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Abstract

The aim of the study was to examine the test-retest reliability and agreement across meth-

ods for assessing individual force-velocity (FV) profiles of the lower limbs in athletes. Using

a multicenter approach, 27 male athletes completed all measurements for the main analy-

sis, with up to 82 male and female athletes on some measurements. The athletes were

tested twice before and twice after a 2- to 6-month period of regular training and sport partic-

ipation. The double testing sessions were separated by ~1 week. Individual FV-profiles

were acquired from incremental loading protocols in squat jump (SJ), countermovement

jump (CMJ) and leg press. A force plate, linear encoder and a flight time calculation method

were used for measuring force and velocity during SJ and CMJ. A linear regression was fit-

ted to the average force and velocity values for each individual test to extrapolate the FV-

variables: theoretical maximal force (F0), velocity (V0), power (Pmax), and the slope of the

FV-profile (SFV). Despite strong linearity (R2>0.95) for individual FV-profiles, the SFVwas

unreliable for all measurement methods assessed during vertical jumping (coefficient of var-

iation (CV): 14–30%, interclass correlation coefficient (ICC): 0.36–0.79). Only the leg press

exercise, of the four FV-variables, showed acceptable reliability (CV:3.7–8.3%, ICC:0.82–

0.98). The agreement across methods for F0 and Pmax ranged from (Pearson r): 0.56–0.95,

standard error of estimate (SEE%): 5.8–18.8, and for V0 and SFV r: -0.39–0.78, SEE%:

12.2–37.2. With a typical error of 1.5 cm (5–10% CV) in jump height, SFV and V0 cannot be

accurately obtained, regardless of the measurement method, using a loading range corre-

sponding to 40–70% of F0. Efforts should be made to either reduce the variation in jumping

performance or to assess loads closer to the FV-intercepts. Coaches and researchers

should be aware of the poor reliability of the FV-variables obtained from vertical jumping,

and of the differences across measurement methods.
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Introduction

Within strength and power training, force-velocity (FV) profiling has received increasing

attention as a means to monitor training adaptations [1–3] and to serve as a basis for individ-

ual training prescriptions for athletes [3–6]. The concept of FV-profiling is based on the funda-

mental properties of skeletal muscles, where there is an inverse relationship between force and

velocity [7].

In multi-joint movements, the FV-relationship is commonly described as linear [8], in con-

trast to the hyperbolic relationship observed in isolated muscles or single-joint movements [7].

In practice, athletes can perform maximal efforts against different loads while force and veloc-

ity are measured during vertical jumping or similar multi-joint movements. Based on such

data, one can draw a linear regression line and extrapolate the theoretical maximal force (F0)

(i.e., force at zero velocity) and velocity (V0) (i.e., velocity at zero force). Following that, the

theoretical maximal power (Pmax) can be calculated as (F0�V0)/4 and the slope of the FV-profile

(SFV) as F0/V0 [9]. However, controversy exists about the linearity of FV-relationships

obtained from multi-joint movements [8].

The value of a test is highly dependent on its reliability, especially when evaluating individ-

ual data from high-performing athletes [10]. However, although several studies have evaluated

the within-session reliability of FV-variables [11–18], limited attention has been directed

towards the between-session reliability of these FV-variables in athletes. Additionally, only

encoders and the flight time calculation method have been used for measurements of between-

session reliability of the FV-variables [12, 13, 19]. Hence, the reliability of other commonly

used methods such as force plates and leg press devices is unknown [11–18]. Furthermore, dif-

ferent devices and methods (e.g., force plates, linear position transducers, pneumatic resistance

apparatus and the flight time calculation method) are used to assess the lower limb FV-vari-

ables, but the agreement among these has received limited attention [17, 20–22].

Giroux et al. [20] previously investigated the reliability and agreement among three mea-

surement methods (accelerometry, linear position transducer and flight time calculation

method) during vertical jumps. However, they reported only average values of force, velocity

and power for each jump, and not the extrapolated FV-parameters (F0, V0, Pmax and SFV) that

are increasingly used for individual training prescriptions [3–5, 23]. Garcı́a-Ramos et al. [22]

investigated the agreement across methods for CMJ (force platform, linear position transducer

and flight time calculation method), but not SJ. As the test-retest reliability of the different

methods for assessing individual FV-profiles is of crucial importance, it is of great interest to

investigate the mentioned shortcomings in the literature.

A novel aspect of FV-profiling during vertical jumping is the possibility of obtaining the

extrapolated variable V0 and the calculated SFV, as there are numerous methods for assessing

maximal force and maximal power [24]. Interestingly, SFV and V0 have previously shown

poorer reliability than F0 and Pmax in vertical jumping [11]. Cuk et al. [25] hypothesized that

this lower reliability might be due to the distance of extrapolation, as all measurements are per-

formed closer to F0 compared to V0, in addition to the small range in loads assessed during

incremental loading protocols in vertical jumping. These speculations were partly confirmed

by Garcı́a-Ramos et al. [26], who reported that the load range used to acquire the FV-profile

significantly affects the reliability of V0. Assessing loads close to F0 is limited by the technical

demand of jumping with heavy loads, while attempts closer to V0 are limited by the subject’s

own bodyweight during vertical jumping. However, the bodyweight issue is not present during

the leg press exercise, making it possible to assess loads closer to both F0 and V0, potentially

improving the reliability for the FV-variables. It is therefore of great interest to investigate the
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reliability of the extrapolated FV-variables from commonly used vertical jumping exercises as

well as from the leg press exercise.

The aim of the present study was to examine the i) test-retest reliability and ii) agreement

across methods for assessing individual FV-profiles of the lower limbs in well-trained athletes.

Methods

Experimental approach and design

The participants in the present study underwent physical testing four times. The first two test-

ing timepoints were separated by ~1 week, before a training period of 2~6 months. The two

last timepoints were also separated by ~1 week (Figs 1 and 2).

The data were collected from multiple regional Olympic training and testing centers.

Because not all facilities had the same testing capacities, the sample size differed across the

measurement methods. Therefore, the main analysis in this study was performed on the par-

ticipants tested under all methods (reliability and agreement), with an additional aggregated

analysis including all participants, with varying sample sizes across methods (only reliability

analysis). For the main analysis, the test leaders were constant, and for the aggregated analysis

the test leaders and equipment differed across centers but were kept constant for each partici-

pant (sample sizes for all tests are presented in the results section). Written informed consent

was obtained from all participants prior to commencing their involvement in the study.

Fig 1. Flow chart representing study design.

https://doi.org/10.1371/journal.pone.0245791.g001
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The study was reviewed by the ethical committee of Inland Norway University of Applied Sci-

ences, approved by the Norwegian Centre for Research Data and performed in agreement with the

Declaration of Helsinki. The athletes in the main sample were familiar with the testing procedures,

whereas the subjects in the mixed sample had various levels of experience prior to the study.

Participants. For the main analysis, a total of 27 well-trained male athletes from handball

and ice hockey were included (age 21 ± 5 years; height 185 ± 8 cm; body mass 84 ± 13 kg;

Table 1).

For the aggregatedmixed sample, bothmale (approximately 80% of sample) and female athletes

participated (age 21 ± 4 years; height 182 ± 9 cm; body mass 78 ± 12 kg; Table 2). Most of the par-

ticipants were team sport players in handball, ice hockey, soccer, and volleyball, while the remain-

ing participants competed in Nordic combined, ski jumping, weightlifting, athletics, badminton

and speed skating. The competition level ranged from world class (Olympic medalist) to club level,

with the majority competing at national and international level in their respective sports.

Testing procedures. All participants were instructed to prepare for the test days as they

would for a regular competition in terms of nutrition, hydration, and sleep, and to refrain

from strenuous exercise 48 hours prior to testing. All testing was performed indoors, and the

participants were instructed to use identical footwear and clothing on each test day.

Bodyweight was measured wearing training clothes and shoes (as total bodyweight is used

to calculate force in some of the methods). All participants performed a standardized ~10-min

Fig 2. Flow chart representing study design and sample size for main analysis.

https://doi.org/10.1371/journal.pone.0245791.g002

Table 1. Performance characteristics of the athletes for main analysis.

Mean ± SD Max Min

CMJ (cm) 38 ± 4 43 28

SJ (cm) 36 ± 4 43 28

Values from baseline measures, sample size = 27, SJ: Squat jump, CMJ: Countermovement jump, cm: Centimeters, s:

seconds, SD: Standard deviation.

https://doi.org/10.1371/journal.pone.0245791.t001
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warm-up procedure prior to testing, consisting of jogging, local muscle warm-up (hamstring

and hip mobility–consisting of light dynamic stretches), running drills (e.g. high knees, skip-

ping, butt-kicks, explosive lunges) and bodyweight jumps.

The different tests were separated by 5–10 min to ensure proper recovery, and light snacks

and drinks were offered to the participants during the testing sessions. The testing protocol

consisted of a series of squat jumps (SJ), countermovement jumps (CMJ) and a leg press test

with incremental loads.

SJ and CMJ were initially performed with bodyweight, accompanied by an incremental

loading protocol consisting of 0.1 (broomstick), 20, 40, 60 and 80 kg. In the aggregated sample,

for some weaker participants (i.e., those unable to jump with 80 kg), a protocol of approxi-

mately 5 loads up to 80% of bodyweight was used. The increase in loads was then individually

determined. In both the SJ and CMJ, the FV-relationship was derived from a force plate (For

main analysis: Musclelab; Ergotest AS, Porsgrunn, Norway and for aggregated analysis some

tested at: AMTI; Advanced Mechanical Technology, Inc Waltham Street, Watertown, USA)

and a linear position transducer encoder (Ergotest AS, Porsgrunn, Norway). The encoder was

placed on the ground and connected to the barbell. Participants were instructed to keep their

hands on their hips for the bodyweight trials, and a broomstick was used as the 0.1 kg load.

Two valid trials were registered for each load. The recovery after each attempt was 2–3 min.

For the SJ, participants were asked to maintain their individual starting position (*90˚

knee angle) for about 2 s and then apply force as fast as possible and jump to the maximum

possible height before landing with their ankles in an extended position. Countermovement

was not allowed for the SJ and was checked visually with the direct force output from the force

plate. The starting position for both SJ and CMJ was standardized to the athlete’s self-selected

starting position and kept constant for all jumps and testing sessions. The starting position for

the SJ and the depth of the CMJ was controlled using a rubber band beneath the thighs of the

athletes. If these requirements were not met, the trial was repeated. The CMJ test procedure

was similar to that for SJ, except for the pause in the bottom position.

For the leg press, Keiser Air300 horizontal pneumatic leg press equipment with an A420

force and velocity measuring device (Keiser Sport, Fresno, CA) was used. The FV-variables

were derived from a 10-repetition FV-test pre-programmed in the Keiser A420 software. To

determine the loading range, each participant’s 1RM was obtained at the familiarisation ses-

sion for the main analysis, whereas the 1RM was individually estimated for the participants in

the aggregated analysis. The test started with two practice attempts at the lightest load, corre-

sponding to*15% of 1RM. Thereafter, the load was gradually increased with fixed steps

(*20–30 kgf) for each attempt until reaching the*1RM load and a total of 10 attempts across

the FV-curve (15–100% of 1RM). The rest period between attempts got longer as the load

increased. The rest period between attempts was*10–20 seconds for the initial five loads, and

20–40 seconds for the last four loads. The seating position was adjusted for each participant,

aiming at a vertical femur, equivalent to an 80-90˚ knee angle, and the feet were placed with

the heels at the lower end of the foot pedal. Participants were asked to extend both legs using

Table 2. Performance characteristics of the athletes for aggregated analysis.

n = Mean ± SD Max Min

CMJ (cm) 83 38 ± 5 58 25

SJ (cm) 72 35 ± 6 51 22

Values from baseline measures, sample size in table. SJ: Squat jump, CMJ: Countermovement jump, Centimeters, s:

seconds, SD: Standard deviation.

https://doi.org/10.1371/journal.pone.0245791.t002
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maximum effort during the entire 10-repetition FV-test. Due to the pneumatic semi-isotonic

resistance, maximal effort does not cause ballistic action, and the entire push-off was per-

formed with maximal intentional velocity. The leg press was performed as a concentric-only

action without countermovement, as the pedals were resting in their predetermined position

prior to each repetition. The eccentric phase was submaximal and not registered.

Data analysis

All FV-variables were obtained from the average force and velocity during the concentric phase

of the movement. For each incremental loading test, a linear regression was fitted to the average

force and velocity measurements to calculate the individual FV-variables. F0 and V0were defined

as the intercepts of the linear regression for the corresponding force and velocity axis, while SFV
refers to the slope of the linear regression. Pmax was then calculated as F0�V0/4. All FV-variables

were obtained from FV-profiles with a coefficient of determination greater than 0.95 [9].

Force plate: FV-variables derived from the force plate were analysed using a customized

Microsoft Excel spreadsheet (Microsoft Office Professional Plus 2018, version 16.23). Velocity

was calculated by integrating the acceleration obtained from the ground reaction forces. The

centre of mass position was the integral of velocity, while power was the product of force and

velocity [27]. The start of the concentric phase for the SJ was defined as the point at which

force exceeded 5 SD of the steady-stance weight prior to the jump [27–29]. For the CMJ, the

integration of velocity started when the force fell below 5 SD of the steady-stance weight. The

concentric phase was defined as the point at which velocity was greater than 0 m/s. The end of

the concentric phase for both SJ and CMJ was defined as the instant when the participant left

the force plate (i.e., take-off: when forces fell below 10N).

Encoder: By measuring the position of the cable (connected to the bar) as a function of

time, the software calculates force and velocity (MuscleLab, version 10.5.69.4815). Average

force was calculated as the product of mass and acceleration. Acceleration was calculated as

the average velocity divided by the duration of the positive displacement, with the addition of

the gravitation constant, while mass was calculated as bodyweight plus external load. In agree-

ment with the manufacturer´s recommendation and previous studies [30], 90% of body mass

and 100% of external load were used to calculate force during SJ and CMJ. Flight time method:

Average force (�F) and average velocity (�v) were calculated using two equations, considering

only simple input variables: body mass, jump height and push-off distance [15, 31]. The verti-

cal push-off distance was determined as previously proposed [9], corresponding to the differ-

ence between the extended lower limb length with maximal foot plantar flexion and the

crouch starting position of the jump.

Keiser leg press: The Keiser Air300 horizontal leg press dynamometer uses pneumatic resis-

tance andmeasures compression forces at the cylinder, while velocity is measured with a position

transducer. The values at the cylinder are then calculated to match the range of motion and veloc-

ity at the apparatus pedals [1]. Average force and velocity were calculated as a function of time,

where the software excludes 5% of the range of motion from the start and end of the movement.

The measurement sample rate for the MuscleLab force plate and encoder was 200 Hz and

for the leg press apparatus was 400 Hz. The force signal from the Musclelab force plate data

was upsampled to 1000 Hz by spline integration using the integrated software. The AMTI

force plate sampled at 2000 Hz.

Statistical analysis

The coefficient of variation (CV%), interclass correlation coefficient (ICC 3,1) and mean per-

cent change (%Δ) were used to assess reliability across the testing sessions. CV% and %Δ were
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calculated from the log-transformed data. The Pearson product-moment correlation coeffi-

cient (Pearson r) was used to determine the association across methods. For comparison across

methods, the mean difference (systematic bias) was calculated and presented in absolute and

in relative terms (% from log transformed data) with percent and standardized difference

(mean difference divided by the standard deviation of the criterion measure).

The standardized difference was qualitatively interpreted using the scale (<0.2 Trivial;

0.2–0.6 Small; 0.6–1.2 Moderate; 1.2–2.0 Large; 2.0–4.0 Very large; >4.0 Extremely large)

[32]. A paired sample t-test was used to test the significance level of the differences in

means. Additionally, a linear regression analysis with corresponding slope and Y-intercept

of the regression line was used for comparison across methods. The standard error of the

estimate (SEE) was calculated from the linear regression and presented in absolute and rela-

tive terms. For comparison across methods, the averages of the two first testing timepoints

were included.

The smallest worthwhile change (SWC%) was calculated as 0.2 of the between-athlete SD,

presented as a percentage of the mean. Confidence limits (CL) for all analyses were set at 95%.

The Pearson’s r coefficients were interpreted categorically (<0.09 trivial; 0.10–0.29 small;

0.30–0.49 moderate; 0.50–0.69 large; 0.70–0.89 very large; 0.90–0.99 nearly perfect; 1.00 per-

fect) as defined by Hopkins and Marshall [33].

Acceptable reliability was considered as ICC� 0.80 and CV� 10%, while good reliability

was considered as ICC� 0.90 and CV� 5% [34–41]. Descriptive data are reported as

mean ± SD. All statistical analyses were performed using a customized Microsoft Excel spread-

sheet [32].

Results

Test-retest reliability of the FV-variables

All FV-profiles displayed linearity, with individual R2 values ranging from 0.95 to 1.00. All the

following results presented in the text correspond to results from the main analysis, whereas

results from the aggregated analysis are only presented in tables. Fig 3 and Table 3 show the

reliability measures of the FV-variables for the main analysis. Table 4 shows the reliability mea-

sures of the FV variables for the aggregated analysis.

Of all the investigated measurement methods, only the leg press showed acceptable reliabil-

ity for the four FV-variables (CV: 3.7–8.3%, ICC: 0.82–0.98). Several of the measures for Pmax

and F0 obtained from the vertical jumps showed acceptable reliability (CV: 3.9–12.1%, ICC:

0.61–0.97) (Table 3). However, V0 and SFV showed unacceptable reliability for all the investi-

gated SJ and CMJ measurement methods (CV: 8.4–30.1%, ICC: 0.16–0.79). The typical error

for both SJ and CMJ jump height was 1.2 cm, corresponding to a coefficient of variation of

6.8%. For each loading condition (0, 20, 40, 60 and 80 kg) the typical error was: 1.7, 1.2, 0.9, 1.0

and 1.0 cm corresponding to a CV of 5.1, 4.6, 5.5, 7.6 and 10.2% respectively.

Agreement across methods

The agreement and comparisons for the different measurement methods are shown in

Table 5. Mean±SD values for all the FV-methods are shown in Table 6 and illustrated in Fig 4.

The agreement across methods for F0 and Pmax ranged from (Pearson r): 0.56–0.95, SEE%:

5.8–18.8, and for V0 and SFV r: -0.39–0.78, SEE%: 12.2–37.2. The mean bias for F0 ranged from

trivial to moderate (-6-14%, ES: -0.4–0.9); small to large for Pmax (-30-55%, ES: -1.8–1.7); trivial

to very large for V0 (-35-70%, ES: -2.8–2.2); and small to very large for SFV (-32-165%, ES:

-1.2–3.8) (Tables 5 and 6 and Fig 4).
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Discussion

This is the first study to investigate the between-session reliability of FV-profiles measured in

SJ and CMJ with a force plate, linear encoder, and a flight time calculation method, in addition

to a leg press task. The main finding of the present study was that regardless of strong linearity

for individual FV-profiles, SFV and V0 were unreliable for all measurement methods assessed

from vertical jumping using loads ranging from bodyweight to 80 kg (relative position on the

FV-curve, force values 40–70% of F0). Only the leg press exercise showed acceptable reliability

for the four FV-variables (relative position on the FV-curve, force values 20–80% of F0). There

was a large to nearly perfect association across measurement methods for F0 and Pmax, while

the association for V0 and SFV ranged from trivial to large.

Test-retest reliability of the FV-variables

To the authors’ knowledge, this is the first study to assess the test-retest reliability of the FV-vari-

ables in well trained and elite athletes. The present results are in accordance with previous

Fig 3. Measures of reliability for the FV variables obtained frommain analysis. Panel A- Coefficient of variation (CV%), panel B- Smallest worthwhile
change (SWC%), panel C- Interclass correlation coefficient (ICC), panel D- Mean % change (%Δ). All values were obtained by combining test 1–2 (n = 27)
and 3–4 (n = 19). Error bars represent 95% confidence intervals. Dotted line represents line of acceptable reliability.

https://doi.org/10.1371/journal.pone.0245791.g003

PLOS ONE Force-velocity profiling in athletes: Reliability and agreement across methods

PLOSONE | https://doi.org/10.1371/journal.pone.0245791 February 1, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0245791.g003
https://doi.org/10.1371/journal.pone.0245791


research in other populations showing mostly acceptable reliability for F0 and Pmax (CV<10%)

and poor reliability for V0 and SFV (CV>10%) during vertical jumping [12, 19, 25, 42, 43]. In

contrast, FV-profiles derived from the leg press exercise displayed acceptable reliability for all vari-

ables in the present study (CV<10%, ICC>0.8). Feeney et al. [11] proposed that the low reliability

Table 3. Measures of reliability for the FV variables obtained from the main analysis with corresponding 95% confidence intervals.

Coefficient of variation (CV%) Interclass correlation (ICC) Percent change (%Δ)

Test F0 V0 Pmax SFV F0 V0 Pmax SFV F0 V0 Pmax SFV

CMJ Force
plate

1–2 8.6 ± 2.6 19.2 ± 6.2 10.8 ± 3.4 29.0 ± 9.8 0.81 ± 0.14 0.20 ± 0.37 0.74 ± 0.18 0.40 ± 0.32 -2.3 ± 4.5 6.5 ± 10.5 4.0 ± 6 -8.3 ± 13.1

3–4 5.1 ± 1.8 12.6 ± 4.6 8.8 ± 3.1 17.5 ± 6.5 0.89 ± 0.10 0.16 ± 0.43 0.77 ± 0.19 0.47 ± 0.34 -2.6 ± 3.1 7.1 ± 8.2 4.3 ± 5.7 -9.1 ± 9.5

CMJ
Encoder

1–2 6.8 ± 2 9.8 ± 2.9 4.4 ± 1.3 16.9 ± 5.2 0.82 ± 0.13 0.43 ± 0.30 0.95 ± 0.04 0.47 ± 0.29 -3.1 ± 3.4 3.9 ± 5.2 0.6 ± 2.3 -6.7 ± 7.8

3–4 7.0 ± 2.5 8.4 ± 3.1 3.9 ± 1.4 15.5 ± 5.9 0.78 ± 0.19 0.44 ± 0.37 0.95 ± 0.04 0.38 ± 0.39 1.4 ± 4.5 -1.8 ± 5.3 -0.4 ± 2.5 3.2 ± 9.9

CMJ Flight
time

1–2 10.1 ± 3.1 18.7 ± 6 9.6 ± 2.9 30.1 ± 10.2 0.79 ± 0.15 0.29 ± 0.35 0.74 ± 0.18 0.50 ± 0.29 -3.0 ± 5.2 4.4 ± 10 1.2 ± 5.2 -7.1 ± 13.7

3–4 5.2 ± 1.8 11.8 ± 4.3 7.8 ± 2.8 16.9 ± 6.3 0.92 ± 0.08 0.70 ± 0.23 0.82 ± 0.15 0.79 ± 0.18 -1.7 ± 3.2 7.7 ± 7.8 5.9 ± 5.1 -8.8 ± 9.2

SJ Force
plate

1–2 11.2 ± 3.5 17.4 ± 5.6 9.4 ± 2.9 29.3 ± 9.9 0.69 ± 0.21 0.60 ± 0.25 0.87 ± 0.10 0.51 ± 0.29 0.5 ± 6.0 -2.7 ± 8.8 -2.2 ± 4.9 3.2 ± 14.9

3–4 6.7 ± 2.4 15.4 ± 5.7 10 ± 3.6 22.3 ± 8.5 0.84 ± 0.13 0.54 ± 0.32 0.81 ± 0.16 0.57 ± 0.30 -2.2 ± 4.1 4.1 ± 9.6 1.8 ± 6.2 -6.0 ± 12.2

SJ Encoder 1–2 12.1 ± 3.5 11.1 ± 3.2 11.5 ± 3.4 21.0 ± 6.4 0.61 ± 0.24 0.59 ± 0.24 0.81 ± 0.13 0.36 ± 0.32 2.0 ± 6.1 -1.4 ± 5.5 0.6 ± 5.8 3.4 ± 10.4

3–4 6.5 ± 2.2 10.2 ± 3.6 5.2 ± 1.8 16.9 ± 6.1 0.77 ± 0.18 0.62 ± 0.27 0.94 ± 0.05 0.42 ± 0.36 -3.0 ± 3.8 6.0 ± 6.5 2.9 ± 3.3 -8.5 ± 9.0

SJ Flight
time

1–2 5.2 ± 1.6 8.6 ± 2.6 4.4 ± 1.3 13.9 ± 4.4 0.92 ± 0.06 0.79 ± 0.16 0.97 ± 0.03 0.76 ± 0.17 0.8 ± 2.9 -2.7 ± 4.5 -1.9 ± 2.4 3.7 ± 7.5

3–4 6.4 ± 2.3 11.6 ± 4.2 5.8 ± 2 18.5 ± 7.0 0.86 ± 0.13 0.63 ± 0.27 0.93 ± 0.07 0.62 ± 0.28 -1.7 ± 3.9 6.7 ± 7.6 4.9 ± 3.8 -7.9 ± 10.1

Keiser leg
press

1–2 4.2 ± 1.3 5.0 ± 1.5 4.2 ± 1.3 8.3 ± 2.5 0.98 ± 0.02 0.82 ± 0.14 0.97 ± 0.02 0.95 ± 0.04 0.2 ± 2.3 2.2 ± 2.8 2.4 ± 2.4 -2.0 ± 4.4

3–4 3.7 ± 1.4 4.3 ± 1.6 4.2 ± 1.6 7.0 ± 2.6 0.98 ± 0.02 0.82 ± 0.16 0.97 ± 0.03 0.96 ± 0.04 1.3 ± 2.5 0.4 ± 2.9 1.7 ± 2.9 0.9 ± 4.6

Bold text denotes CV<10% and ICC>0.80. Sample size for test 1–2 = 27, and test 3–4 = 19. SJ: Squat jump, CMJ: Countermovement jump, F0:Theoretical maximal

force, V0: Theoretical maximal velocity, Pmax: Theoretical maximal power, SFV: slope of the force-velocity profile.

https://doi.org/10.1371/journal.pone.0245791.t003

Table 4. Measures of reliability for the FV variables obtained from aggregated analysis with corresponding 95% confidence intervals.

Coefficient of variation (CV%) Interclass correlation (ICC) Percent change (%Δ)

Test n
=

F0 V0 Pmax SFV F0 V0 Pmax SFV F0 V0 Pmax SFV

CMJ
Force
plate

1–2 34 8.0 ± 2.1 17.5 ± 4.9 9.9 ± 2.7 26.5 ± 7.7 0.81 ± 0.12 0.22 ± 0.32 0.76 ± 0.15 0.40 ± 0.29 -3.2 ± 3.7 6.9 ± 8.5 3.4 ± 4.8 -9.4 ± 10.5

3–4 21 5.1 ± 1.8 12.6 ± 4.6 8.8 ± 3.1 17.5 ± 6.5 0.89 ± 0.10 0.19 ± 0.43 0.78 ± 0.18 0.45 ± 0.35 -2.6 ± 3.1 7.1 ± 8.2 4.3 ± 5.7 -9.1 ± 9.5

CMJ
Encoder

1–2 82 6.8 ± 1.1 8.6 ± 1.4 4.0 ± 0.6 15.5 ± 2.6 0.89 ± 0.05 0.74 ± 0.10 0.96 ± 0.02 0.78 ± 0.09 -2.4 ± 2.0 2.2 ± 2.6 -0.3 ± 1.2 -4.5 ± 4.3

3–4 56 7.3 ± 1.5 9.4 ± 1.9 3.7 ± 0.7 17.0 ± 3.6 0.81 ± 0.09 0.51 ± 0.19 0.96 ± 0.02 0.48 ± 0.20 -0.7 ± 2.6 0.5 ± 3.4 -0.2 ± 1.4 -1.1 ± 5.9

CMJ
Flight
time

1–2 34 9.0 ± 2.4 16.8 ± 4.7 8.8 ± 2.4 26.7 ± 7.8 0.80 ± 0.13 0.31 ± 0.31 0.78 ± 0.14 0.51 ± 0.26 -2.5 ± 4.2 3.8 ± 8.0 1.2 ± 4.2 -6.1 ± 11

3–4 21 5.2 ± 1.8 11.8 ± 4.3 7.8 ± 2.8 16.9 ± 6.3 0.92 ± 0.08 0.69 ± 0.24 0.81 ± 0.16 0.78 ± 0.18 -1.7 ± 3.2 7.7 ± 7.8 5.9 ± 5.1 -8.8 ± 9.2

SJ Force
plate

1–2 45 10.8 ± 2.5 15.3 ± 3.6 8 ± 1.8 26.6 ± 6.6 0.71 ± 0.15 0.64 ± 0.18 0.87 ± 0.07 0.59 ± 0.20 -1 ± 4.3 -1.6 ± 6 -2.7 ± 3.2 0.6 ± 10.1

3–4 40 11.6 ± 2.9 19.6 ± 5 11.5 ± 2.8 31.8 ± 8.6 0.61 ± 0.20 0.43 ± 0.26 0.73 ± 0.15 0.42 ± 0.26 -7.1 ± 4.6 8.4 ± 8.8 0.7 ± 4.9 -14.3 ± 10.7

SJ
Encoder

1–2 34 12.1 ± 3.3 11.6 ± 3.2 10.9 ± 2.9 22.0 ± 6.3 0.58 ± 0.23 0.54 ± 0.25 0.82 ± 0.12 0.28 ± 0.31 0.3 ± 5.6 0.4 ± 5.5 0.8 ± 5.1 -0.1 ± 9.8

3–4 23 8.7 ± 3.0 13.6 ± 4.7 5.9 ± 1.9 23.2 ± 8.4 0.63 ± 0.26 0.39 ± 0.36 0.92 ± 0.07 0.14 ± 0.42 -1.3 ± 5.1 3.4 ± 8.1 2.0 ± 3.5 -4.6 ± 12.2

SJ
Flight
time

1–2 47 5.6 ± 1.2 8.9 ± 2.0 4.8 ± 1.0 14.5 ± 3.3 0.89 ± 0.06 0.77 ± 0.13 0.96 ± 0.02 0.70 ± 0.15 -0.8 ± 2.2 -0.8 ± 3.5 -1.6 ± 1.9 -0.1 ± 5.6

3–4 33 6.7 ± 1.8 11.5 ± 3.2 5.6 ± 1.5 18.6 ± 5.3 0.81 ± 0.12 0.68 ± 0.19 0.94 ± 0.04 0.58 ± 0.23 -1.2 ± 3.2 3.7 ± 5.6 2.4 ± 2.8 -4.7 ± 8.2

Keiser
leg press

1–2 66 4.7 ± 0.9 5.1 ± 0.9 4.2 ± 0.8 9.0 ± 1.7 0.96 ± 0.02 0.83 ± 0.08 0.98 ± 0.01 0.91 ± 0.04 1.8 ± 1.6 -0.4 ± 1.7 1.2 ± 1.5 2.2 ± 3.0

3–4 45 4.1 ± 0.9 4.5 ± 1.0 4.0 ± 0.9 7.6 ± 1.7 0.97 ± 0.02 0.86 ± 0.08 0.98 ± 0.01 0.94 ± 0.04 0.3 ± 1.7 0.0 ± 1.9 -0.2 ± 1.7 0.2 ± 3.1

Bold text denotes CV<10% and ICC>0.80. sample size in table. SJ: Squat jump, CMJ: Countermovement jump, F0:Theoretical maximal force, V0: Theoretical maximal

velocity, Pmax: Theoretical maximal power, SFV: slope of the force-velocity profile.

https://doi.org/10.1371/journal.pone.0245791.t004
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for V0 (and thereby SFV) during vertical jumping could be a consequence of calculating velocity

from a force signal (force plate). However, our data show low reliability for V0 from CMJ and SJ

regardless of the velocity calculation method. The velocity from the leg press exercise is calculated

as the derivation of position over time, identical to the encoder during SJ and CMJ, making it less

likely that the variation in V0 is caused by calculation error. Further, Meylan et al. [12] speculated

that the low V0 reliability is caused by greater biological variation closer to V0. However, our data

show similar typical errors across loads and similar typical errors for F0 and V0 from the leg press

(using loads with similar distance to both intercepts), making this questionable.

Furthermore, Garcı́a-Ramos et al. [26] showed that the low V0 reliability during vertical

jumping was most likely due to the distance of the extrapolation to the V0 intercept [26], as the

lightest load possible to assess is the subject’s own bodyweight. The influence of the

Table 5. Agreement and comparison for CMJ Force plate and SJ Force plate vs encoder, flight time and leg press measurements.

Mean bias
(±SD)

Mean bias %
(±SD)

Standardized SEE
(±CL)

SEE %
(±CL)

Pearson r
(±CL)

Slope of Y-intercept

difference
(±CL)

regression
line

of regression
line

CMJ Force
plate VS

CMJ
Encoder

F0 (N) 19 ± 233 1.2 ± 8.9 0.0 ± 0.2 238 ± 71 8.6 ± 2.7 0.865 ± 0.108� 1.03 -88

V0 (m/s) -1.0 ± 0.5�� -22.8 ± 15.6 -1.7 ± 0.3 0.5 ± 0.2 14.4 ± 4.6 0.508 ± 0.293� 0.89 1.3

Pmax (W) -643 ± 248�� -22.2 ± 9.9 -1.3 ± 0.2 243 ± 72 9.5 ± 3.0 0.878 ± 0.098� 1.19 275

SFV (N/m/s) 256 ± 174�� 44.1 ± 25.5 1.3 ± 0.3 163 ± 49 23.2 ± 7.8 0.597 ± 0.258� 0.64 110

CMJ Flight
Time

F0 (N) 11 ± 180 0.0 ± 6.9 0.0 ± 0.2 152 ± 45 5.8 ± 1.8 0.947 ± 0.045� 0.81 507

V0 (m/s) -0.8 ± 0.5�� -19.3 ± 17.2 -1.4 ± 0.3 0.5 ± 0.1 13.9 ± 4.5 0.562 ± 0.272� 0.71 1.6

Pmax (W) 218 ± 199�� 31.4 ± 24 1.1 ± 0.4 126 ± 38 18.8 ± 6.2 0.783 ± 0.161� 0.50 267

SFV (N/m/s) -550 ± 296�� -19.4 ± 13.3 -1.1 ± 0.2 302 ± 90 12.2 ± 3.9 0.802 ± 0.149� 1.00 545

Leg press F0 (N) 415 ± 500�� 13.6 ± 17.8 0.9 ± 0.4 246 ± 73 9.5 ± 3.0 0.855 ± 0.115� 0.48 1243

V0 (m/s) -1.6 ± 0.6�� -34.8 ± 21.3 -2.8 ± 0.4 0.6 ± 0.2 16.8 ± 5.5 0.106 ± 0.376 0.27 3.2

Pmax (W) -895 ± 253�� -30 ± 14.2 -1.8 ± 0.2 255 ± 76 10.7 ± 3.4 0.865 ± 0.108� 1.10 723

SFV (N/m/s) 764 ± 444�� 164.6 ± 42.7 3.8 ± 0.9 177 ± 53 26.4 ± 9.0 0.490 ± 0.299� 0.19 460

SJ Force
plate VS

SJ Encoder F0 (N) -194 ± 294�� -6.3 ± 10.9 -0.4 ± 0.2 300 ± 89 10.3 ± 3.2 0.817 ± 0.140� 0.96 310

V0 (m/s) 0.0 ± 0.5 2.6 ± 21.7 0.1 ± 0.3 0.5 ± 0.1 19.9 ± 6.6 0.548 ± 0.278� 0.93 0.2

Pmax (W) 215 ± 251�� 12.1 ± 12.4 0.5 ± 0.2 203 ± 60 11.1 ± 3.5 0.892 ± 0.088� 0.72 350

SFV (N/m/s) -278 ± 327�� -19.4 ± 36.3 -0.7 ± 0.3 331 ± 99 29.4 ± 10.2 0.569 ± 0.27� 0.85 421

SJ Flight
Time

F0 (N) -134 ± 400�� -4.4 ± 15.2 -0.3 ± 0.3 389 ± 116 13.5 ± 4.3 0.662 ± 0.228� 0.74 872

V0 (m/s) 0.2 ± 0.6�� 11.4 ± 28 0.4 ± 0.4 0.5 ± 0.2 22.8 ± 7.7 0.405 ± 0.325� 0.47 1.2

Pmax (W) 99 ± 236�� 5.8 ± 13.2 0.2 ± 0.2 224 ± 67 12.4 ± 4.0 0.866 ± 0.106� 0.82 244

SFV (N/m/s) -186 ± 422�� -12.5 ± 51.2 -0.5 ± 0.4 394 ± 117 36.1 ± 12.9 0.207 ± 0.366 0.32 899

Leg press F0 (N) 238 ± 704 6.0 ± 28.9 0.5 ± 0.5 437 ± 130 15.4 ± 5.0 0.541 ± 0.281� 0.33 1877

V0 (m/s) -0.3 ± 0.7�� -11.7 ± 34.7 -0.6 ± 0.4 0.6 ± 0.2 24.0 ± 8.1 -0.177 ± 0.370 -0.45 3.5

Pmax (W) -136 ± 187�� -7.2 ± 10.6 -0.3 ± 0.2 191 ± 57 10.1 ± 3.2 0.905 ± 0.078� 1.03 95

SFV (N/m/s) 276 ± 665�� 23.5 ± 84.5 0.7 ± 0.7 401 ± 120 37.2 ± 13.3 -0.074 ± 0.378 -0.06 1327

CMJ Force
plate

F0 (N) -177 ± 424�� -5.9 ± 16.5 -0.3 ± 0.3 406 ± 121 14.0 ± 4.5 0.623 ± 0.246� 0.68 1042

V0 (m/s) 1.3 ± 0.8�� 70.0 ± 34.7 2.2 ± 0.6 0.6 ± 0.2 24.6 ± 8.3 -0.015 ± 0.380 -0.02 2.5

Pmax (W) 759 ± 306�� 54.8 ± 15.7 1.7 ± 0.3 274 ± 82 14.9 ± 4.8 0.793 ± 0.155� 0.70 1.0

SFV (N/m/s) -488 ± 423�� -32 ± 62.9 -1.2 ± 0.4 400 ± 119 37.1 ± 13.3 0.105 ± 0.376 0.21 1083

Sample size = 27
�Significant correlations p<0.05
��Significantly different from comparison measure (SJ/CMJ force plate) p<0.05. SJ: Squat jump, CMJ: Countermovement jump, SEE: Standard error of estimate. SD:

Standard deviation, CL: 95% Confidence limit.

https://doi.org/10.1371/journal.pone.0245791.t005
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extrapolation distance has been discussed earlier [25], and the present results reinforce this

assumption. F0 and V0 displayed similar reliability in the leg press exercise as the loads

approached both ends of the FV-spectrum. The high reliability in the FV-variables obtained

from the leg press can also partly be attributed to better standardisation in terms of fixed seat

position, and thereby less technical variation in the exercise execution compared to the free

weight conditions during CMJ and SJ [17, 18, 44, 45]. The influence of standardisation is also

supported by the findings of Valenzuela et al. [19], which showed superior reliability of the FV

variables obtained using a smith machine compared to free weights. It is therefore likely that

the observed variations in the extrapolated variables V0 and SFV are caused by extrapolation

error (i.e., small variations in the individual attempts are amplified because of the “extrapola-

tion distance”) and the combination of technical/instrumental and biological variations. Con-

sequently, in addition to superior standardisation compared to the other tests, the larger load

range in the leg press exercise reduces the need for extrapolation for both force and velocity,

explaining the high reliability of all the FV variables (Table 7).

The FV variables showed some slight differences in reliability between the CMJ and SJ con-

ditions (Table 3). These small differences can partly be explained by slope steepness differences

between SJ and CMJ, as the extrapolation distance to each intercept varies between these con-

ditions (Table 7 and Fig 4). Additionally, SJ is prone to integration errors when calculating

velocity with the force plate method [29]. This is linked to the assumption of zero start velocity,

which is technically more challenging during SJ compared to CMJ. This challenge is similar

for the encoder method, as the average force and velocity are calculated at the instance of the

encoder’s registration of a positive displacement. These issues are reinforced by the fact that

the flight time method showed the highest reliability for all FV-variables in SJ compared to the

other methods (Table 3). Hence, the poor reliability of the SJ force plate and encoder method

may be explained by calculation errors rather than physiological differences between the CMJ

and SJ condition. Consequently, when calculating FV-profiles from encoders and force plates

during SJ, careful attention should be given to the pause at the bottom (static position) of the

squat to improve the detection of movement with this equipment (i.e., giving athletes extra

practice attempts and/or familiarization).

Interestingly, the FV-variables measured with the encoder during CMJ exhibited the lowest

CV% of all the CMJ measurement methods during the vertical jumps (Table 3). Notably, the

encoder software uses the entire positive displacement curve, including the airtime. Addition-

ally, average force is calculated as the product of mass and acceleration, where acceleration is

the average velocity divided by the duration of the positive displacement. Especially in light

loading conditions where the flight time is relatively long, changes and variability in force or

Table 6. FV-variables for all methods.

F0 (N) V0 (m/s) Pmax (W) SFV (N/m/s)

CMJ Force plate 2741 ± 491 3.8 ± 0.7 2537 ± 527 771 ± 260

CMJ Encoder 2760 ± 415 2.8 ± 0.4 1906 ± 360 1016 ± 225

CMJ Flight time 2759 ± 549 3.1 ± 0.6 2090 ± 380 948 ± 346

SJ Force plate 2915 ± 561 2.5 ± 0.7 1806 ± 464 1249 ± 483

SJ Encoder 2621 ± 404 2.5 ± 0.4 1652 ± 361 1065 ± 244

SJ Flight time 2794 ± 476 2.7 ± 0.5 1925 ± 498 1059 ± 270

Keiser leg press 3156 ± 831 2.1 ± 0.2 1660 ± 389 1519 ± 510

Sample size = 27. SJ: Squat jump, CMJ: Countermovement jump, F0:Theoretical maximal force in newtons, V0: Theoretical maximal velocity in meters per second, Pmax:

Theoretical maximal power in watts, SFV: slope of the force-velocity profile. Values are presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0245791.t006
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velocity for the propulsive phase are inevitably harder to detect. Although the software manu-

facturer uses these calculations to improve reliability, the validity of the FV-profile will also be

affected, considering the ability to detect changes. Additionally, changes in the estimated force

in the light loading conditions are proportionally more affected by changes in bodyweight

than changes in propulsive force (when the flight phase is greater than the push-off phase).

With lower flight times, the encoder’s measures will to a greater degree reflect changes in pro-

pulsive force. This is supported by the correlation of 0.86 for F0 between the force plate method

and the encoder. The greater reliability observed for the FV-variables assessed by the encoder

may be misleading, as the usefulness of a test is determined not only by reliability and validity,

but also by the ability to detect changes in performance [10].

The reliability results for the force plate method and flight time method were practically

identical for all FV-variables during CMJ, but not SJ (Table 3). The differences between the

force plate method and flight time method for SJ were probably due to the difficulty of detect-

ing the zero starting velocity in the SJs for the force plate method, as discussed earlier [29].

This contention is supported by the fact that both methods (flight time and force plate

method) showed similar reliability in the CMJ, as the zero starting velocity issue is not present

in the CMJ. Furthermore, the slightly better reliability in SJ for the flight time method

Fig 4. Shows averaged force-velocity profiles from all methods for the main analysis (n = 27). The shaded area
represents the 95% confidence interval for the vertical jumps.

https://doi.org/10.1371/journal.pone.0245791.g004

Table 7. Loading ranges used to assess the force velocity profiles.

Force in % of F0 Velocity in % of V0

Heaviest load Lightest load Heaviest load Lightest load

CMJ Force plate 75 ± 6 56 ± 6 26 ± 6 46 ± 7

CMJ Encoder 63 ± 6 39 ± 6 37 ± 6 61 ± 6

CMJ Flight time 75 ± 7 56 ± 6 25 ± 7 46 ± 9

SJ Force plate 68 ± 10 50 ± 8 33 ± 9 56 ± 14

SJ Encoder 66 ± 7 37 ± 6 35 ± 7 63 ± 5

SJ Flight time 70 ± 10 52 ± 8 32 ± 9 58 ± 15

Keiser leg press 80 ± 9 18 ± 3 22 ± 8 84 ± 4

Sample size = 27. SJ: Squat jump, CMJ: Countermovement jump, F0:Theoretical maximal force, V0: Theoretical maximal velocity. Values are presented as

mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0245791.t007
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compared to the CMJ condition was probably due to less variation in starting position, as this

is easier to control with the pause at the bottom of the squat.

Conjointly, the reliability of F0, V0 and Pmax was affected by the variation in the measure-

ments–of each individual load–combined with the degree of extrapolation to the FV-inter-

cepts. Hence, SFV was inevitably affected by the variation in both F0 and V0. Researchers and

coaches should be aware of these limitations when assessing individual FV-profiles. Indeed,

the 5–10% CV in jump height observed in this study was not acceptable for accurately assess-

ing the accompanying FV-variables V0 and SFV, regardless of measurement method, with a

loading range of bodyweight to 80 kg (forces ranging from 40–70% of F0). Typical error can

only be decreased by reducing the variation in jumping performance or including loads closer

to the F0 and V0 intercept. Additionally, the usefulness of a test is determined by the ability to

detect changes in performance; more specifically, by comparing the typical error (CV%) with

SWC [46]. Indeed, the FV-variables obtained from the leg press apparatus showed a superior

signal-to-noise ratio compared to the other measurement methods in this study (Fig 3).

Agreement among methods

Calculating the velocity of the center of mass from ground reaction forces has previously

shown comparable reliability, with only small measurement errors compared to the “gold stan-

dard” 3D motion capture systems [47, 48]. It can therefore be argued that the force-plate

method is the most valid method for assessing FV-profile during vertical jumping compared

to all other measurement methods used in this study.

Only a few studies have examined the relationships among varying FV-profile methods for

the lower limbs. Garcı́a-Ramos et al. [22] also observed strong correlations for F0 and Pmax and

trivial correlations for V0 and SFV across methods (force plate, linear encoder and flight time

methods). Similar to the present study, the poor agreement for V0 and SFV was explained by

the large extrapolation error for V0 [22].

Contrary to our findings, Jiménez-Reyes et al. [15] reported excellent agreement between the

flight time and force plate method for the FV-variables (r: 0.98–0.99). This discrepancy from our

findings can probably be attributed to several methodological differences. The flight time method

calculates force and velocity based on jump height [15]. However, flight times are inevitably prone

to small errors in technical execution [49], in addition to systematic errors compared to jump

height obtained from force data [50, 51]. As Jiménez-Reyes et al. [15] point out, the FV-variables

are associated with cumulative extrapolation errors, consecutively decreasing the validity of these

variables. The small systematic and random differences in jump height between flight time and

force data are even greater for the extrapolated FV-variables. Additionally, the assumption of con-

stant acceleration during the push-off phase in the flight time method could also affect the agree-

ment with the force plate method, as variations in average force and velocity during the push-off

phase are not necessarily related to jump height variations [17, 18, 52, 53].

Furthermore, the flight time method assumes constant push-off distance across loads and

trials [15, 31]. However, from the force plate data, we observed 5–10% (2–4 cm) variation in

push-off distance across trials and loading conditions, even when controlling the depth as pre-

viously recommended [54]. This variation may be due to changes in jump mechanics across

trials and loads [45], making it challenging to assume a constant push-off distance despite con-

trolled knee angle. Jiménez-Reyes et al. [15] have previously reported a 0.4% variation (CV%)

in push-off distance across trials for CMJ when using a smith machine. This apparatus proba-

bly reduces the variation in jump mechanics compared to the free weight jumps used in the

present study. This implies that the poor agreement in our study can also be attributed to poor

control of the center of mass for the subject, and not solely the flight time method.
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Contrary to previous research showing an overestimation of V0measured with an encoder

compared to a force plate (72.3%) [22, 47], we observed an underestimation for the CMJ con-

dition (-23%) (Table 6). The overestimations of velocity during light loading conditions in pre-

vious investigations are explained by the attachment point at the bar, as the bar velocity is

higher than the centre-of-mass velocity during jumping [22, 47]. However, because the veloc-

ity from the encoder used in this study is based on the entire positive displacement curve

(including the airtime), the average velocity is lower. Combined with the extrapolation error,

this partly explains the higher agreement between the force plate and encoder for F0 and Pmax

compared with V0 and SFV. Practitioners and researchers should be aware of the limitations of

using linear encoders for measuring FV-profiles, especially to obtain V0 and SFV.

Padulo et al. [21] observed an underestimation in V0 (-46%) and overestimation in F0 (21%)

in the leg press compared to the squat exercise. The underestimation in V0 can be attributed to

biomechanical differences, as the squat movement involves a larger contribution from the hip

joint, resulting in higher system velocity [21]. In addition, approximately 30% of the work dur-

ing a vertical jump is contributed by the ankle joint [45]. This contribution is likely lower for

the leg press due to the more plantarflexed orientation of the ankles in this apparatus. These bio-

mechanical differences probably explain why the leg press has the largest bias of all the tested

methods (Table 6). Another explanation is the pneumatic resistance in the present leg press

apparatus, allowing higher average velocities for a given force due to the absence of inertia [55].

Additionally, the software excludes 5% of the range of motion from the start and end of the

movement, inevitably affecting the average values in the lighter resistance conditions to a

greater degree compared to the higher resistance conditions, resulting in higher V0. These issues

may explain the high V0 in the leg press exercise and the low agreement in V0 compared to the

other measurement methods. Intriguingly, V0 was negatively correlated with the three SJ mea-

sures and the leg press exercise (Fig 5). The extrapolated V0 during the leg press exercise is

highly influenced by the push-off distance [56], where it has been previously argued that com-

parisons across individuals should only be done when participants perform the vertical jumps

with their usual or optimal push-off distance Samozino et al. [57]. The initial push-off distance

during vertical jumping in this study was self-determined, while the push-off distance in the leg

press was standardised, possibly explaining the poor correlation in V0 between the leg press and

the jump exercises. Furthermore, as shown by Bobbert [56], the linear shape of the FV-relation-

ship during multi-joint movements is influenced by segmental dynamics, and this influence is

magnified by increasing movement velocity [56]. Hence, segmental dynamics probably influ-

ence the agreement of V0 to a greater degree than F0 when comparing exercises with varying

push-off distances and joint contributions [56]. Consequently, segmental dynamics partly

explain the larger agreement for measures closer to F0 and poorer agreement and correlations

for V0 across leg press and vertical jump tasks. As illustrated in Fig 4 and shown in Table 5, dif-

ferences in V0 are larger across methods and conditions compared to F0.

Small but important differences across methods accumulate, with larger differences for V0

and SFV compared to F0 and Pmax. The agreement across methods is highly influenced by the

combination of measurement errors, as well as the distance of extrapolation to the FV-inter-

cepts. All FV-variables depend on the measurement condition, including equipment, exercise

type, resistance modality and push-off distance.

Strengths and limitations

The present study included a large sample of male and female athletes with varying sport back-

grounds, using a multicenter approach. This design allows for larger sample sizes and higher

ecological validity as athletes are assessed by different test leaders and using different
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equipment [58]. The conclusions from the study are based on the results from the main analy-

sis and supported by the data from the larger aggregated analysis.

There are several methodological limitations that need to be considered for the findings

from this study. The difference in number of loading conditions (i.e., 5 for vertical jumping

and 10 for leg press) and relative position on the FV-curve inevitably affect the agreement

measures due to differences in the accuracy of obtaining the extrapolated variables. Addition-

ally, the difference in push-off distance from the leg press (standardized to vertical femur) and

vertical jumping (standardized to self-selected depth) may influence the variation across these

conditions. The leg press protocol included breaks of 10–20 sec for the light loads and 20–40

for the heavy loads, which may cause some fatigue between repetitions and influence the FV-

relationship. For the force plate method, the 5 SD threshold for determining the start of the

movement will influence the average values of force and velocity and thereby the FV-variables.

Especially in the SJ, but also in the CMJ, this threshold is sensitive to small movements and is a

source of error that is not controlled for. In the leg press software, the average values have a 5%

cut-off from the range of movement, which can lead to i) taller athletes having a larger cut-off

in terms of absolute values compared to shorter athletes, and ii) in the lighter loads where

more range of motion is achieved, the cut-off in terms of absolute values will be larger for ligh-

ter loads compared to heavier loads. The results from the encoder used in the present study

cannot be generalized to other linear encoder devices with different calculation methods for

acceleration and force. The jumps in this study were performed with free weights, where it was

Fig 5. Correlation matrix showing Pearson r coefficients for the FV-profile variables (F0, Pmax, V0, SFV) for cross sectional data. Colored
circles indicate P<0.05, where circle size and color represent corresponding r values (color legend is presented with the figure). SJ: Squat
jump, CMJ: Countermovement jump, F0: Theoretical maximal force, V0: Theoretical maximal velocity, Pmax: Theoretical maximal power, SFV:
slope of the force-velocity profile. Sample size for all correlations n = 27.

https://doi.org/10.1371/journal.pone.0245791.g005

PLOS ONE Force-velocity profiling in athletes: Reliability and agreement across methods

PLOSONE | https://doi.org/10.1371/journal.pone.0245791 February 1, 2021 15 / 20

https://doi.org/10.1371/journal.pone.0245791.g005
https://doi.org/10.1371/journal.pone.0245791


difficult to accurately standardize the center of mass of the jumps using only thigh depth or

knee angle as a reference. These variations in the center of mass are likely smaller using smith

machines. These limitations inevitably affect both the test-retest reliability and the agreement

across methods, where it is impossible to differentiate which source of variability leads to the

results observed in this study. Nevertheless, the use of free weights increases the ecological

validity of the study as these are commonly used by athletes. Additionally, for the analysis for

agreement the force plate was sampled at 200 Hz compared to 1000 Hz used previously [15],

which may have influenced the findings. For the aggregated reliability analysis, both 200 Hz

and 2000 Hz force plates were used, and we would argue that the findings of reliability seem

independent of sampling frequency.

Conclusions and practical applications

A 5–10% between-session CV in jump height is not acceptable for accurately assessing SFV and

V0, regardless of measurement method, using a loading range of bodyweight up to 80 kg

(forces ranging from 40–70% of F0). Caution is advised when using similar protocols for indi-

vidual training recommendations or interpreting training adaptions for athletes. Efforts should

be made to either reduce the variation in jumping performance or to assess loads closer to the

FV-intercept. Increasing the loading range can be achieved by using alternative exercises such

as a leg press exercise. Reducing the variation in jumping performance may possibly be

achieved through additional practice attempts, and attention should be given to the depth of

the squatting motion during the vertical jumps. F0 and Pmax showed high reliability and gener-

ally good agreement across measurement methods, indicating that these variables can be used

with confidence by researchers and coaches. However, one should be aware of the poor reli-

ability of the FV-variables V0 and SFV obtained from vertical jumping, as well as differences

across measurement methods for assessing individual FV-relationships.
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