext to qr. Generally, an admittance model can be

described as

τ̂ext = f (qr, qd) (19)

where qd ∈ R7 is the vector of joint angles obtained from

Kinect and qr ∈ R7 is the vector of joint angles affected by

external torque; and f (·) is the mapping function. A simple

admittance model is Kd(qr −qd) = τ̂ext, where Kd is a positive

constant.

E. RBFNN

RBFNN is an artificial NN and has been widely used as

function approximators in control engineering. It is proved

that any smooth function can be approximated by the RBFNN

within a compact set � [46]. It can be expressed as follows:

φ(ZNN) = WTS(ZNN) + ε(ZNN) (20)

where ZNN ∈ � ⊂ Rm is the input vector, W is the

weight matrix, and l represents the number of neurons.

S(ZNN) = [s1(ZNN), s2(ZNN), . . . , s1(ZNN)]T is the basis func-

tion of RBFNN, and si(ZNN) is commonly chosen as the

Gaussian function with

si(ZNN) = exp

[

−(ZNN − ui)
T(ZNN − ui)

σ 2
i

]

, i = 1, . . . , l

(21)

where ui is a center of the node and σi denotes the variance.

If the number of neurons l is sufficiently large, there is a

weight matrix W∗ and an approximation error ε∗(ZNN)

φ(ZNN) = W∗TS(ZNN) + ε∗(ZNN). (22)

If the center of the node is chosen appropriately, the approxi-

mation error ε∗(ZNN) is bounded and could be minimized

W∗ = arg min
W⊂Rm

{

sup
∣
∣φ(ZNN) − WTS(ZNN)

∣
∣
}

. (23)

The ideal weight matrix W is unknown. In the practical

system, the weight matrix W is replaced by the estimation Ŵ.

Thus, (20) can be described

φ̂(ZNN) = ŴTS(ZNN) + ε(ZNN). (24)

The weight estimation errors are W̃ = W∗ − Ŵ.
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III. CONTROLLER DESIGN

The controller is designed to make the robot can follow the

desired trajectory in the joint space generated by the Kinect,

as shown in Fig. 2. The NN is used to estimate uncertainties

of the model and ensure the steady state of the system.

A. Error Transformation

We define tracking errors of the manipulator

eq = q − qd

ev = q̇ − vd (25)

where vd will be defined later. The objective is to make

the actual joint trajectory q track the desired joint trajec-

tory qd effectively. At first, we define a smooth and bounded

performance function

ρ(t) = (ρ0 − ρ∞)e−pt + ρ∞ (26)

where the parameters of ρ0, ρ∞, and p are the positive con-

stants. To guarantee that the tracking error can meet the tran-

sient performance, we introduce the following transformation

functions:

eqi(t) = ρ(t)Ri

(

Pi

(
eqi(t)

ρ(t)

))

(27a)

Ri(t) =

{
exp(t)−σ
1+exp(t)

, if eqi(0) > 0
σexp(t)−1
1+exp(t)

, if eqi(0) < 0.
(27b)

Ri(·) is the inverse function of Pi(·)

Pi(t) =

{
ln t+σ

1−t
, if eqi(0) > 0

ln t+1
σ−t

, if eqi(0) < 0
(28)

where σ is a positive constant. According to the function

Ri(·), if the ηi(t) is bounded, the bounds of the tracking error

eq(t) can be defined: −σρ(t) < eq(t) < ρ(t) with eq(t) > 0

and −ρ(t) < eq(t) < σρ(t) with eq(t) < 0. Therefore, the

overshoot 	 in transient phase is bounded by

− σρ(0) < 	 < ρ(0) if eq(0) > 0

−ρ(0) < 	 < σρ(0) if eq(0) < 0 (29)

and the amplitude of tracking errors in stable state will

be within in max [ρ∞, σρ∞] and the maximum overshoot

and undershoot of transient performance are bounded in

[σρ0i, −σρ0i]. Usually, the settling time is the shortest time

that the system achieve and maintain the steady state error

within the 100% ± 5% range, then the settling time is less

than (max(1, σ )/p)ln(ρ0 − ρ∞/1.05ρ∞). Therefore, we can

control the transient and stable state of the system by setting

proper parameters. From (27a), we define

ηi(t) = Pi

(
eqi(t)

ρ(t)

)

. (30)

Then, the desired joint velocity vd
i (t) is designed as

vd
i (t) = −k1ρ(t)ηi(t) + q̇d

i (t) +
ρ̇(t)

ρ(t)
eqi(t) (31)

where k1 is a positive constant.

We define a Lyapunov function V1 = (1/2)ηT(t)η(t). Its

differential form is

V̇1 =
ηT(t)Ṗ(η(t))ev(t)

ρ(t)
− k1η

T(t)Ṗ(η(t))ηi(t) (32)

where

Ṗ(η(t)) = diag
(

Ṗ1(R1(η1(t))), . . . , Ṗn(Rn(ηn(t)))
)

(33a)

vd =
[

vd
1, vd

2, . . . , vd
n

]

. (33b)

B. Neural Network and Joint Velocity Control

The goal of joint velocity control is to make the velocity

error ev(t) as small as possible. Substituting the differentiation

of ηi(t) into (4), we can obtain that

M(q)ėv + C(q, q̇)ev + G′(q) = τ + M(q)v̇d + C(q, q̇)vd (34)

where G′(q) = G(q) + ([Ṗ(η(t))η(t)]/ρ(t)).

Design the control torque

τ = −k2ev − M̂(q)v̇d − Ĉ(q, q̇)vd − Ĝ′(q) + τ̂ext. (35)

Applying the NN approximation technique, we have

M(q) = W∗T
M SM(q) + εM

C(q, q̇) = W∗T
C SC(q, q̇) + εC

G(q) = W∗T
G SG(q) + εG (36)

where W∗T
M , W∗T

C , and W∗T
G are the ideal weight matrix. The

estimation of M(q), C(q, q̇), and G(q) are based on RBFNN

can be written as

M̂(q) = ŴT
MSM(q)

Ĉ(q, q̇) = ŴT
CSC(q, q̇)

Ĝ(q) = ŴT
GSG(q). (37)

Then, the dynamics can be rewritten as

M(q)ėv + C(q, q̇)ev + k2ev +
Ṗ(η(t))η(t)

ρ(t)

= (M(q) − M̂(q))v̇d +
(

C(q, q̇) − Ĉ(q, q̇)
)

vd

+
(

G(q) − Ĝ(q)
)

+
(

τ̂ext − τext

)

(38)

where M̂(q), Ĉ(q, q̇), and Ĝ(q) are the estimation matrix.

The right-hand side of the equation can be expressed as

W̃(·)S(·), where W̃(·) = W(·) − Ŵ(·).

Considering the Lyapunov function V2 =

(1/2)(ev)
T(t)M(q)ev, its differential form with respect

to time is

V̇2 = (1/2)(ev)
TṀ(q)ev + (ev)

TM(q)ėv

= −k2‖ev‖
2
2 − (ev)

Tef + (ev)
T Ṗ(η(t))η(t)

ρ(t)

+ (ev)
TW̃T

MSM v̇d + (ev)
TW̃T

CSCvd + (ev)
TW̃T

GSG (39)

where ef = (τext − τ̂ext).



YANG et al.: FORCE SENSORLESS ADMITTANCE CONTROL FOR TELEOPERATION OF UNCERTAIN ROBOT MANIPULATOR USING NNs 3287

The updating law of the weight matrix Ŵ is

˙̂
WM = 
M

(

SM v̇d(ev)
T − γMŴM

)

˙̂
WC = 
C

(

SCvd(ev)
T − γCŴC

)

˙̂
WG = 
G

(

SG(ev)
T − γGŴG

)

(40)

where 
 and γ are the positive constant specified by the

designer.

C. Stability Analysis

Let us construct the overall Lyapunov function

V = V1 + V2 +
1

2
tr
(

W̃T
M
−1

M W̃M

)

+
1

2
tr
(

W̃T
C
−1

C W̃C

)

+
1

2
tr
(

W̃T
G
−1

G W̃G

)

. (41)

The derivative of V is calculated by

V̇ = −k1η
T(t)Ṗ(η(t))η(t) − k2‖ev‖

2
2 − (ev)

Tef

+ (ev)
TW̃T

MSM + (ev)
TW̃T

CSC + (ev)
TW̃T

GSG

− tr
(

W̃T
M
−1

M
˙̂

WM

)

− tr
(

W̃T
C
−1

C
˙̂

WC

)

− tr
(

W̃T
G
−1

G
˙̂

WG

)

≤ −k1η
T(t)Ṗ(η(t))η(t) − k2‖ev‖

2
2 − (ev)

Tef

− γMtr
(

W̃T
MŴM

)

− γCtr
(

W̃T
CŴC

)

− γGtr
(

W̃T
GŴG

)

.

(42)

According to the definition of function Ṗ(η(t)), we can

obtain ηT(t)Ṗ(η(t))η(t) ≥ 2/(1 + σ)‖η(t)‖2. Considering the

Young’s inequality [47]

W̃T
(

W∗ − W̃
)

≤ −
1

2
‖W̃‖2 +

1

2
‖W∗‖2

− (ev)
Tef ≤

1

2
‖ev‖

2 +
1

2
‖ef ‖

2. (43)

Then, (42) can be derived

V̇ ≤ −2k1/(1 + σ)‖η(t)‖2 −

(

k2 −
1

2

)

‖ev‖
2 +

1

2
‖ef ‖

2

−
1

2
γ tr
(

W∗T
M W∗T

M + W∗T
C W∗T

C + W∗T
G W∗T

G

)

−
1

2
γ tr
(

W̃T
MW̃M + W̃T

CW̃C + W̃T
GW̃G

)

. (44)

For k2 > (1/2), if the inequality satisfies the following

requirements:

κ ≤ −2k1/(1 + σ)‖η(t)‖2 −

(

k2 −
1

2

)

‖ev‖
2

+
1

2
γ tr
(

W̃T
MW̃M + W̃T

CW̃C + W̃T
GW̃G

)

(45)

where κ = (1/2)‖ef ‖
2 − (1/2)γ tr(W∗T

(·) W∗
(·)). Then, we

have V̇ ≤ 0.

We define the state variable ξ composed of η(t), ev, and

W̃(·), and it can be expressed as

V̇(ξ) < 0 ∀‖ξ‖ > ̺ (46)

where ̺ is a positive constant. Conversely, V̇(ξ) >

0 ∀‖ξ‖ > ̺.

Let us choose 0 < V(ξ) < β < c, where β and c are

the positive constants. Define that �b = {V(ξ) ≤ β} and

Fig. 6. Trajectory of ξ and the set �b defined in (49).

�c = {V(ξ) ≤ c}, and we have

� = {β ≤ V(ξ) ≤ c} = �c − �b. (47)

We see that V(ξ) with respect to time is negative over �,

that is

V̇(ξ) < 0 ∀ξ ∈ �. (48)

In other words, the state variable ξ(t) that outside the set �b

will enter into �b within a period of time, and cannot escape

�b because V̇ is negative on/outside its boundary V(ξ) = β,

as shown in Fig. 6.

Theorem 1: Using the uniformly ultimately bounded (UUB),

errors η(t), ev and W̃(·) will fall into the set �b, which is

defined as

�b =

⎧

⎨

⎩

(∥
∥W̃M

∥
∥, ‖W̃C‖, ‖W̃G‖, ‖ev‖, ‖η(t)‖

)

,

∣
∣
∣
∣
∣
∣

γM‖W̃M‖2

2κ
+

γC‖W̃C‖2

2κ
+

γG‖W̃G‖2

2κ

+

(

k2 − 1
2

)

κ
‖ev‖

2 +
2k1

(1 + σ)κ
‖η(t)‖2 ≤ 1

⎫

⎬

⎭
. (49)

As shown in Fig. 6, points on each axis of the coordinate

are defined as

2k1

(1 + σ)
‖η(t)‖2 = κ, η(t) = ̟

(

k2 −
1

2

)

‖ev‖
2 = κ, ev = α

γ
∥
∥W̃(·)

∥
∥

2
= 2κ W̃(·) = u. (50)

From the above analysis, we can conclude that the ‖η(t)‖,

‖W‖F , and ev are bounded. According to (25) and (26a), we

can obtain the tracking errors eq can be bounded, which can

guarantee the transient performance. Then, the q = eq + qd is

bounded.

IV. EXPERIMENT STUDIES

In this section, experiments studies are given to demon-

strate the effectiveness and correctness of the proposed control

scheme. The experiment is based on the Baxter Research

robot by Rethink Robotics, as shown in Fig. 7. The Baxter

robot is a two-armed robot with 7 degrees of freedom

(s0, s1, e0, e1, w0, w1, w2). Each joint is driven by a series elas-

tic actuator (SEA), which enable the robot have human-like
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Fig. 7. Experimental description.

Fig. 8. Operator is in a static position and keep his right arm in the horizontal
state. The right figure presents the variation of joint angle in successive frames.

behaviors. The robot is controlled and linked to a computer

and runs on the robot operating system (ROS).

In the experiment, the robot is interacting with the environ-

ment and the external torque is applied at the end-effector. For

the right arm of the robot, we initialized it in horizontal pos-

ture. Considering simplicity and generality, we use two joints

(e1, w0) and positions of other joints are locked in the exper-

iment. The desired trajectory generated by using the Kinect

sensor is the input signal of the control system and will be

modified by the external torque.

A. Test of Geometry Vector Performance

Two kinds of experiments are primarily implemented to

test the performance of kinematics geometry vector-based

approach. In the course of the experiments, only the operator

stands in front of the Kinect about 3 m. The first experi-

ment needs the operator to keep in a static position in front

of the Kinect sensor and his left arm in the horizontal state.

The experimental result is shown in Fig. 8, it is clear that the

variation of the seven joint angles are smooth and accurate.

Although there are some small fluctuations, the fluctuations

are so small that can be ignored. The reason for fluctuations

is that the points of the joints detected by the Kinect are not

absolutely stable and the operator cannot ensure that the arm

is completely stationary in the course of the experiment.

In the second experiment, the operator is in a dynamic action

and reciprocate rotation of his elbow from the origin position

to final position with a low speed. Using the same method,

the data is sent to MATLAB for processing.

Fig. 9. Operator rotate his arm circularly with a low speed from origin
position to final position.

As shown in Fig. 9, it is obvious to find that the varia-

tion of elbow pitch angle is periodic and regular in line with

the movement of the arm. Due to the jitter in the process

of elbow movement, there will be some tiny fluctuations in

the curve. The overall trend of angle is correct and satis-

factory. According to the above two kinds of experimental

results, the overall performance is consistent with our expec-

tation and satisfactory, which verify the correctness of our

proposed method.

B. Test of Neural-Learning Tracking Performance

This set of experiments are mainly to demonstrate the

effectiveness of the neural adaptive controller. The desired

trajectory is obtained from the Kinect sensor. The desired tra-

jectories are elbow pitch joint and wrist roll joint, respectively,

where t ∈ [0, ts] and ts = 20 s, as shown in Fig. 10. The

initial values of joint angle are set to be: q1 = 0 rad and

q2 = 0.1 rad, and the initial values of joint velocity are set to

be: q̇1 = 0 rad/s and q̇2 = 0 rad/s. To guarantee the transient

performance, the parameters of the performance functions are

set to be: ρ0 = 0.2 and ρ∞ = 0.03; and σ = 5. Therefore, the

error is bounded in [−σρ(t), σρ(t)]. The control gains are

selected as k1 = [12, 1] and k2 = [15, 1]. The initial weight

matrices are: ŴT
M(0) = 0 ∈ Rnl×n, ŴT

C(0) = 0 ∈ R2nl×n, and

ŴT
G′ = 0 ∈ Rnl×n.

Comparative experiments are carried to test the tracking

performance with three different methods. The experimental

results are shown in Figs. 10 and 11. As shown in Figs. 10(a)

and (b) and 11(a) and (b), the actual trajectory can follow the

desired trajectory well and the tracking errors can converge to

the prescribed bounded defined in (26) in both transient and

stable phase. From Fig. 11(a) and (b), we can see that there

is no overshot of each joint under the proposed controller.

Fig. 12 shows the convergence of NN weight norm of each

joint and the control inputs presented in Fig. 13 are bounded.

For the purpose of comparison, we carry out two different con-

troller proposed in [48] and [49], respectively. Fig. 10(c)–(f)

presents the tracking performance and the tracking errors are

in Fig. 11(c)–(f). From Fig. 11(c) and (d), under the controller

in [48], the tracking errors violate the prescribed bounds and

errors in stable phase are relatively larger than the proposed

controller. From Fig. 11(e) and (f), under the controller in [49],

we can observe that without transient constraint control, the

values of overshot are about 8.7% and 10.9% and the values

of settling time are 2.2 and 1.47 s for each joint, respectively.
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Fig. 10. Results of tracking performance of joints with three different meth-
ods. (a) Tracking performance of joint 1 with proposed controller. (b) Tracking
performance of joint 2 with proposed controller. (c) Tracking performance of
joint 1 with under controller in [48]. (d) Tracking performance of joint 2
with under controller in [48]. (e) Tracking performance of joint 1 with under
controller in [49]. (f) Tracking performance of joint 2 with under controller
in [49].

The experimental results show that our proposed controller

can guarantee the tracking errors never violate the prescribed

bounds in both transient and stable stage.

Fig. 11. Results of tracking errors of joints with three different methods.
(a) Tracking error of joint 1 with proposed controller. (b) Tracking error of
joint 2 with proposed controller. (c) Tracking error of joint 1 with under
controller in [48]. (d) Tracking error of joint 2 with under controller in [48].
(e) Tracking error of joint 1 with under controller in [49]. (f) Tracking error
of joint 2 with under controller in [49].

C. Test of Admittance Control Performance

The last experiment is mainly about the test of performance

of an admittance control. In the experiment, the external torque
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Fig. 12. NN weight norm of each joint.

Fig. 13. Control inputs of each joint. (a) Control input of joint 1. (b) Control
input of joint 2.

Fig. 14. Modified trajectory and the desired trajectory.

is set by the designer and applied at the manipulator from 6 s to

16 s. An admittance control is designed to track the modified

trajectory affected by the external torque, which is estimated

by the observer based on the generalized momentum approach.

The experimental results are presented in Figs. 14–17. As

depicted in Fig. 14, the desired trajectory qd of joint w0 will

be modified by the external torque to enable the robot have a

compliant behavior. The desired trajectory of joint e1 will not

be modified for the reason that the external torque is applied

in the vertical direction and the trajectory of joint e1 is in the

horizontal direction. The tracking error under an admittance

control is shown in Fig. 16 and the estimation of the external

Fig. 15. Tracking performance under admittance control.

Fig. 16. Tracking error under admittance control.

Fig. 17. Estimation of external torque.

torque is presented in Fig. 17. From the figures, the experi-

mental results demonstrate the effectiveness of the proposed

admittance control method.

V. CONCLUSION

In this paper, we proposed a sensorless control scheme

for uncertain robot manipulator using NNs. We used a kine-

matics geometry vector-based method to calculate each joint

angle of a human arm with Kinect sensor. The observer is

used to estimate the external torque, which in turn is the

input to admittance control. The error transformation method

is used to ensure steady state performance and transient

performance. The settling time, overshoot, and the final error

can be achieved by changing the parameters of the error trans-

formation functions. The RBFNN is employed to approximate

the uncertainties of the manipulator dynamics in the system.

The experimental results are provided to demonstrate the effec-

tiveness of our developed methods. In the future, more effort

will be taken to validate the proposed methods.

REFERENCES

[1] G. Hirzinger, J. Bals, M. Otter, and J. Stelter, “The DLR-KUKA suc-
cess story: Robotics research improves industrial robots,” IEEE Robot.

Autom. Mag., vol. 12, no. 3, pp. 16–23, Sep. 2005.



YANG et al.: FORCE SENSORLESS ADMITTANCE CONTROL FOR TELEOPERATION OF UNCERTAIN ROBOT MANIPULATOR USING NNs 3291

[2] Y. Kim and W. C. Yoon, “Generating task-oriented interactions of ser-
vice robots,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8,
pp. 981–994, Aug. 2014.

[3] L. B. Kratchman, T. L. Bruns, J. J. Abbott, and R. J. Webster, “Guiding
elastic rods with a robot-manipulated magnet for medical applications,”
IEEE Trans. Robot., vol. 33, no. 1, pp. 227–233, Feb. 2017.

[4] H. Liu, J. Qin, F. Sun, and D. Guo, “Extreme kernel sparse learning
for tactile object recognition,” IEEE Trans. Cybern., vol. 47, no. 12,
pp. 4509–4520, Dec. 2017.

[5] H. Liu, F. Sun, D. Guo, B. Fang, and Z. Peng, “Structured output-
associated dictionary learning for haptic understanding,” IEEE Trans.

Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1564–1574, Jul. 2017.

[6] A. Cappozzo, A. Cappello, U. D. Croce, and F. Pensalfini, “Surface-
marker cluster design criteria for 3-D bone movement reconstruction,”
IEEE Trans. Biomed. Eng., vol. 44, no. 12, pp. 1165–1174, Dec. 1997.

[7] A. Assa and F. Janabi-Sharifi, “A robust vision-based sensor fusion
approach for real-time pose estimation,” IEEE Trans. Cybern., vol. 44,
no. 2, pp. 217–227, Feb. 2014.

[8] Q. Peng, W. Chen, X. Wu, and J. Wang, “A novel vision-based human
motion capture system using dual-kinect,” in Proc. IEEE 10th Conf. Ind.

Electron. Appl. (ICIEA), Auckland, New Zealand, Jun. 2015, pp. 51–56.

[9] H. Boessenkool, D. A. Abbink, C. J. M. Heemskerk,
F. C. T. van der Helm, and J. G. W. Wildenbeest, “A task-specific
analysis of the benefit of haptic shared control during telemanipulation,”
IEEE Trans. Haptics, vol. 6, no. 1, pp. 2–12, Jan. 2013.

[10] G. Borenstein, Making Things See: 3D Vision With Kinect, Processing,

Arduino, and MakerBot. Sebastopol, CA, USA: O’Reilly, 2012.

[11] J. Abhijit, Kinect for Windows SDK Programming Guide. Birmingham,
U.K.: Packt, 2012.

[12] P. Liang, L. Ge, Y. Liu, L. Zhao, R. Li, and K. Wang, “An augmented
discrete-time approach for human–robot collaboration,” Discr. Dyn. Nat.

Soc., vol. 2016, p. 13, Feb. 2016.

[13] N. Hogan, “Impedance control: An approach to manipulation,” in Proc.

Amer. Control Conf., San Diego, CA, USA, 1984, pp. 304–313.

[14] A. Alcocera, A. Robertssona, A. Valerac, and R. Johanssona, “Force
estimation and control in robot manipulators,” in Proc. Vol. 7th IFAC

Symp. Robot Control (SYROCO), vol. 1. Wrocław, Poland, Sep. 2004,
pp. 55–60.

[15] A. Wahrburg, S. Zeiss, B. Matthias, and H. Ding, “Contact force esti-
mation for robotic assembly using motor torques,” in Proc. IEEE Int.

Conf. Autom. Sci. Eng. (CASE), Taipei, Taiwan, 2014, pp. 1252–1257.

[16] A. De Luca and R. Mattone, “Sensorless robot collision detection and
hybrid force/motion control,” in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), Barcelona, Spain, 2005, pp. 999–1004.

[17] A. M. Smith, C. Yang, H. Ma, P. Culverhouse, A. Cangelosi, and
E. Burdet, “Novel hybrid adaptive controller for manipulation in com-
plex perturbation environments,” PLoS ONE, vol. 10, no. 6, 2015,
Art. no. e0129281.

[18] Z. Peng, G. Wen, A. Rahmani, and Y. Yu, “Distributed consensus-based
formation control for multiple nonholonomic mobile robots with a speci-
fied reference trajectory,” Int. J. Syst. Sci., vol. 46, no. 8, pp. 1447–1457,
2015.

[19] F. Ficuciello, R. Carloni, L. C. Visser, and S. Stramigioli, “Port-
Hamiltonian modeling for soft-finger manipulation,” in Proc. IEEE/RSJ

Int. Conf. Intell. Robots Syst., Taipei, Taiwan, 2017, pp. 4281–4286.

[20] P. M. Kebria, H. Abdi, M. M. Dalvand, A. Khosravi, and S. Nahavandi,
“Control methods for Internet-based teleoperation systems: A review,”
IEEE Trans. Human–Mach. Syst., vol. 49, no. 1, pp. 32–46, Feb. 2019.

[21] W. He, S. Zhang, and S. S. Ge, “Robust adaptive control of a
thruster assisted position mooring system,” Automatica, vol. 50, no. 7,
pp. 1843–1851, 2014.

[22] M. Li, Y. Li, S. S. Ge, and T. H. Lee, “Adaptive control of robotic
manipulators with unified motion constraints,” IEEE Trans. Syst., Man,

Cybern., Syst., vol. 47, no. 1, pp. 184–194, Jan. 2017.

[23] C. L. P. Chen, Y.-J. Liu, and G.-X. Wen, “Fuzzy neural network-based
adaptive control for a class of uncertain nonlinear stochastic systems,”
IEEE Trans. Cybern., vol. 44, no. 5, pp. 583–593, May 2014.

[24] P. M. Kebria, A. Khosravi, S. Nahavandi, Z. Najdovski, and S. J. Hilton,
“Neural network adaptive control of teleoperation systems with uncer-
tainties and time-varying delay,” in Proc. IEEE 14th Int. Conf. Autom.

Sci. Eng. (CASE), Munich, Germany, 2018, pp. 252–257.

[25] Z. Liu, G. Lai, Y. Zhang, X. Chen, and C. L. P. Chen, “Adaptive neu-
ral control for a class of nonlinear time-varying delay systems with
unknown hysteresis,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25,
no. 12, pp. 2129–2140, Dec. 2014.

[26] Y.-J. Liu and S. Tong, “Adaptive NN tracking control of uncertain
nonlinear discrete-time systems with nonaffine dead-zone input,” IEEE

Trans. Cybern., vol. 45, no. 3, pp. 497–505, Mar. 2015.

[27] Z. Liu, C. Chen, Y. Zhang, and C. L. P. Chen, “Adaptive neural control
for dual-arm coordination of humanoid robot with unknown nonlin-
earities in output mechanism,” IEEE Trans. Cybern., vol. 45, no. 3,
pp. 507–518, Mar. 2015.

[28] G. Lai, Z. Liu, Y. Zhang, and C. L. P. Chen, “Adaptive position/attitude
tracking control of aerial robot with unknown inertial matrix based on
a new robust neural identifier,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 1, pp. 18–31, Jan. 2016.

[29] L. Ding, S. Li, Y.-J. Liu, H. Gao, C. Chen, and Z. Deng, “Adaptive
neural network-based tracking control for full-state constrained wheeled
mobile robotic system,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 47,
no. 8, pp. 2410–2419, Aug. 2017.

[30] C. Yang, Y. Jiang, Z. Li, W. He, and C.-Y. Su, “Neural control of biman-
ual robots with guaranteed global stability and motion precision,” IEEE

Trans. Ind. Informat., vol. 13, no. 3, pp. 1162–1171, Jun. 2016.

[31] C. Yang, Z. Li, R. Cui, and B. Xu, “Neural network-based motion control
of an underactuated wheeled inverted pendulum model,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 25, no. 11, pp. 2004–2016, Nov. 2014.

[32] W. He, Y. Dong, and C. Sun, “Adaptive neural impedance control of
a robotic manipulator with input saturation,” IEEE Trans. Syst., Man,

Cybern., Syst., vol. 46, no. 3, pp. 334–344, Mar. 2016.

[33] Y.-J. Liu, S. Tong, C. L. P. Chen, and D.-J. Li, “Neural controller design-
based adaptive control for nonlinear MIMO systems with unknown
hysteresis inputs,” IEEE Trans. Cybern., vol. 46, no. 1, pp. 9–19,
Jan. 2016.

[34] S. Bianco, C. Cusano, and R. Schettini, “Single and multiple illuminant
estimation using convolutional neural networks,” IEEE Trans. Image

Process., vol. 26, no. 9, pp. 4347–4362, Sep. 2017.

[35] D. Wang, D. Liu, H. Li, B. Luo, and H. Ma, “An approximate optimal
control approach for robust stabilization of a class of discrete-time non-
linear systems with uncertainties,” IEEE Trans. Syst., Man, Cybern.,

Syst., vol. 46, no. 5, pp. 713–717, May 2016.

[36] Y.-J. Liu, S. Lu, and S. Tong, “Neural network controller design for an
uncertain robot with time-varying output constraint,” IEEE Trans. Syst.,

Man, Cybern., Syst., vol. 47, no. 8, pp. 2060–2068, Aug. 2017.

[37] Q. Liu and J. Wang, “A one-layer recurrent neural network for con-
strained nonsmooth optimization,” IEEE Trans. Syst., Man, Cybern. B,

Cybern., vol. 41, no. 5, pp. 1323–1333, Oct. 2011.

[38] Z. Liu, F. Wang, Y. Zhang, and C. L. P. Chen, “Fuzzy adaptive quan-
tized control for a class of stochastic nonlinear uncertain systems,” IEEE

Trans. Cybern., vol. 46, no. 2, pp. 524–534, Feb. 2016.

[39] Y. Xu, R. Lu, H. Peng, and S. Xie, “Filtering for fuzzy systems with
multiplicative sensor noises and multidensity quantizer,” IEEE Trans.

Fuzzy Syst., vol. 26, no. 2, pp. 1011–1022, Apr. 2018.

[40] J. Ma, T. Yang, Z.-G. Hou, and M. Tan, “Adaptive neural network
controller of a stewart platform with unknown dynamics for active vibra-
tion isolation,” in Proc. IEEE Int. Conf. Robot. Biomimetics, Bangkok,
Thailand, 2009, pp. 1631–1636.

[41] L. Cheng, Z.-G. Hou, and M. Tan, “Adaptive neural network track-
ing control for manipulators with uncertain kinematics, dynamics and
actuator model,” Automatica, vol. 45, no. 10, pp. 2312–2318, 2009.

[42] L. Cheng, Z.-G. Hou, M. Tan, and W. J. Zhang, “Tracking control of
a closed-chain five-bar robot with two degrees of freedom by integra-
tion of an approximation-based approach and mechanical design,” IEEE

Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 5, pp. 1470–1479,
Oct. 2012.

[43] A. Wahrburg, E. Morara, G. Cesari, B. Matthias, and H. Ding, “Cartesian
contact force estimation for robotic manipulators using Kalman filters
and the generalized momentum,” in Proc. IEEE Int. Conf. Autom. Sci.

Eng. (CASE), Gothenburg, Sweden, 2015, pp. 1230–1235.

[44] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Heidelberg,
Germany: Springer, 2016.

[45] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, vol. 1.
New York, NY, USA: Wiley-Intersci., 1972.

[46] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257,
Jun. 1991.

[47] W. H. Young, “On classes of summable functions and their Fourier
series,” Proc. Roy. Soc. A Math. Phys. Eng. Sci., vol. 87, no. 594,
pp. 225–229, 1912.

[48] G. Peng, C. Yang, Y. Jiang, L. Cheng, and P. Liang, “Teleoperation
control of Baxter robot based on human motion capture,” in Proc. IEEE

Int. Conf. Inf. Autom. (ICIA), Ningbo, China, Aug. 2016, pp. 1026–1031.



3292 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 5, MAY 2021

[49] L. Zhang, Z. Li, and C. Yang, “Adaptive neural network based vari-
able stiffness control of uncertain robotic systems using disturbance
observer,” IEEE Trans. Ind. Electron, vol. 64, no. 3, pp. 2236–2245,
Mar. 2017.

[50] H. Reddivari, C. Yang, Z. Ju, P. Liang, Z. Li, and B. Xu, “Teleoperation
control of Baxter robot using body motion tracking,” in Proc. 2014

Int. Conf. Multisensor Fusion Inf. Integr. Intell. Syst. (MFI), Sep. 2014,
pp. 1–6.

Chenguang Yang (M’10–SM’16) received the
Ph.D. degree in control engineering from the
National University of Singapore, Singapore, in
2010.

He was a Post-Doctoral Research Fellow of
Human Robotics with Imperial College London,
London, U.K., from 2009 to 2010. He is a Professor
of Robotics with the University of the West of
England, Bristol, U.K. His current research interests
include human–robot interaction and intelligent
system design.

Dr. Yang was a recipient of the EU Marie Curie International Incoming
Fellowship, the U.K. EPSRC UKRI Innovation Fellowship, and the Best
Paper Award of the IEEE TRANSACTIONS ON ROBOTICS as well as over
ten conference best paper awards.

Guangzhu Peng received the B.Eng. degree in
automation from Yangtze University, Jingzhou,
China, in 2014, and the M.Eng. degree in pat-
tern recognition and intelligent system from the
College of Automation Science and Engineering,
South China University of Technology, Guangzhou,
China, in 2018. He is currently pursuing the Ph.D.
degree in computer science with the Faculty of
Science and Technology, University of Macau,
Macau, China.

His current research interests include robotics,
human–robot interaction, and intelligent control.

Long Cheng (SM’14) received the B.S. degree
(Hons.) in control engineering from Nankai
University, Tianjin, China, in 2004, and the Ph.D.
degree (Hons.) in control theory and control
engineering from the Institute of Automation,
Chinese Academy of Sciences, Beijing, China, in
2009.

He is currently a Full Professor with the Institute
of Automation, Chinese Academy of Sciences. He
is also an Adjunct Professor with the University
of Chinese Academy of Sciences, Beijing. He has

published over 100 technical papers in peer-refereed journals and prestigious
conference proceedings. His current research interests include rehabilitation
robot, intelligent control, and neural networks.

Dr. Cheng was a recipient of the IEEE TRANSACTIONS ON NEURAL

NETWORKS Outstanding Paper Award from IEEE Computational Intelligence
Society, the Aharon Katzir Young Investigator Award from International
Neural Networks Society, and the Young Researcher Award from
Asia–Pacific Neural Networks Society. He is currently serving as an
Associate Editor/Editorial Board Member for the IEEE TRANSACTIONS ON

CYBERNETICS, Neural Processing Letters, Neurocomputing, International

Journal of Systems Science, and Acta Automatica Sinica.

Jing Na (M’15) received the B.Sc. degree in
automation and the Ph.D. degree in dynamics and
control from the School of Automation, Beijing
Institute of Technology, Beijing, China, in 2004 and
2010, respectively.

From 2011 to 2013, he was a Monaco/ITER
Post-Doctoral Fellow with the ITER Organization,
Saint-Paul-lès-Durance, France. From 2015 to 2017,
he was a Marie Curie Intra-European Fellow with the
Department of Mechanical Engineering, University
of Bristol, Bristol, U.K. Since 2010, he has been

with the Faculty of Mechanical and Electrical Engineering, Kunming
University of Science and Technology, Kunming, China, where he became
a Professor in 2013. His current research interests include intelligent control,
adaptive parameter estimation, and nonlinear control and applications.

Dr. Na was a recipient of the Best Application Paper Award of the Third
IFAC International Conference on Intelligent Control and Automation Science
in 2013 and the 2017 Hsue-Shen Tsien Paper Award.

Zhijun Li (M’07–SM’09) received the Ph.D.
degree in mechatronics from Shanghai Jiao Tong
University, Shanghai, China, in 2002.

From 2003 to 2005, he was a Post-Doctoral
Fellow with the Department of Mechanical
Engineering and Intelligent Systems, University
of Electro-Communications, Tokyo, Japan. From
2005 to 2006, he was a Research Fellow with
the Department of Electrical and Computer
Engineering, National University of Singapore,
Singapore, and Nanyang Technological University,

Singapore. From 2012 to 2017, he was a Professor with the College of
Automation Science and Engineering, South China University of Technology,
Guangzhou, China. Since 2017, he has been a Professor with the Department
of Automation, University of Science and Technology of China, Hefei,
China. His current research interests include service robotics, teleoperation
systems, nonlinear control, and neural network optimization.


