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Abstract—In this paper, we present a sensorless admittance
control scheme for robotic manipulators to interact with un-
known environments in the presence of actuator saturation. The
external environment are defined as linear models with unknown
dynamics. Using admittance control, the robotic manipulator is
controlled to be compliant to external torque from the environ-
ment. The external torque acted on the end-effector is estimated
by using a disturbance observer based on generalized momentum.
The model uncertainties are solved by using radial basis neural
networks. To guarantee the tracking performance and tackle the
effect of actuator saturation, an adaptive neural network (NN)
controller integrating an auxiliary system is designed to handle
the actuator saturation is proposed. By employing Lyapunov
stability theory, the stability of the closed-loop system is achieved.
The experiments on Baxter robot are implemented to verify the
the effectiveness of the proposed method.

Index Terms—adaptive neural control; observer; neural net-
works (NNs); admittance control

I. INTRODUCTION

I
N the recent years, robots have been increasingly applied
in a wide range of fields, such as elderly care, medical

care and entertainment. In these cases, the robot will be
faced with unknown and complex environment. Therefore,
physical interaction with environment is an inevitable robot
behaviour. The interactive behaviour of the robot may be the
main objective of control design. Due to higher requirements
for intelligence of robots, robots are expected to complete
more difficult tasks on safety issues in social production life
for human beings. Robots are required to learn and adapt to
the environment to achieve compliant behaviours.

To make the robot better adapt to the unknown environment
and achieve a compliant behavior, force sensing is essen-
tial and fundamental. Force sensing is a way to make a
robot enable to detect objects near them. Traditional way to
achieve force sensing is to use force sensors. Force sensors
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are always expensive, and will bring burden to the system
integration. In addition, they could increase the complexity of
task execution. Therefore, sensorless techniques have attracted
more researchers. Early approaches of estimating the external
force are introduced in [1] [2], and applied to the robotic
manipulator [3]. Disturbance observer approaches based on
control error for force estimation are often used in early
robotic applications [4]. Recently, an alternative way is to use
a force observer based on generalized momentum [5] [6]. The
advantage of the generalized momentum based approaches is
that joint acceleration is not needed. In [5], this method is
further performed by a filtered model and a recursive least-
squares estimator. In [6], a Kalman filter is integrated in the
generalized momentum approaches to estimate the contact
forces/torques in Cartesian space.

Interaction control between robots and environments has
been studied for long time and attracted much attention from a
large number of researchers. Hybrid position/force control [7]
is the most used method before impedance control proposed.
However, when the environment is stiff, it may cause instabili-
ty during the interaction. Impedance control aims to develop a
relationship between the manipulator and the environment and
is proved to have better robustness [8]. In the early literatures,
researchers focused on dealing with uncertainties wth passive
impedance models in robotic systems. Therefore, impedance
control combining with adaptive control is often studied [9].
In [10], a desired impedance model is obtained with the
consideration of environmental dynamics. Under impedance
control, the manipulator could be compliant to the unknown
environment [11]. Admittance control regarded as the inverse
of impedance control is another scheme to achieve the compli-
ant behavior [12]. Compared with impedance control methods,
the concept of admittance control is that the system receives
a force from the environment and exports a motion. Then, the
compliant behavior of the manipulator will be achieved by
trajectory adaptation to the environment [13].

Under admittance control, the tracking performance is im-
portant and essential after trajectory adaptation. It is well
known that control strategies can be divided into two cate-
gories, namely model-based control and model-free control.
Compared with model-free control, model-based control has
a better control perfromance, but will depend heavily on the
model accuracy. In practical systems, due to the existence of
nonlinearities and uncertainties [14], perfect knowledge on
the model cannot be assumed. Therefore, adaptive control
methods integrating with intelligent architectures [15] [16],
have been widely researched. Different from the traditional
control methods, with powerful approximation ability, these
adaptive methods do not require complete dynamics of robotic
model [17]–[21]. In [22], in order to improve the dynamically
substructured systems (DSS) testing performance, an adaptive
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NN-based controller is proposed and neural networks used
to approximate uncertainties and nonlinearities on the DSS
dynamics. In [23], a fuzzy logic system employed in backstep-
ping control method is to approximate complicated functions.
Evolutionary algorithms are also combined with fuzzy systems
to achieve an optimal performance [24]. In [25], ant colony
optimization and particle swarm optimization are integrated
into fuzzy control systems to avoid the time-consuming task
of manually designing the controllers.

In practical control systems, saturation is a common and
unavoidable actuator nonlinearity and how to deal with actu-
ator saturation is important. The saturation problem not only
affects the control effect, but also may lead to the instability
[26]. Therefore, effort of investigation has been considered on
this topic. Based on adaptive control theory, several derived
adaptive schemes to solve the saturation problems have been
studied to handle actuator saturation [27]. In recent years,
neural learning adaptive schemes have received much attention
[28]. In [29], based on the state observer, neural networks are
employed into control design to deal with the effects of the
unknown disturbances and the saturation nonlinearity. In [30],
a well defined smooth function and a Nussbaum function are
integrated into adaptive control design. The saturation effect
will lead to nonlinear terms, which is compensated by the
Nussbaum function. In [31], an adaptive neural impedance
control is designed for a n-link robotic manipulator with
input saturation. An auxiliary system is introduced in control
design to deal with the saturation effect. This paper is a
continuation of our previous work [32], and the contributions
are summarized as follows:

(i) Admittance control method has been employed to
achieve a compliant behaviour with the consideration of envi-
ronmental dynamics in robot-environment systems.

(ii) An RBFNN-based controller integrating an auxiliary
system is designed in the presence of actuator saturation and
uncertainties in robotic system.

(iii) The external torque in the admittance model in joint
space is estimated by a torque observer replacing force sensors
to reduce the system burden.

The rest of the paper is organized as follow. In Section II,
problem statement and preliminaries are presented. In Section
III, the admittance control design with neural networks in
the presence of input saturation is discussed. In Section IV,
experimental results are presented. The appendix is the final
section of the paper and follows the conclusion.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Formulation

Generally, most of the environmental dynamics can be
expressed as [33]

ME q̈ + CE q̇ +GEq = −τe

CE q̇ +GEq = −τe
(1)

where ME , CE and GE denote mass, damping and stiffness
respectively.

As shown in Fig. 1, considering a robot arm interacting
with an unknown environment, a control scheme is designed
to make the robot arm have a compliant behaviour, and will
satisfy the following requirements: i) based on the admittance
method, the desired trajectory will be modified when an
external force is acting on the robot arm; ii) the external

torque applied at end-effector is estimated by the observer;
iii) the adaptive neural controller can guarantee the tracking
performance.

B. System Dynamics

The robot kinematics is given as follows

x(t) = φ(q) (2)

where x(t) is the vector of position and orientations and q is
the vector of joint angles. Then, the inverse kinematics are

q(t) = φ−1(x) (3)

Take the derivative of (2) with respect to time, we have

ẋ(t) = J(q)q̇ (4)

where J(q) is the Jacobian matrix. Further differentiating (4),
we have

ẍ(t) = J̇(q)q̇ + J(q)q̈ (5)

The relationship between joint force and wrench is

τext = JT(q)f (6)

Then, we give the n-link robot manipulator dynamics in
joint space

Dq(q)q̈ + Cq(q, q̇)q̇ +Gq(q) + τfric = τ + τext (7)

where q ∈ R
n, q̇ ∈ R

n and q̈ ∈ R
n are the vectors of joint

angle, velocity and accelerations respectively. Dq(q) ∈ R
n×n

denotes the inertia matrix; Cq(q, q̇)q̇ denotes the Coriolis and
centripetal torque; Gq(q) is the gravity. τ is the robot motor
torque; τfric is the friction torque and τext is the external
torque.

a) Property 1 [34]: Matrix Dq(q) is symmetric and
positive definite.

b) Property 2 [34]: Matrix Ḋq(q)−2Cq(q, q̇) is a skew-
symmetric matrix.

An admittance model describes the relationship between the
external force and position of robot arm [35]

Md(ẍr − ẍd) + Cd(ẋr − ẋd) +Kd(xr − xd) = −f (8)

where xd ∈ R
n is the desired trajectory, and xr ∈ R

n is the
virtual desired trajectory arised from the external force f .

Substituting (2)-(5) into (8), the left side of (8) is

Md(ẍr − ẍd) + Cd(ẋr − ẋd) +Kd(xr − xd)

=MdJ(q)(q̈r − q̈d) + (CdJ(q) +MdJ̇(q))(q̇r − q̇d)

+Kd(φ(qr)− φ(qd))

(9)

Then the admittance model in joint space can be defined as

MdJ(q)(q̈r − q̈d) + (CdJ(q) +MdJ̇(q))(q̇r − q̇d)

+Kd(φ(qr)− φ(qd)) = −J−T τext
(10)

where qd ∈ R
n and qr ∈ R

n are the desired trajectory and
virtual desired trajectory in the joint space, respectively. The
Md, Cd and Kd are gain matrices denoting the mass, damping
and stiffness matrix specified by the designer.

Assumption 1: Both qd and qr are bounded and differen-
tiable: ||qd||, ||qr|| ≤ c1, ||q̇d||, ||q̇r|| ≤ c2, ||q̈d||, ||q̈r|| ≤ c3
and c1, c2 and c3 are positive constants.
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Fig. 1. The overview of robot arm interacting with environment

Remark 1: In some specific situations, other admittance
models such as damping-stiffness model and stiffness model
are given

Cd(q̇r − q̇d) +Kd(qr − qd) = −τext

Kd(qr − qd) = −τext
(11)

We can find that if there is no external collision and the
desired manipulator’s motion is free, we have qr = qd, τext =
0. On the contrary, when external collision exists, the robot
arm will follow the new trajectory which can be seen as the
adaptation to the external torque and the target admittance
model defined in (10) describes this relationship.

C. Actuator Saturation

Saturation is a static nonlinear function used to describe the
insensitivity of large signals which exceed the input limit of
the actuator, as shown in Fig. 2.

Fig. 2. The saturation nonlinearity

In general, the saturation can be described as

Sat(τ) =







τmax u ≥ τmax

g(t) τmin < u < τmax

τmin u ≤ τmin

(12)

where u is the input signal, g(t) is a smooth function; Sat(τ) is
the output of the saturation nonlinearity; τmax and τmin denote
the maximum and minimum value of saturation nonlinearity,
respectively.

D. NN Approximation

With the approximation capability of the RBFNN [36], a
continuous smooth function h(Z): R

q → R is defined, and
RBFNN is used to approximate it

hnn(Zin) = WTS(Zin) (13)

where Zin ∈ Ω ⊂ Rq denotes the input of RBFNN;
W = [w1, w2, ..., wm] ∈ Rm, denotes the NN weight and
m > 0 is NN node number in the hidden layer; S(Zin) =
[S1(Zin), S2(Zin), ...., Sm(Zin)]

T and Si(Zin) denotes an
activation function which is often chosen as Gaussian function

Si(Zin) = exp[
−(Zin − uT

i
)(Zin − ui)

η2
i

], i = 1, ...,m (14)

where ui = [ui1, ui2, ..., uiq]
T ∈ Rq is the center of receptive

field and ηi is the variance. From the definition of activation
function, we can obtain that the S(Zin) is bounded, which can
be described as

||S(Zin)|| ≤ ̺ (15)

where ̺ is a positive constant.
With a sufficiently large node m, any smooth continuous

function can be approximated to any degree

hnn(Zin) = W ∗TS(Zin) + ε (16)

where W ∗ is the ideal weight over a compact set ΩZin
⊂ Rq;

the approximation error of RBFNN satisfies ||ε|| ≤ ω, where
ω is a small unknown constant. Over a compact set Zin ∈
ΩZin

⊂ Rq , the ideal weight vector can be

W ∗ = arg min
Zin⊂Rm

{sup|hnn(Zin)−WTS(Zin))|} (17)

III. CONTROL STSTEM DESIGN AND STABILITY
ANALYSIS

In this section, an admittance control scheme is developed,
as shown in Fig. 3. The collision from the environment is
viewed as the external torque exerted at the end-effector,
which is estimated by observer approach and also seen as the
disturbance of the system.

A. Observer based on the generalized momentum

Traditional force estimation methods rely on the model of
the manipulator involve joint acceleration q̈ and the inverse of
mass matrix Dq(q) [37], which will bring the amplification of
measurement noise to the system and increase the amount of
calculation of the system. To solve this problem, a disturbance
observer based on the generalized momentum is developed
[5]. This approach can be used to estimate the external torque
without involving joint acceleration q̈ and computation of the
inverse of the matrix Dq(q).

The generalized momentum of robot joint can be described
as

p = Dq(q)q̇ (18)

and its derivative is

ṗ = Ḋq q̇ +Dq q̈ (19)

Considering the robot dynamics (7), (19) can be written as

ṗ = Ḋq(q, q̇)q̇ + τ − Cq(q, q̇)q̇ −Gq(q) + τext − τfric (20)

Using the property 2 with a symmetry Dq(q), (20) can be

ṗ = Ḋq(q, q̇)q̇ + τ − Cq(q, q̇)q̇ −Gq(q) + τext − τfric

= τ + CT

q (q, q̇)q̇ −Gq(q) + τext − τfric
(21)
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Fig. 3. The overview of the control scheme

Fig. 4. The overview of the observer based on the generalized momentum

It can be seen that, in (21), the derivative of p depends on the
external torque τext and no acceleration term of robot joints.

Now, an observer is defined for generalized momentum p,
as shown in Fig. 4. The error of the p is defined as

ep = p− p̂ (22)

Then, we have

˙̂p = τ + CT

q (q, q̇)q̇ −Gq(q)− τfric +Kpep (23)

where Kp is the positive gain matrix.

In this paper, we use the model of Baxter robot in [38]. As
we can see, combine (21) with (23) and define r = Kpep, we
can obtain

ṙ = Kp(ṗ− ˙̂p)

= −Kp(−τext + r)
(24)

Remark 2: In robot-environment interaction applications,
control of contacted force is essential and important. The
force observer is a feasible way to estimate external forces
using the dynamics of the system. However, due to the
uncertainties in system dynamics, these model-based observers
can not provide accurate force estimates when the dynamics
of the model are not accurate. One straightforward solution
is to use adaptive methods to estimate unknown parameters.
The adaptive estimation technique has been investigated in
previous literatures, e.g., in [5], an adaptive parameters esti-
mation method was designed to estimate the unknown robot
dynamics and a recursive least squares estimation algorithm
is proposed for external force without the joint acceleration q̈.
With the powerful approximation ability of neural networks,
many works have been investigated to use neural-network-
based force/torque observers for estimating the contact force
and achieve a good performance [39] [40]. These NN-based
observers have the advantage of knowing little information
about the robots dynamics and avoid the restriction on tradi-
tional model-based observer approaches. In this regard, model-
free observer integrating in NN-based adaptive control scheme
will be included in our future work.

B. Controller

In this section, we develop a controller to track the desired
trajectory with input constraints. After that, stability analysis
will be presented. First, in joint space, we define some related
error signals as follows

eq = qr − q

α = q̇r +Keq

ev = ėq +Keq

(25)

where K is positive gain matrix. Taking the external distur-
bance into consideration, we define the control torque

τ = −eq + D̂qα̇+Ĉqα+ Ĝq − τ̂ext

+Kv(ev + ξ) +Kssgn(ev)
(26)

where Kv and Ks are gain matrices; D̂q , Ĉq and Ĝq are the
approximations of RBFNN; ξ is the state variable which will
be defined latter.

Considering the dynamics of a robot system with actuator
saturation

Dq(q)q̈ + Cq(q, q̇)q̇ +Gq(q) = Sat(τ) + τext (27)

where Sat(•) is the function of actuator saturation defined in
(12). Substituting (26) into (27), we have

−Dq ėv =(D̂q −Dq)α̇+ (Ĉq − Cq)α+ (Ĝq −Gq)

− eq + Cqev +∆τ +∆τe

+Kv(ev + ξ) +Kssgn(ev)

(28)

where

∆τ = Sat(τ)− τ

∆τe = τext − τ̂ext
(29)

The auxiliary system is defined as

ξ̇ =







−Kξξ −
|eTv ∆τ |+ 0.5∆Tτ∆τ

||ξ||2
+∆τ if ||ξ|| > µ

0 if ||ξ|| ≤ µ
(30)

where Kξ is a positive gain matrix and µ is defined as a small
constant.

Employing the approximation of neural networks, we can
obtain

D̂q(q) = ŴT

DSD(q)

Ĉq(q, q̇) = ŴT

C SC(q, q̇)

Ĝq(q) = ŴT

GSG(q)

(31)

The updating laws of RBFNN are

˙̂
WD = ΘD(SDα̇ev − δDW̃D)

˙̂
WC = ΘC(SCαev − δCW̃C)

˙̂
WG = ΘG(SGev − δGW̃G)

(32)

where ΘD, ΘC and ΘG are positive matrices, δ is a small
gain matrix for disturbance [41]. Then, the dynamics (28) can
be derived into

−Dq ėv =− eq + Cqev +∆τ +∆τe +Kv(ev + ξ)

+Kssgn(ev) + (ŴD −WD)SDα̇+ (ŴC −WC)SCα

+ (ŴG −WG)SG

(33)
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Fig. 5. The illustration of the experiment.

then

−Dq ėv =− eq + Cqev +∆τ +∆τe +Kv(ev + ξ)

+Kssgn(ev) + W̃T

DSDα̇+ W̃T

C SCα+ W̃T

GSG

(34)
where W̃D = ŴD − WD, W̃C = ŴC − WC and W̃G =
ŴG −WG

Theorem 1: Consider the definition of V , we can obtain
eq , ev , ξ, ||W̃D||, ||W̃C || and ||W̃G|| are uniformly ultimately

bounded. Since ||W || is bounded, ||Ŵ || = ||W + W̃ || is
bounded. With the given bounded qd, q̇d, qr and q̇r, according
to the definition of error signals in (25), we can obtain
q = qr − eq is bounded; α = q̇r +Keq is bounded.

Remark 3: As well known, Lyapunov direct method is a
very important controller design and stability analysis tool in
nonlinear systems. By constructing a Lyapunov function and
analyzing its derivative with respect to time, the stability at the
equilibrium point can be obtained without seeking the system
solution. Given a nonlinear dynamic system

ẋ = f(x, t), x(0) = x0 (35)

where x ∈ R
n. Its equilibrium point is the origin. N is the

neighborhood of the origin, where N = x : ||x|| ≤ ǫ, ǫ > 0.
Then, We can analyze the convergence of system states by
constructing a scalar Lyapunov function. However, lyapunov
method also has its limitations in some situations. In general,
the lyapunov stability analysis method focuses on the final
convergence results of the system state, that is, whether the
state converges or not. It rarely pays attention to convergence
process of system states. For example, in a practical control
system, we can use lyapunov direct method to analyze whether
the control errors of the system converge, but some transient
target, such as the overshoot and rise time, are difficult to be
achieved. Even in some practical cases, the lyapunov method
can lead to infeasible controller design and failing to achieve
a desired performance [42]. Another conservative point of
lyapunov method is that only quadratic Lyapunov functions
are considered in most cases. some related strategies to reduce
the conservatism are studied in [17], [43]–[45].

IV. EXPERIMENT RESULTS

To illustrate effectiveness of our developed method, we
utilize the Baxter robot to perform the experiments. The Baxter
robot has two arms and each of the Baxter robot has 7 Degrees
of Freedom (DOF): shoulder joints s0, s1, elbow joints: e0,
e1 and wrist joints: w0, w1 and w2. The model of the Baxter
is introduced in [38].
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In this experiment, at the beginning, when there is no
interaction with the external environment, the robot manip-
ulator will follow the desired trajectory. After a period of
time, an external torque will be applied at the end-effector
when the robot begins to interact with the environment. Under
the influence of external torque, the reference trajectory qd
of the robot will be modified to adapt to the environment
and a modified trajectory qr will be generated. The modified
trajectory qr is viewed as the adaptation behaviour of the
robot manipulator to the environment. The description of



6

0 5 10 15 20 25 30 35 40
t[s]

-3

-2

-1

0

1

2

3

4

m
ag

ni
tu

de
 [N

m
]

1
 without compensation

1
 with compensation

sat
min

sat
max

Fig. 9. The control input of joint s0 with/without saturation compensator.

t[s]
0 5 10 15 20 25 30

m
ag

ni
tu

de
 [r

ad
]

-0.5

0

0.5

1
q

d1

q
1

Fig. 10. The trajectory adaptation for external torque.

the experiment is depicted in Fig. 5. In the course of the
experiment, we test the shoulder joint s0.

A. Test of NN Controller

First, we test the performance of the adaptive NN controller.
The desired trajectory of the manipulator: qd =[0.5sin(t); -
1; 1.19; 1.94; -0.67; 1.03; -0.5]. The initial position of the
manipulator: q0 = [0.06; -1; 1.19; 1.94; -0.67; 1.03; -0.5] and
initial velocity is set: q̇0 =[0; 0; 0; 0; 0; 0; 0]. We employ
7 NN nodes for each input dimension to approximate uncer-

tainty and the initial configuration of NN are ŴDq
(0) = 0ŴDq
(0) = 0ŴDq
(0) = 0,

ŴCq
(0) = 0ŴCq
(0) = 0ŴCq
(0) = 0 and ŴGq

(0) = 0ŴGq
(0) = 0ŴGq
(0) = 0. The gains of NN law are

ΘD = diag [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01], δD =
diag [15, 15, 15, 15, 15, 15, 15]. The control gains are set K =
diag [10, 10, 10, 10, 10, 10, 10], Kv = diag [5, 6, 5, 4, 1, 1, 1]
and Ks = diag [2, 2, 2, 2, 2, 2, 2].

The tracking performance is depicted in Fig. 6.
As shown in Fig. 6, the actual trajectories of the
end−effector and the joint s0 can follow the desired
trajectories effectively, and the average tracking errors
of the end-effector with respect to x, y, z are around
(−0.03m, 0.04m), (0.004m, 0.008m), (−0.003m, 0.007m),
respectively, where (•) denotes the range of values. The
overall results are satisfactory, which implies the effectiveness
of the adaptive NN controller.

B. Test of Saturation Compensator

This group of experiments aim at testing the effective-
ness of the saturation compensator on joint s0. The pa-
rameters are selected as Kξ = diag{25; 0; 0; 0; 0; 0; 0},
satmax = diag{2.2; 5; 5; 5; 5; 5; 5} and satmin =
diag{−2.2;−5;−5;−5;−5;−5;−5}. where Kξ is the gain
matrix in auxiliary system for saturation compensation and
satmax, satmin are virtual saturation limits. When the ampli-
tude of the control input is larger than the virtual saturation
limits, it will be set equal to the amplitude of virtual saturation
limits.
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The experimental results are illustrated in Figs. 7-9. As
shown in Fig. 9, when there is no saturation compensation, the
amplitude of control input is larger than the upper bound at
some points. With the compensator, we can find that, the points
of input torque which are larger than the upper bound are com-
pensated, so the input of the torque can be limited within the
upper and lower bounds. In Fig. 7, the tracking performance
with input compensation is presented and the tracking errors
are also compared with and without the input compensation
in Fig. 8. As shown in Fig. 8, without compensation, the
tracking errors are larger because the actuator cannot provide
enough energy to guarantee the tracking performance where
the points of control input reach out the saturation limits.
The comparative figures show that, with input compensation,
the controller can ensure good position tracking performance,
which demonstrate that our control strategy is effective.

C. Test of Admittance Control

This group of experiments aims at testing the ef-
fectiveness of torque estimation and trajectory adapta-
tion for the environment. The external torque is defined
as τext = 0.3q̇ + 0.2q. The mass, damping and s-
tiffness matrices in admittance model are set Md =
diag [5, 5, 5, 5, 5, 5, 5], Cd = diag [10, 10, 10, 10, 10, 10, 10]
and Kd = diag [20, 20, 20, 20, 20, 20, 20]. The gain of the
observer is set Kp = diag [3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2].

The experiment results are shown in Figs. 10-12. The acting
time of the external force is from 13s to 15s. As shown
in Fig. 10, when the manipulator is interacting with the
environment, the desired trajectory will be modified to adapt
to the environment. By using a filter to make the result clearer,
the estimation performance is demonstrated in Fig. 12, which
shows a satisfactory results. The tracking performance for the
modified trajectory is illustrated in Fig. 11. The overall results
demonstrate that the proposed control scheme is effective.
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D. Discussion

Comparative simulation studies are conducted to further
verify the proposed method. The first group of comparative
simulation is carried out to illustrate the influence of input
saturation restriction on control performance in admittance
control scheme. In [46], an adaptive admittance control method
for human-robot interaction is developed, and the inner control
loop is to guarantee the actual trajectory x can track the
desired trajectory xm generated from an admittance model
without input constraints. The comparative simulations are
taking the input saturation into consideration, and results are
depicted in Figs. 13−15, where Figs. 13−14 are the tracking
performance and Fig. 15 is the control inputs of joint 1
under different conditions. The desired trajectory of joint 1
is qd = 1.25sin(0.25t), and initial condition of the joint
is q0 = 0.3, q̇0 = 0. The upper saturation bound is set
1.65Nm and the lower is −1.65Nm. Three situations are
considered in the simulation: no saturation constraint (black
line), saturation without compensation (green dashed-dotted
line), saturation with compensation (red dashed-dotted line).
From Figs 13−14, we can find that the tracking performance
of the controller with saturation compensation is better than the
controller without saturation compensation which degrades in
the case of saturation constraints. Furthermore, by employing
the compensation technique in the controller, the control

Fig. 16. Simulation model modified from [31].
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Fig. 17. Trajectory of each method.

performance can be improved without exceeding the upper
and lower bounds of the input of the actuator, as shown in
Fig. 15. It can be referred from that, in practical admittance
control scheme, when the actuator is saturated, it is difficult to
ensure that the robot can track the desired trajectory obtained
from the admittance model, which results in that the ultimate
control goal in [46] may not be achieved.

To further validate the effectiveness of admittance control
method in interactive control system, another comparative
studies are designed based on the admittance method and the
adaptive control method in [31]. In [31], a desired impedance
model and the external force τe are assumed to be completely
known, which are ideal conditions in practice. Therefore,
we conduct the simulation under the same environment and
remove these ideal conditions. The desired trajectory and the
initial configuration of joint 1 is set qd = 1.25sin(0.25t),
and initial joint condition is q0 = 0, q̇0 = 0. As depicted
in Fig. 16, the manipulator is designed to follow the desired
trajectory qd. After a period of time, the manipulator will have
a collision with the obstacle. Simulation results are presented
in Figs. 17−19. As shown in Fig. 17, after a collision, by
using admittance control method (trajectory of green dashed-
dotted line), the desired trajectory (blue dashed-dotted line)
set by the designer will be modified to reduce the contact
torque and have a compliant behaviour. On the contrary, the
desired trajectory will not be modified by using the adaptive
control method (trajectory of red dashed-dotted line), and the
manipulator is tracking the desired trajectory all the time.
Thus, the interaction torque (red solid line) is increasing in the
course of collision by adaptive control method without ideal
assumptions, and the contact torque (green dashed-dotted line)
by using admittance control method is smaller, as shown in
Fig. 19. The tracking performance of both methods is depicted
in Fig. 18. From these comparative results , we can find that
admittance control method combining with observer approach
is more applicable and can make the robotic manipulator have
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a compliant behaviour to external torque/force.

In fact, the proposed sensorless admittance control scheme
also has some weak points. As pointed out, in practical system,
some noise in the observer approach will have a inverse
influence on the estimation accuracy, and an expected modified
desired-trajectory obtained from the admittance model in (11)
could not be guaranteed. From the point of estimation accura-
cy, in [46], a force sensor is used to measure the contact force
could be closer to real value of torque/force. Furthermore, due
to the uncertainties of the model dynamics, the generalized
momentum based observer may meet some limitations in
certain practical applications and this will be included in
our future work to expand the scope of applications of our
proposed control scheme. In addition, input saturation does
not cover all the non-linear phenomena in actual mechanical
systems, and other constraints (e.g. dead-zone and time-delay)
should be further considered.

V. CONCLUSION

This paper presents a sensorless control scheme integrating
RBFNN, torque estimation and admittance control for Baxter
robot to interact with the unknown environment with input
constraint. The adaptive neural controller can guarantee the
tracking performance and the tracking errors of the system
within a small neighborhood of zero. The external torque from
the environment applied at end effector is estimated and admit-
tance control method is employed for trajectory adaptation to
achieve a compliant behaviour. Finally, the experiment results
on Baxter robot demonstrate the effectiveness of the proposed
method.

In the future work, many other non-linear constraint prob-
lems (e.g. dead-zone, time-delay and hysteresis) will be
considered in our proposed system. In these situations, the
performance and stability of the system might not be guaran-
teed. Furthermore, analysis and studies on dealing with more
complex environmental models will enrich the diversity of the
admittance control system. In addition, the proposed NN-based

adaptive control scheme can be combined with free-model
observer using intelligent tools, such as radial basis function
neural network (RBFNN), together to make the control scheme
more applicable.

VI. APPENDIX

Considering the Lyapunov candidate

V =
1

2
eTq eq +

1

2
eTv Dqev +

1

2
ξTξ +

1

2
tr(W̃T

DΘ−1

D W̃D)

+
1

2
tr(W̃T

CΘ−1

C W̃C) +
1

2
tr(W̃T

GΘ−1

G W̃G)

(36)
Its derivative form is

V̇ = eTq ėq + eTv Dq ėv +
1

2
eTv Ḋqev + ξTξ̇

+ tr(W̃T

DΘ−1

D
˙̃
WD) + tr(W̃T

CΘ−1

C
˙̃
WC) + tr(W̃T

GΘ−1

G
˙̃
WG)
(37)

Substituting (34) into (37), we have

V̇ =eTq ėq − eTv (−eq + Cqev +Kv(ev + ξ) +Kssgn(ev) + ∆τ

+∆τe + W̃T

DSDα̇+ W̃T

C SCα+ W̃T

GSG +
1

2
eTv Ḋqev + ξTξ̇

+ tr(W̃T

DΘ−1

D
˙̃
WD) + tr(W̃T

CΘ−1

C
˙̃
WC) + tr(W̃T

GΘ−1

G
˙̃
WG)

(38)
Substituting NN updating law (32) into (38), we can obtain

V̇ =eTq ėq − eTv (−eq + Cqev +Kv(ev + ξ) +Kssgn(ev) + ∆τ

+∆τe + W̃T

DSDα̇+ W̃T

C SCα+ W̃T

GSG +
1

2
eTv Ḋqev + ξTξ̇

+ tr(W̃T

DSDα̇ev − δDW̃T

DW̃D) + tr(W̃T

Cαev − δCW̃
T

C W̃C)

+ tr(W̃Gev − δGW̃
T

GW̃G)
(39)

Then, we have

V̇ =eTq ėq − eTv (−eq + Cqev +Kv(ev + ξ) +Kssgn(ev) + ∆τ

+∆τe) + ξTξ̇ +
1

2
eTv Ḋqev − tr(δDW̃T

DW̃D)

− tr(δCW̃
T

C W̃C)− tr(δGW̃
T

GW̃G)
(40)

Consider the following inequality [47]

−W̃TŴ ≤ −
1

2
W̃TW̃ +

1

2
W ∗TW ∗ (41)

Since

ξT∆τ ≤
1

2
ξTξ +

1

2
∆τT∆τ

−eTv ∆τe ≤
1

2
eTv ev +

1

2
∆τTe ∆τe

(42)

From (30), we have

ξTξ̇ ≤− ξTKξξ − |eTv ∆τ | −
1

2
∆τT∆τ + ξT∆τ

≤− ξTKξξ − |eTv ∆τ |+
1

2
ξTξ

(43)

Then, combing the (43) and the property 2, the derivative
form (40) can be

V̇ ≤ eTq ėq − eTv (−eq +Kv(ev + ξ) +Kssgn(ev)

+ ∆τ +∆τe)− ξTKξξ − |eTv ∆τ |+
1

2
ξTξ

− tr(δDW̃T

DW̃D)− tr(δCW̃
T

C W̃C)− tr(δGW̃
T

GW̃G)
(44)
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Considering the error signal ev = ėq+Keq , We can simplify
(44)

V̇ ≤ eTq ėq − eTv (−eq +Kv(ev + ξ))

− eTv ∆τe − ξTKξξ − |eTv ∆τ |+
1

2
ξTξ

− tr(δDW̃T

DW̃D)− tr(δCW̃
T

C W̃C)− tr(δGW̃
T

GW̃G)
(45)

Unfolding (45), we have

V̇ ≤ eTq ėv − eTq Kėq + eTv eq − eTv Kvev

− eTv Kvξ +
1

2
eTv ev +

1

2
∆τTe ∆τe − ξTKξξ +

1

2
ξTξ

− tr(δDW̃T

DW̃D)− tr(δCW̃
T

C W̃C)− tr(δGW̃
T

GW̃G)

≤− eTq Keq −
1

2
ξT(2Kξ − I −KT

v kv)ξ − eTv (Kv − I)ev

− tr(δDW̃T

DW̃D)− tr(δCW̃
T

C W̃C)− tr(δGW̃
T

GW̃G) + C
(46)

where C = 1

2
∆τTe ∆τe. To ensure the stability of the closed-

loop system, the parameters should satisfy : Kv − I ≥ 0 and
2Kξ − I −KT

v Kv ≥ 0.

Let us define the variable ς comprised of

eq, ξ, ev, W̃D, W̃C , W̃G and the derivative form of V

can be rewritten as V̇ (ς) ≤ −Aϕ(ς) + C, where A and
C are positive constants. There exists a invariant set L(ς),
that makes: −Aϕ(ς) + C < 0 when ς starts outside of the

set L(ς). At this time, since V̇ (ς) < 0, V (ς) decreases
so that ς will enter into L(ς) within a period of time and
remain afterwards. Therefore, the state variable ς satisfies
uniformly ultimately bounded(UUB) stablity and approaches
to a bounded compact set near zero.

The invariant set L(ς) can be defined as follows

Ωs =
{

(||W̃D||, ||W̃C ||, ||W̃G||, ||eq||, ||ev||, ξ), |

eTq Keq

C
+

1

2
ξT(2Kξ − I −KT

v kv)ξ

C
+

eTv (Kv − I)ev
C

σD||W̃D||2

C
+

σC ||W̃C ||
2

C
+

σG||W̃G||
2

C
≤ 1 }

(47)
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