
Newcastle University ePrints - eprint.ncl.ac.uk 

Al-Mhana T, Pickert V, Atkinson DJ, Zahawi B.  

Forced Commutated Controlled Series Capacitor Rectifier for More 

Electric Aircraft.  

IEEE Transactions on Power Electronics 2018 

DOI: https://doi.org/10.1109/TPEL.2018.2816305 

Copyright: 

© 2018. IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works 

DOI link to article: 

https://doi.org/10.1109/TPEL.2018.2816305 

Date deposited: 

02/03/2018 

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=246518
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=246518
https://doi.org/10.1109/TPEL.2018.2816305
https://doi.org/10.1109/TPEL.2018.2816305


 
Abstract—Rising power demands in More Electrical Aircraft (MEA) put power converters for commercial airplanes under increasing 

pressure to fulfill current harmonic distortion regulations as specified, for example, in DO-160G. Today, the implementation of filters is 

seen as an effective tool for dealing with harmonics, however, their increased weight and volume is not welcomed in the aerospace 

industry. This paper proposes a circuit, named Forced Commutation Series Capacitor rectifier (FCSC-rectifier), which is able to 

maintain low individual harmonic current levels without the need for filter components. The FCSC-rectifier includes a variable 

capacitive line reactance that interacts in a controlled manner with the inductive line impedance. The result is that the converter input 

current is nearly purely sinusoidal with a power factor of almost unity. The FCSC-rectifier is to be used for stand-alone variable-voltage, 

variable-frequency generation systems (VFG) and can therefore power the Full Authority Digital Electronic Control System (FADEC) 

in an MEA. This paper shows that the FCSC-rectifier can maintain a high power factor and acceptable current harmonic levels without 

the use of filters, despite large voltage and frequency variations. A full description of the circuit modes of operation is presented in this 

paper together with simulation results showing circuit performance characteristics over a range of voltages and frequencies. Results are 

experimentally verified using a 1kW test circuit.   

Index Terms— Forced Commutated controlled Series Capacitor (FCSC), Full Authority Digital Electronic Control System (FADEC), 

More Electric Aircraft (MEA), current harmonics, power factor.  

I. INTRODUCTION 

he complexity of aircraft electrical loads has substantially increased in recent years with the advent of the More Electric 

Aircraft (MEA) [1-3]. The most safety critical system in any MEA is the FADEC (Full Authority Digital Electronic Control) 

system that continuously monitors and controls the ignition timing and fuel injection to the aircraft engine. FADEC control 

and designs have been reported in [4-6] with the focus being mainly on safety. Any failure within the FADEC leads to misfiring 

and loss of fuel injection [7-10] which would result in a catastrophic event, such as the Airbus A 400M crash in 2015 caused by 

FADEC failure [11]. One major area of concern is radiated and conducted EMI which could interact with the engine control 
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hardware. Radiated EMI is minimized by enclosing the FADEC in a metal cage. Conducted EMI is minimized by powering the 

FADEC from its own variable frequency generator (VFG), minimizing the risk of harmonic contamination from the supply currents 

when connected to the MEA distribution network. The FADEC is the only stand-alone powered electronic system that has its own 

VFG in the MEA (there is, however, a dc link connection to a back-up system which is activated in case of the loss of the VFG 

[12]). As well as producing low harmonics, the VFG must also be reliable, low-cost, power-dense, light in weight and 

environmental friendly [13-15], as is necessary for all MEA electronic systems.  

 Today’s standard VFG design for FADEC supplies is the series connection of a permanent magnet (PM) generator with a diode 

bridge rectifier and a dc/dc converter stepping down the voltage to 28 V. The dc/dc converter is designed to cope with load 

variations caused by the FADEC although variations are small as digital controller boards do not experience large load swings. 

This principal was proposed in 2009 [12] and is still implemented in todays most advanced MEAs such as the Airbus A 380 and 

Boing 787. The combination of a PM generator and a diode bridge rectifier fulfills aerospace requirements in that it is efficient, 

power-dense and reliable [16-18]. However, the PM generator/diode bridge rectifier combination is known for its current harmonic 

generation and poor power factor [19].  

So far this has not been an issue, as the power requirement of the FADEC hardware is relatively low. Future aircraft, however, 

will have more complex engines with more electronic hardware and processing needs, requiring higher levels of input power. This, 

in addition to further increases in the electrification regulatory requirements for commercial aircrafts, such as those specified in 

DO-160G “Environmental Conditions and Test Procedures for Airborne Equipment,” imposed by the Radio Technical 

Commission for Aeronautics (RTCA) [20], will push the limits of acceptable current harmonic levels.  

The DO-160G is a guideline for the standard procedures and criteria of environmental tests for airborne hardware, including 

electrical and electronic avionics and mechanical systems. It also defines the input harmonics distortion limits caused by various 

loads, due to the recognition of the negative impact of harmonics on aircraft power systems caused mainly by the intensive use of 

uncontrolled rectifiers in airborne systems. Historically, DO-160G has been updated regularly in line with developments in the 

MEA industry and PM generators with diode bridge rectifiers are likely to be prohibited in the future due to the ever-tighter 

limitations on power converter current harmonic distortion 

Consequently, alternative solutions are required for powering stand-alone electrical systems in MEA such as the FADEC. The 

most obvious approach is the implementation of filters between the PM generator and the diode bridge rectifier. However, this will 

increase the volume and weight of such a system by about 50% [21] which is not desirable. Other work has focused on the 

employment of passive and active three-phase high power factor converter topologies [22-25]. The use of a transformer rectifier 

unit [26] or an autotransformer rectifier unit [27] has been investigated to supply a multi-pulse (12- or 18-pulse) rectified DC 

voltage. These rectifier units are adapted for current harmonic cancellation to meet DO-160G requirements but at the expense of 



 

 
increased weight and volume [28]. The use of well-established active rectifiers such as the two- and multi-level pulse width 

modulation rectifier, and Vienna rectifier have also been investigated [29- 31]. Although these are able to enhance the power factor 

without the use of transformers, the control circuit complexity raises safety concerns and the high-power, fast switching 

requirements result in current harmonics that still require filtering [19, 28, 30]. Current harmonics produced by active front-end 

converters are determined by many factors such as: load, switching frequency, filter design, type of filter and PWM control strategy 

[32-33]. A summary of all rectifiers proposed in the literature as an alternative to the diode bridge rectifier is presented in Fig. 1.   

 

Fig. 1.  Overview of rectifiers presented in the literature as an alternative to the diode bridge rectifier. 

 

To-date, all proposed systems for current harmonic reduction require filtering or additional magnetic components. This paper 

proposes a power electronic rectifier circuit that produces low current harmonics, fulfilling DO-160G requirements without the 

need for filters. The new rectifier circuit is referred to in this paper as the Forced Commutation controlled Series Capacitor rectifier 

(FCSC-rectifier). It has a simple control structure and it operates at a low switching frequency to produce a nearly sinusoidal supply 

current waveform at a power factor of almost unity. The operation of the proposed FCSC-rectifier is described, simulated and 

experimentally verified using a 1 kW test circuit. 

 The remainder of the paper is structured as follows: Section II describes the fundamental principal of the FCSC-rectifier 

topology. In Section III, the modes of operation of the FCSC-rectifier are presented, including a description of the control method 

that has been applied. Simulations using Saber/Synopsys are presented in Section IV. The FCSC-rectifier behavior is verified 

experimentally using a 1 kW laboratory test bench and test waveforms and results are shown in Section V. Current harmonic 

spectrums (experimental and simulated waveforms) are shown in Section VI and a conclusion is presented in Section VII.  

II. FCSC-RECTIFIER CIRCUIT TOPOLOGY 

The FCSC-rectifier is shown in Fig. 2, situated between the aircraft three-phase PM generator and the on-board DC load (shown 



 

 
in the figure as an equivalent resistor). The three-phase FCSC-rectifier is comprised of a three-phase, forced commutation 

controlled capacitor circuit in series with a three-phase diode bridge rectifier. In each phase, a series compensation capacitor Cc is 

connected in parallel to two anti-parallel IGBT switches used to control the injected series capacitive reactance. The aim is to 

match the effective capacitive reactance with the generator inductive reactance to achieve high power factor and minimum current 

distortion for a wide range of operating frequencies, thus avoiding the need for additional filtering. 

The FCSC-rectifier is based on the topology used in FACTS (Flexible AC Transmission System) controllers in power system 

applications, where AC voltages and frequencies are generally stable [34-36]. The purpose of the FCSC circuit in FACTS 

applications is to inject a small capacitive reactance into the transmission lines for grid quality purposes [37, 38]. The IGBTs are 

switched-on at the zero-crossing point of the supply voltage and the turn-off time is calculated based on the required amount of 

injected capacitive reactance.    

 

Fig. 2.  Three-phase FCSC-rectifier in a stand-alone three-phase generation system. 

 

The proposed FCSC-rectifier is different from the FACTS conventional circuit in several ways. Firstly, it is designed for stand-

alone applications, embedded between an AC generator and a DC output stage. Secondly, an AC current is injected into the rectifier 

as the effective capacitive reactance can be controlled by varying the on-state time of the IGBT switches and resonance is achieved 

by tuning the phase capacitive reactance to the same value of the inductive reactance of the PM generator. This operational point 

has two advantages: a near sinusoidal AC current waveform with low current harmonics and a high input power factor, as the 

current is in phase with the generator phase-voltage.  It is perhaps worth noting that the operation of the input stage of the FCSC-

rectifier cannot be compared directly with a classical RLC resonant circuit. This is because the series capacitor Cc is switched via 

the action of the IGBTs and the voltage across the capacitor is not always part of the series resonant circuit formed by the generator 

inductance, generator resistance and CC. Thirdly, FCSCs in FACTS applications operate with small AC input variations (typically 

1% variation of nominal frequency and ±10% of nominal voltage) [39] whereas the FCSC-rectifier has to deal with the full range 



 

 
of output voltage fluctuation and frequency variation produced from the VFG. As the operation of the FCSC-rectifier is 

fundamentally different to that of the FCSC, the control strategy must also be different. This is discussed in the following section.   

III. MODES OF OPERATION AND CONTROL METHOD 

Fig. 3 shows a three-phase FCSC-rectifier with its input connected to the three-phase generator and its output connected to a 

load capacitor CL in parallel with a load resistor RL. In this figure, the three-phase PM generator is represented by a set of balanced 

three-phase voltage sources (va, vb, vc), in series with three identical impedances (internal resistance Rs and inductance Ls) in each 

phase. The phase voltages in this balanced three-phase system are given by: 𝑣𝑎 = 𝑉𝑚𝑎𝑥  sin (𝜔𝑡)  𝑣𝑏 = 𝑉𝑚𝑎𝑥sin (𝜔𝑡 − 2𝜋/3)  (1) 𝑣𝑐 = 𝑉𝑚𝑎𝑥sin (𝜔𝑡 − 4𝜋/3)  

where Vmax is the amplitude of the sinusoidal generator induced voltage.  

 

Fig. 3. Schematic diagram of the three-phase FCSC-rectifier. 

 

Each phase includes a series connected compensation capacitor CC whose value is chosen in accordance with the generator 

inductance to insure resonance at the maximum operating supply frequency (fmax) [40]: 

𝑓𝑚𝑎𝑥 = 𝑓𝑟 =  12𝜋 √𝐿𝑆 𝐶𝐶 (2) 

where fr is the resonance frequency. The value of Cc can then be determined from the following formula: 

𝑋𝐶𝐶|𝑓𝑆=𝑓𝑚𝑎𝑥 =  𝑋𝑐𝑚𝑎𝑥 = 12𝜋×𝑓𝑚𝑎𝑥×𝐶𝑐 (3) 

Resonance can be achieved by controlling the duty ratio of the IGBT switches in accordance with the supply frequency value. 



 

 
When the operating frequency is reduced, the controller increases the duty ratio of the switches (the capacitor is bypassed by the 

IGBTs for a longer period) and the effective capacitive reactance Xcc,eff is reduced [41] in line with the reduction in XLS maintaining 

the condition: 𝑋𝐶𝐶,𝑒𝑓𝑓 = 𝑋𝐿𝑆 =  𝜔𝐿𝑆 (4) 

where  is the electric angular frequency produced by the generator.  

XCC_eff is determined by the capacitor CC and the conduction period  of the associated IGBTs. The duty ratio (D) for each active 

switch can be calculated as:  𝐷 = 2𝜋  (5) 

In one full cycle, the capacitor will be short-circuited twice by the corresponding pair of IGBT switches. The effective capacitive 

reactance is then given by: 𝑋𝑐𝑐,𝑒𝑓𝑓 = (1 − 2𝐷) × 𝑋𝑐𝑚𝑎𝑥  (6) 

by substituting (4) in (6), we obtain:  𝑋𝐿𝑆 = (1 − 2𝐷)𝑋𝑐𝑚𝑎𝑥 (7) 

Equation (7) can be re-written as: 

𝐷 = 12 (1 − 𝑋𝐿𝑆𝑋𝐶𝑚𝑎𝑥)   (8) 

Giving the relationship: 

𝐷 = 12 (1 − 𝑓𝑠𝑓𝑚𝑎𝑥) (9) 

The duty cycle D for each frequency variation is calculated using (9). In the practical implementation of the circuit, the 

microcontroller calculates the new duty-cycle based on the frequency fs of the previous cycle. The frequency fs is determined using 

a zero-crossing detection (ZSD) circuit and therefore the ZSD triggers the calculation of  the conduction period  which can be 

calculated from equations (5) and (9):  

 = 𝜋(1 − 𝑓𝑠𝑓𝑚𝑎𝑥) (10) 

Thus, all switches are synchronized to the ZSD trigger event and therefore the FCSC-rectifier only requires a low-cost 

microcontroller to deal with MEA’s variable frequency generator range. By applying the correct duty cycle, the resonance condition 

expressed in (4) is achieved and the generator current waveform is maintained in-phase with the generator voltage waveform 

resulting in almost unity power factor operation.  

 



 

 
 

 

Fig. 4 displays the timing diagram and the various modes of operation of the circuit, showing the diode conducting periods 

together with the switching patterns of all IGBT switches. During the positive half-cycles of the three-phase generator voltage, 

switches S1, S3 and S5 are ON (and during the negative half-cycle S2, S4 and S6 are ON) for an interval  that is symmetrically 

centered around the peak of the generator voltage waveform.  

Each IGBT has a conduction period of  which can vary from =0 to =/2. The IGBT ON time is varied in line with the supply 

frequency variations. At resonance, each phase produces a pure sinusoidal AC current waveform: 𝑖𝑎 = 𝐼𝑚𝑎𝑥  sin (𝜔𝑡)  𝑖𝑏 = 𝐼𝑚𝑎𝑥sin (𝜔𝑡 − 2𝜋/3)  (11) 𝑖𝑐 = 𝐼𝑚𝑎𝑥sin (𝜔𝑡 − 4𝜋/3)  

where Imax is the amplitude of the sinusoidal phase current.  

Fig. 4 shows the total current is always zero because the system is balanced. The state of conduction of the diodes depends on 

the direction of the phase currents (the upper diodes D1, D3, D5 conduct when the corresponding phase current is positive and the 

lower diodes D2, D4, D6 conduct when the current is negative). As the FCSC-rectifier operates on the basis of phase current injection 

when running at resonance, the diode commutation process is different from that found in classical voltage-fed rectifiers. In the 

latter, commutation takes place between neighboring diodes (from one conducting leg to the neighboring leg). In the FCSC-

rectifier, however, diode commutation always takes place between the upper and the lower diodes in the same leg, resulting in the 

six-pulse DC current waveform shown in Fig. 5, in which the operation of the FCSC-rectifier is compared with that of a 

conventional three-phase diode bridge rectifier. 

 

 



 

 

 

Fig. 4.  Operational modes, switching states, and normalized voltage and current waveforms of the three-phase FCSC-rectifier. 

 
Fig. 5. Comparison of operating characteristics: (a) Classical voltage-fed rectifier, (b) FCSC-rectifier. 



 

 
Each mode shown in Fig. 4 (Modes 1 to 6) lasts for a period of π/3 and corresponds to a given diode conduction pattern. Due 

to symmetry, each mode has the same repeating principal operations (referred to here as POA, POB, and POC). These are 

discussed below for Mode 1: 

A. Principal Operation A (POA): 0<t</6-/2: D1, D5 and D6 conduct 

Fig. 6 shows the circuit at the start of Mode 1. In this figure, the RL-CL load is represented as a single unit for simplicity.  Mode 

1 starts at t=0 (using va as a reference, as shown in Fig. 4). At the start of this period, no switch has been activated and diodes D1, 

D5 and D6 are conducting. As the effective overall capacitive reactance Xcc_eff over the full cycle is equal to XLS, the currents ia, ib, 

and ic are in phase with the voltages va, vb and vc, respectively. In this mode, ia and ic are positive flowing into the diode bridge 

rectifier and ib is negative (Fig. 4). The currents ia, ib, and ic are given by (12) and the load current IL can be determined from 

Kirchhoff’s current law: 𝐼𝐿 = 𝑖𝑎 + 𝑖𝑐 = 𝐼𝑚𝑎𝑥sin (𝜔𝑡 − 2𝜋/3)         (12) 
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Fig. 6.  Effective circuit during POA 

 

B. Principal Operation B (POB): /6-/2<t/6+/2: S4 ON, D1, D5 and D6 conduct 

At t=/6-/2, S4 is turned ON and all other IGBTs are OFF (Fig. 7). S4 is ON during this period, short circuiting CC in phase-b. 

However, since Xcc,eff is still adjusted over the full cycle to be equal to XLS, ia and ic are still in phase with va and vc, respectively, 

and phase b provides the return path for ia and ic: 𝑖𝑏 = −𝑖𝑎 − 𝑖𝑐   (13) 

Despite the short-circuiting of the capacitor CC in phase-b, a resonant current is injected in phase-b which is in phase with the 

voltage vb (Fig. 4).  The load current IL can still be determined from Kirchhoff’s current law and equation (12). 
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Fig. 7.  Effective circuit during POB 

 

C. Principal Operation C (POC): /6+/2<t</3: D1, D2 and D6 conduct 

At t = /6+/2, S4 is turned OFF and all remaining IGBTs are off. The circuit is identical to that shown in Fig. 6 and circuit 

operation is identical to POA. 

At t=/3 Mode 2 starts as vc becomes negative and the current in phase-c changes polarity. The current in diode D5 commutates 

to D2, as shown in Fig.4.  

IV. SIMULATION RESULTS 

To allow for direct comparisons with experimental tests, the FCSC-rectifier circuit is simulated in Saber using the parameters 

of the experimental test rig listed in Table 1. Generator parameters are based on an aero engine generator described in [42, 43]. 

The simulations are carried out for a frequency/voltage range between (240-480 Hz)/(75-100 V) to comply with the 

minimum/maximum frequency/voltage of the programmable power source used in the practical test. At the maximum frequency 

of 480 Hz, with a voltage of 100 V, all the IGBT switches are permanently OFF. Below this frequency the IGBTs are controlled 

to obtain a conduction period  based on (15). Fig. 8 shows a summary of steps required to calculate the IGBTs on and off times. 

Fig. 9 shows the high level block diagram of the circuit simulation model. 

Table 1. Circuit parameters 

Circuit 

parameter 

Value 

VS 75 V-100 V 

fS 240 Hz-480 Hz 

Rs 2.5  

Ls 13.75 mH 

CC 8 F 

CL 500 F 

RL 30  

 



 

 

 

Fig. 8. Flow chart for computing IGBT switching times (t1: timing when supply voltage crosses zero, t2: timing when supply voltage crosses zero for the 

second time) 

 

 

Fig. 9. Block diagram of circuit simulation model (black arrows: power, blue arrows: signal) 

 

Simulation results for the FCSC-rectifier operating at a typical aircraft frequency of 400 Hz (also known as the nominal 

frequency [13, 30]) are shown in Fig. 10. The figure shows that the series capacitor can maintain the input current in-phase with 

the voltage waveform, so that the power factor is maintained at a high value. The rectifier input voltage Vin is clamped by the load 

voltage and the rectifier output current (iL) consists of six pulses of the AC phase currents, as described in Section III. The average 

DC load current also complies with the relationship IL= 1.35 IRMS. The voltage across the series capacitor is zero as long as the 

corresponding IGBTs are in the ON state. 

Fig. 11 shows the operating power factor of the circuit plotted against variations in load for 3 different voltage/frequency 

conditions. The FCSC-rectifier maintains a high power factor for all voltage/frequency values with a minimum value of 0.99. The 

highest power factor of 0.998 is achieved at the highest voltage/frequency values (100V/ 480Hz) under heavy load conditions and 

the lowest power factor occurs at the lowest voltage/frequency values (75V/240Hz) under light load conditions. The output 

 



 

 
capacitor CL represents the input stage of a dc/dc converter that would normally be connected to the output of the diode bridge 

rectifier of the FADEC and is therefore simulated as a constant value. Unlike in a classical diode bridge rectifier where CL 

experiences periodical current charging spikes flowing from the AC supply CL in the FCSC-rectifier experiences a six-pulse dc 

current waveform as shown in Fig. 10. Each pulse lasts for 60 degrees independently of the input frequency and the load. Changes 

in CL values have no noticeable impact on the operation of the circuit but will affect the ripple content of load voltage and load 

current.    

 

 

Fig. 10.  Three-phase FCSC-rectifier waveforms at 90V/400 Hz (simulated). Vcc: voltage across the capacitor, Vin: line-to-line input voltage of the three-phase 

rectifier (diode bridge), VL: load voltage, IL: load current,  iL: output current of the three-phase rectifier, iS: supply current, Vs: supply voltage. 

 



 

 

 

Fig. 11.  FCSC-rectifier power factor as a function of PM generator voltage and frequency under various load conditions (simulated results). 

 

A sensitivity study (Table 2) and a study of unbalanced operation (Table 3) was conducted for 100V/480Hz operation at two 

load conditions: full load RL=10  and half load RL=20 . In the sensitivity analysis, a 10% error in the values of either Ls or CC 

was applied to all three phases. For unbalanced operation, a 10% imbalance in the values of either Ls or CC was considered as well 

as an imbalance in the supply voltages (va =100 V, vb =120 V and vc =110 V).   

 

Table 2. Sensitivity study  

 

 

 

 

 

 
Table 3. Unbalanced operation  

 

 

 

 

 

The third column (PF-10%) in both tables shows the resulting PF values, whereas the values in the fourth column are the PFs 

with no errors or imbalances. Errors and imbalances clearly reduce the PF values that could be achieved, but they do not alter the 

fundamental operation of the circuit. Table 2 shows that the highest drop in PF (from 0.997 to 0.902) is at RL =10  and a 10% 

error in Ls. The highest drop in PF in Table 3 (from 0.998 to 0.918) is at RL =20  and a 10% imbalance in CC. Generator voltages 

Load 10% error in PF-10% PF 

RL=10Ω 
LS 0.902 0.997 

CC 0.916 0.997 

RL=20Ω 
LS 0.962 0.998 

CC 0.968 0.998 

Load 10% imbalance in PF-10% PF  

RL=10Ω 
LS 0.963 0.997  

CC 0.961 0.997  

RL=20Ω 
LS 0.937 0.998  

CC 0.918 0.998  



 

 
imbalance (va =100 V, vb =120 V and vc =110 V) produced no measurable change in PF. This is because the displacement factor is 

independent of the voltage supply amplitude.   

V. EXPERIMENTAL VALIDATION  

The behavior of the three-phase FCSC-rectifier was experimentally verified under various operating conditions using a 1 kW 

laboratory test bench. A photograph of the test bed is shown in Fig. 12. All recorded AC measurements were captured for phase-a 

only. The test hardware consisted of three major parts. The PM generator was emulated using 60 KVA Behlman programmable 

AC power supply with an internal inductive and resistive impedance to emulate the PM generator. This power supply was used to 

provide the system with variable-voltage and variable-frequency power over a frequency range between (240-480 Hz). The second 

part is the conversion stage (inside the enclosure) including the three-phase FCSC-rectifier. Three dual-gate driver circuits were 

used to provide the pulses required to drive the IGBT switches. The voltage and current sensor cards were also placed inside the 

enclosure with the zero-crossing detection (ZCD) card, as shown in Fig. 13. The ZCD circuit is shown in Fig. 14. It includes an 

RC low-pass filter to prevent spurious zero crossing detections caused by the AC source distortion (22 nF and 390  resistor). An 

LM393N comparator is used to produce the square wave output voltage signal by comparing the filtered voltage signal with a 

reference voltage. A 100 k potentiometer was provided in order to adjust the pulse width as required. The readings of the current 

sensors and the ZCD card were fed to the microcontroller to be processed. Finally, the controller was based on a TMS320F28335 

Texas Instruments DSP mounted on a general interface board. A host computer was required to provide an environment in which 

to debug the software. A National Instruments LabView package was used for monitoring and control purposes. The resistive load 

was fed from the output of the three-phase rectifier. Table 4 summarizes the specifications of the experimental test rig and the main 

components of the FCSC-rectifier. The total volume of the power components used in the test circuit is 1090.85 cm3 and the weight 

(without heatsink) is 931.3 g. 

Table 4. Experimental rating specification and components of the FCSC-rectifier 

Rating specification of the FCSC-rectifier 

Parameters Specifications 

Input voltage Variable three-phase RMS (phase-neutral), 75-100 V 

Input frequency Variable frequency of 240-480 Hz 

Load power 1 kW 

Main components employed in the 1 kW FCSC-rectifier 

Symbol Manufacturer Part Number 

 

Typical data 

CC General Electric 97F8248 

(Polypropylene film) 
8 F, 660 V AC 

S1-S6 IXYS IXDR 30N120 1200 V, 50 A 

D1-D6 IXYS VU062-16NO7 1600 V, 63 A 

CL Panasonic EETEE2W251LJ 

(Electrolytic type) 
2  250 F, 450 V 



 

 
 

 

 
Fig. 12. Photograph of the experimental test rig. 

 

 
Fig. 13. Photograph of the FCSC-rectifier. 
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Fig. 14 Zero-crossing detection circuit 

Fig. 15 shows the recorded experimental results for operation at typical aircraft frequency of 400 Hz and a voltage of 90V. 

Waveforms for line-to-neutral supply voltage Vs, the input current is, DC load voltage VL, and DC load current IL are shown, as 

well as the voltage across the series capacitor VCC and the pulses supplied to the switches S1 and S2 through one dual driving circuit 

board. The supply current is almost sinusoidal with an RMS value of about 3.5 A, and is practically in-phase with the supply 

voltage vs confirming the effectiveness of the control strategy in matching the effective capacitive reactance to the generator 

inductive reactance. The dc load voltage is constant at 160 V because of the presence of the load capacitor CL.. The figure also 

shows the switch timing pulses and the resulting series capacitor voltage, which is zero when S1 or S2 are closed in each half-cycle 

of the supply voltage waveform. 

The same system behavior is observed when comparing simulation and experimental results, however, the experimental results 

show differences in the magnitudes of voltage and current compared with simulations. For example, the load voltage in Fig. 15 is 

130 V (experimental) whereas the load voltage in Fig. 10 is 170 V (simulation). The highest errors between simulation and 

experimental values occur at the highest voltage and frequency of 100V/480Hz with a 22.9% difference in the values of average 

load voltage VL. This error decreases at lower frequencies. The differences can be explained by the extra losses in the experimental 

test circuit due to the use of passive components (inductors LS and series capacitors CC) designed to be employed at 50 Hz. To 

support this statement the FCSC-rectifier was operated at 50V/50Hz. The error between measurement and simulation at 50 Hz was 

reduced in this case to below 5%. This confirms that inductor core loss and capacitor losses in the test rig are responsible for the 

discrepancy between experimental and simulated results when operated at frequencies above 50 Hz. This observation has been 

previously reported [44] in power factor correction applications with switching converters. An accurate calculation of inductor loss 

is highly challenging in applications where the frequency or the duty cycle are variable since conventional methods for core loss 



 

 
estimation based on manufacturer’s data sheets cannot be used in such cases. In an aircraft installation the PM generator will be 

specifically designed to operate over the required range of frequencies and care will be taken to reduce machine losses to a 

minimum. For example in [42] and [45] core losses are reduced by using a segmented stator PM alternator to reduce the magnetic 

wedges which effect the eddy current loss.    

 

 
Fig.  15. Experimental FCSC-rectifier waveforms at 90V/400 Hz. 

 

Fig. 16 shows the measured relationship between power factor, load and voltage/frequency. This figure clearly shows that the 

input power factor is high at all values of supply voltage and frequency. The highest power factor (0.99) was achieved at the higher 

voltage/frequency of 100V/480Hz. The minimum value of power factor (0.95) occurred at minimum load, recorded at 75V/240Hz. 

The figure also shows that the variation in load resistance has a small impact on the power factor.  



 

 

 
Fig. 16. FCSC-rectifier power factor as a function of PM generator voltage and frequency under various load conditions (experimental results). 

 

 

VI. HARMONIC AND EFFICIENCY ANALYSIS   

Since the three-phase FCSC-rectifier is being proposed for aircraft applications, it is imperative to examine the AC current 

harmonic spectrum as a function of load variations. This is important due to the strict limits placed on individual harmonics in such 

applications. In this section, the harmonic components of the simulated and experimental AC current waveforms are calculated 

using FFT analysis, up to the 40th harmonic as required in MEA standards. Results are compared with the demands imposed by 

DO-160G as listed in [26] to examine the suitability of the FCSC-rectifier in an aircraft application.  Harmonic spectra are presented 

at minimum voltage/frequency and at maximum voltage/frequency. In addition, operation at two load conditions RL = 20  and RL 

= 10  (emulates a load change of 50%).  

A. Harmonic Spectrum (Simulation results) 

Fig. 17 compares simulation results at 100V/480Hz and 75V/240Hz with DO-160G for a load of RL = 20 . All the current 

harmonics at both frequencies are lower than the specified limits. The same observation is made when the load resistor value is 

halved (Fig. 18).  



 

 

 
Fig. 17.  Input current harmonic spectrum as a function of VS/fS; simulated waveforms, RL= 20 . 

 
Fig. 18.  Input current harmonic spectrum as a function of VS/fS; simulated waveforms RL= 10  

 

B. Harmonic Spectrum (Experimental results) 

Similarly, Fig. 19 shows that none of the individual harmonics exceed DO-160G limits while operating the test rig with a load 

resistance of RL =20 . Fig. 20 illustrates the effect of reducing the load resistor to 10 . Reassuringly, all current harmonics are 

below DO-160G specifications. The case of 480Hz and RL =10  represents maximum power delivered to the load. The IGBT 

stress at this condition is 16.5 A collector peak current and 687 V maximum collector-emitter voltage which is equal to the capacitor 

voltage Vcc.  

 



 

 

 
Fig. 19.  Input current harmonic spectrum as a function of VS/fS; experimental waveforms, RL= 20  

 

 
Fig. 20.  Input current harmonic spectrum as a function of VS/fS; experimental waveforms, RL= 10  

 

C. Efficiency Analysis 

The FCSC-rectifier experiences on-state losses from the IGBTs (S1 to S6) and diodes (D1 to D6), and resistive losses caused 

by the internal parasitic resistors of the three capacitors (Cc). IGBT on-state losses occur only during the conduction period δ, thus 

the on-state losses for one IGBT can be expressed as: 𝑃𝐼𝐺𝐵𝑇 = 𝛿2𝜋 ∗ 𝐼𝑝ℎ ∗ 𝑉𝐶𝐸 𝑜𝑛−𝑠𝑡𝑎𝑡𝑒            (14) 

where Iph is the phase RMS current and Vce on-state is the on-state voltage of the IGBT. Switching losses can be ignored as the 

switching frequency for each IGBT is half the supply frequency fs. Each of the diodes conducts for a period of π, thus the on-state 

losses for one diode is: 

𝑃𝑑𝑖𝑜𝑑𝑒 = 𝜋2𝜋 ∗ 𝐼𝑝ℎ ∗ 𝑉𝑜𝑛−𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑝ℎ∗𝑉𝑜𝑛−𝑠𝑡𝑎𝑡𝑒2        (15) 



 

 
with Von-state being the on-state voltage of the diode. The capacitor has a resistance of 66mΩ, thus ohmic losses of the capacitor Cc 

can be estimated to: 

 𝑃𝐶 = 2𝜋−𝛿2𝜋 ∗ 𝐼𝑝ℎ2 ∗ 𝑅𝑐                (16) 

 
Based on (14-16), total FCSC-rectifier losses were calculated (Ptotal) for four different scenarios as shown in Table 5. 

Corresponding efficiency figures (ηcal)  are also included in the table, calculated from the output powers for each scenario, showing 

efficiency values between 95% and 98.6%. The Table also includes measured efficiency values (ηm); approximately 2% lower than 

the calculated efficiencies.   

Table 5. FCSC-rectifier losses and efficiencies at different operating conditions 

 

Load 
Supply 

voltage/frequency 
δ Ptotal ηcal ηm 

RL=10Ω 
100V/480Hz 0.00 54.27 W 97.87% 94.16% 

75V/240Hz 86.41 67.91 W 95.09% 92.60% 

RL=20Ω 
100V/480Hz 0.00 25.17 W 98.55% 95.31% 

75V/240Hz 86.41 35.57 W 96.23% 93.40% 

 

VII. CONCLUSION 

This paper proposes a three-phase, variable-frequency, variable-voltage FCSC-rectifier circuit for MEA applications that does 

not require any filters in order to comply with current harmonics regulations such as DO-160G. The proposed rectifier is ideal for 

stand-alone systems such as powering the FADEC onboard an aircraft. The rectifier incorporates an IGBT controlled, three-phase 

series compensation circuit connected between a PM synchronous generator and a diode bridge rectifier. The reactance of the 

capacitor is continually varied (in line with the varying supply frequency) to match the generator inductive reactance and to achieve 

a minimum impedance resonant condition. This results in a sinusoidal AC current waveform in phase with the generator induced 

voltage over a wide range of operational voltages and frequencies.  

Simulation and experimental results clearly show that the FCSC-rectifier is able to maintain a high value of power factor over a 

wide range of voltage and frequencies values at different load conditions. The power factor improves with increasing load and 

supply frequency. All individual harmonics fell within the allowable limits when tested over a range of frequencies from 480 Hz 

to 240 Hz. This occurred at all load conditions without the need for any additional filtering. In principal, the FCSC-rectifier can 

also be employed for other stand-alone aircraft VFG systems whenever there is a requirement for powering aircraft systems 

independently from an auxiliary power unit, as well as other stand-alone systems in non-aircraft applications.  
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