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This article reports the two-dimensional forced convective flow of a generalized
Burgers fluid over a linearly stretched sheet under the impacts of nano-sized mate-
rial particles. Utilizing appropriate similarity transformations the coupled nonlinear
partial differential equations are converted into a set of coupled nonlinear ordinary
differential equations. The analytic results are carried out through the homotopy
analysis method (HAM) to investigate the impact of various pertinent parameters for
the velocity, temperature and concentration fields. The obtained results are presented
in tabular form as well as graphically and discussed in detail. The presented results
show that the rate of heat transfer at the wall and rate of nanoparticle volume fraction
diminish with each increment of the thermophoresis parameter. While incremented
values of the Brownian motion parameter lead to a quite opposite effect on the rates
of heat transfer and nanoparticle volume fraction at the wall. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4935043]

I. INTRODUCTION

The forced convective analysis of boundary layer flows involving non-Newtonian fluids induced
by a stretching surface has been the focus of extensive attempts during the past few decades
due to their industrial and technological applications e.g., biological, chemical, food, and pharma-
ceutical industries. Several fluids such as drilling muds, shampoos, ketchup, granular suspension,
apple sauce, paper pulp, slurries, paints, certain oils, polymer solutions, and clay coating are the
non-Newtonian fluids. It seems quite difficult to propose a single model which incorporates the
various characteristics like shear-thinning, shear-thickening,1 viscoelasticity and viscoplasticity of
non-Newtonian fluids as accomplished for the Newtonian fluid. Thus numerous model constitu-
tive equations have been proposed. Furthermore, because of the behavior of non-Newtonian fluids
the governing equations become more complex to handle as extra non-linear terms appear in the
equation of motion. Particularly, reaction of numerous viscoelastic fluids can be caught sensibly
well by the rate type fluid models. The fluid model under thought is a subclass of the rate-type
fluid that is known as the generalized Burgers fluid. Consequently, a thermodynamic framework
has been put into place to develop one-dimensional model due to Burgers2 to the frame indifferent
three dimensional form by Rajagopal and Srinivasa.3 The Burgers model has been successfully used
to describe the response of asphalt and asphalt concrete4 as well as used to model the geological
structures like Olivine rocks.5 In spite of diverse applications, the Burgers model has not been given
due attention. This model has been inspected by a few researchers.6–11

In recent years, the importance of flow and heat transfer in the field of nanofluids have been
simulated significantly because of their potential applications in industrial processes such as in
heating or cooling processes, chemical processes, power generation and so forth. Nevertheless, the
applications of nanofluids are largely due to enhanced thermal conductivity. Choi12 was the first
who proposed the term nanofluid to describe the pure fluid with suspended nanoparticles. He found
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that adding metallic particles in nanosize to a base fluid can dramatically enhanced the thermal
conductivity of the base fluid and improve the heat transfer performance of these fluid. A model for
convective transport in nanofluids considering of the Brownian diffusion and thermophoresis was
developed by Buongiorno.13 He established an explanation for abnormal convective heat transfer
enhancement observed in the nanofluids. He also showed that Brownian diffusion and thermophore-
sis were the most important nanoparticle/base-fluid slip mechanisms. Although the nanofluids have
been studied by many researchers; however, we mention here some examples. Kuznetsov and
Nield14 investigated the natural convective boundary-layer flow of a nanofluid past a vertical plate.
They showed that their similarity solution was achieved, which depended on the Lewis number
Le , the buoyancy-ratio number Nr , the Brownian motion number Nb and the thermophoresis
number Nt . Makinde et al.15 analyzed the combined effects of buoyancy force, convective heating,
Brownian motion, thermophoresis and magnetic field on stagnation point flow and heat transfer of
a nanofluid flow towards a stretching sheet. Rahman et al.16 discussed the boundary layer flow of a
nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using
Buongiorno’s model. Pal et al.17 analyzed flow and heat transfer of nanofluids towards a stagnation
point over a stretching/shrinking surface in a porous medium with thermal radiation. The numerical
study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of
nanoparticles was investigated by Nadeem et al.18 Khan et al.19 analyzed three-dimensional flow of
an Oldroyd-B nanofluid towards a stretching sheet with heat generation/absorption. The steady flow
of Burgers nanofluid over a stretching surface with heat generation/absorption was studied by khan
and khan.20 Khan et al.21 discussed the flow and heat transfer to sisko nanofluid over a nonlinear
stretching sheet. Haroun et al.22 reported the heat and mass transfer of nanofluid through an impul-
sively vertical stretching surface using the spectral relaxation method. Haroun et al.23 examined the
effect of unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with
suction/injection using the spectral relaxation method.

The objective of the present study is to examine the flow and heat transfer characteristics to
generalized Burgers nanofluid over a linear stretching sheet. By means of similarity reduction, a
set of three non-linear coupled ordinary differential equations with linear boundary conditions are
acquired. This specific sort of non-linear coupled ordinary differential equations are solved analyt-
ically by utilizing the homotopy analysis method (HAM).24 The effects of the governing physical
parameters on the velocity, temperature and nanoparticle volume fraction profiles are displayed
graphically and discussed in details.

II. GOVERNING EQUATIONS

The conservation equations of mass, momentum, energy and nanoparticles describing the flow
of nanofluid in the vectorial form can be written as

div V = 0, (1)

ρ (V · ∇) = −∇p + ∇ · S, (2)

(V · ∇)T = α∇2 T + τ
(
DB∇C · ∇T +

DT

T∞
∇T · ∇T

)
, (3)

(V · ∇)C = DB∇
2C +

DT

T∞
∇

2T, (4)

where V is the velocity vector, T the temperature of the fluid, C the concentration of the fluid, ρ the
fluid density, p the pressure, α the thermal diffusivity, T∞ the ambient fluid temperature, τ = ρcp

(ρcp) f
the ratio of effective heat capacity of the nanoparticle material to the heat capacity of the fluid
with cp the specific heat of fluid at constant temperature, DB the Brownian diffusion coefficient
and DT the thermophoresis diffusion coefficient. Moreover, the extra-stress tensors for an incom-
pressible generalized Burgers fluid is related to the fluid motion satisfies the following constitutive
equation:
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(
1 + λ1

D
Dt
+ λ2

D2

Dt2

)
S = µ

(
1 + λ3

D
Dt
+ λ4

D2

Dt2

)
A1, (5)

where A1 = (∇V) + (∇V)T is the first Rivlin-Ericksen tensor, µ the dynamic viscosity, λ1 and
λ3 (<λ1) the relaxation and retardation times, respectively, λ2 (<λ1λ3) and λ4 (λ1λ3 − λ2 + λ4

> −2
√
λ1λ3λ4) the material parameters of the generalized Burgers fluid and D

Dt
denotes the upper

convected derivative given as

Dai

Dt
=
∂ai

∂t
+ urai, r − ui, rai. (6)

For a two-dimensional flow in Cartesian coordinates, we seek the velocity, temperature, concentra-
tion and stress fields of the form

V = [u (x, y) , v (x, y) ,0], T = T(x, y), C = C(x, y), S = S(x, y). (7)

Now substituting Eq. (7) in Eqs. (1) to (4), having in mind Eqs. (5) and (6) a lengthy but straight
forward calculations yield the following governing equations of motion for the steady flow of a
generalized Burgers nanofluid

∂u
∂x
+
∂v

∂ y
= 0, (8)

u
∂u
∂x
+ v

∂u
∂ y
+ λ1

(
u2 ∂

2u
∂x2 + v

2 ∂
2u

∂ y2 + 2uv
∂2u
∂x∂ y

)

+λ2



u3 ∂
3u
∂x3 + v

3 ∂
3u

∂ y3 + u2
(
∂2u
∂x2

∂u
∂x
− ∂u
∂ y

∂2v

∂x2 + 2
∂v

∂x
∂2u
∂x∂ y

)

+ 3v2
(
∂v

∂ y

∂2u
∂ y2 +

∂u
∂ y

∂2u
∂x∂ y

)
+ 3uv

(
u

∂3u
∂x2∂ y

+ v
∂3u

∂x∂ y2

)

+ 2uv
(
∂u
∂ y

∂2u
∂x2 +

∂v

∂x
∂2u
∂ y2 +

∂v

∂ y

∂2u
∂x∂ y

− ∂u
∂ y

∂2v

∂x∂ y

)



(9)

= − 1
ρ

∂p
∂x
+ ν



∂2u
∂x2 +

∂2u
∂ y2 + λ3

(
u

∂3u
∂x∂ y2 + v

∂3u
∂ y3 −

∂u
∂x

∂2u
∂ y2 −

∂u
∂x

∂2v

∂ y2

)

+ λ4

*...........
,

u2 ∂4u
∂x2∂ y2 + 2uv

∂4u
∂x∂ y3 + v

∂u
∂ y

∂3u
∂x∂ y3 − u

∂u
∂ y

∂4u
∂x2∂ y2

− 2u
∂u
∂ y

∂3v

∂x∂ y2 + u
∂v

∂x
∂3u
∂ y3 + v

2 ∂
4u

∂ y4 + 3v
∂v

∂ y

∂3u
∂ y3 − v

∂u
∂ y

∂3v

∂ y3

− u
∂2u
∂x2

∂2u
∂ y2 + (

∂u
∂x

)2 ∂
2u

∂ y2 +
∂v

∂x
∂u
∂ y

∂2v

∂ y2 − u
∂2u
∂x∂ y

∂2v

∂ y2 − v
∂u
∂ y

∂3v

∂ y3

+///////////
-



,

u
∂v

∂x
+ v

∂v

∂ y
+ λ1

(
u2 ∂

2v

∂x2 + v
2 ∂

2v

∂ y2 + 2uv
∂2v

∂x∂ y

)

+ λ2



u3 ∂
3v

∂x3 + v
3 ∂

3v

∂ y3 + 2uv
(
∂2v

∂x2

∂u
∂ y
+
∂v

∂x
∂2v

∂ y2 −
∂v

∂x
∂2v

∂x∂ y
− ∂v

∂ y

∂2v

∂x∂ y

)
+ u2

(
∂2v

∂x2

∂v

∂x
− 3

∂v

∂ y

∂2v

∂x2 + 3v
∂3v

∂x2∂ y
− ∂v

∂ y

∂2v

∂x∂ y
+ 2

∂v

∂x
∂2v

∂x∂ y

)

+ v2
(
2
∂v

∂ y

∂2v

∂ y2 −
∂v

∂x
∂2v

∂ y2 + 2u
∂3v

∂x∂ y2 + 2
∂u
∂ y

∂2v

∂x∂ y
+ u

∂3v

∂x∂ y2

)

+2uv
(
∂u
∂ y

∂2u
∂x2 +

∂v

∂x
∂2u
∂ y2 +

∂v

∂ y

∂2u
∂x∂ y

− ∂u
∂ y

∂2v

∂x∂ y

)


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= − 1
ρ

∂p
∂ y
+ ν



∂2v

∂x2 +
∂2v

∂ y2 + λ3

*.....
,

u
∂3v

∂x∂ y2 + u
∂3v

∂x3 + v
∂3v

∂x2∂ y
+ v3 ∂

3v

∂ y3

− ∂v
∂x

∂2u
∂x2 −

∂v

∂x
∂2u
∂ y2 −

∂v

∂ y

∂2v

∂x2 −
∂v

∂ y

∂2v

∂ y2

+/////
-



+ νλ4



u
∂u
∂x

∂3v

∂x3 + u2 ∂
4v

∂x4 + v
∂u
∂ y

∂3v

∂x3 + uv
∂4v

∂ y∂x3

− u
∂v

∂ y

∂3v

∂x3 − u
∂v

∂x
∂3u
∂x3 + u

∂u
∂x

∂3v

∂x∂ y2 + u2 ∂4v

∂x2∂ y2

+ v
∂u
∂ y

∂3v

∂x∂ y2 + uv
∂4v

∂x∂ y3 − u
∂v

∂ y

∂3v

∂x∂ y2 − u
∂v

∂x
∂3u

∂x∂ y2

+ u
∂v

∂x
∂3v

∂x2∂ y
+ uv

∂4v

∂x3∂ y
+ v

∂v

∂ y

∂3v

∂x2∂ y
+ v2 ∂4v

∂x2∂ y2

− v ∂v
∂ y

∂3v

∂x2∂ y
− v ∂v

∂ y

∂3v

∂x2∂ y
− v ∂v

∂x
∂3u

∂x2∂ y
+ u

∂v

∂x
∂3v

∂ y3

+ uv
∂4v

∂x∂ y3 + v
∂v

∂ y

∂3v

∂ y3 + v
2 ∂

4v

∂ y4 − v
∂v

∂ y

∂3v

∂ y3



+ νλ4



− v ∂v
∂x

∂3u
∂ y3 + u

∂2v

∂x∂ y
∂2v

∂x2 + u
∂v

∂ y

∂3v

∂x3 + v
∂2v

∂ y2

∂2v

∂x2

+v
∂v

∂ y

∂3v

∂x2∂ y
− ( ∂v

∂ y
)2 ∂

2v

∂x2 −
∂v

∂x
∂u
∂ y

∂2u
∂x2 + u

∂2v

∂x∂ y
∂2v

∂ y2

+ u
∂v

∂ y

∂3v

∂x∂ y2 + v(
∂2v

∂ y2 )2 + v
∂v

∂ y

∂3v

∂ y3 − 2( ∂v
∂ y

)2 ∂
2v

∂ y2

+ u
∂2v

∂x2

∂2u
∂x2 + u

∂v

∂x
∂3u
∂x3 + v

∂2v

∂x∂ y
∂2u
∂x2 + v

∂v

∂x
∂3u

∂x2∂ y

− ∂v
∂ y

∂v

∂x
∂2u
∂x2 −

∂v

∂v

∂u
∂x

∂2u
∂x2 + u

∂2v

∂x∂ y
∂2v

∂ y2 + u
∂v

∂ y

∂3v

∂x∂ y2

+ v( ∂
2v

∂ y2 )2 + v
∂v

∂ y

∂3v

∂ y3 −
∂v

∂x
∂v

∂ y

∂2u
∂ y2



(10)

u
∂T
∂x
+ v

∂T
∂ y
= α

(
∂2T
∂x2 +

∂2T
∂ y2

)

+τ


DB

(
∂C
∂x

∂T
∂x
+
∂C
∂ y

∂T
∂ y

)
+

DT

T∞
*
,

(
∂T
∂x

)2

+

(
∂T
∂ y

)2
+
-


, (11)

u
∂C
∂x
+ v

∂C
∂ y
= DB

(
∂2C
∂x2 +

∂2C
∂ y2

)
+

DT

T∞

(
∂2T
∂x2 +

∂2T
∂ y2

)
, (12)

where ν = µ
ρ

is the kinematic viscosity.
Using the standard boundary layer approximation, one finally has the following boundary layer

equations for a generalized Burgers fluid

u
∂u
∂x
+ v

∂u
∂ y
+ λ1

(
u2 ∂

2u
∂x2 + v

2 ∂
2u

∂ y2 + 2uv
∂2u
∂x∂ y

)

+λ2



u3 ∂
3u
∂x3 + v

3 ∂
3u

∂ y3 + u2
(
∂2u
∂x2

∂u
∂x
− ∂u
∂ y

∂2v

∂x2 + 2
∂v

∂x
∂2u
∂x∂ y

)
+ 3v2

(
∂v

∂ y

∂2u
∂ y2 +

∂u
∂ y

∂2u
∂x∂ y

)
+ 3uv

(
u

∂3u
∂x2∂ y

+ v
∂3u

∂x∂ y2

)
+ 2uv

(
∂u
∂ y

∂2u
∂x2 +

∂v

∂x
∂2u
∂ y2 +

∂v

∂ y

∂2u
∂x∂ y

− ∂u
∂ y

∂2v

∂x∂ y

)



(13)
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= − 1
ρ

∂p
∂x
+ ν


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+//////////
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,
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u
∂C
∂x
+ v

∂C
∂ y
= DB

∂2C
∂ y2 +

DT

T∞

∂2 T
∂ y2 . (15)

III. PROBLEM FORMULATION

Let us consider the steady, two-dimensional convective boundary layer flow of an incompress-
ible generalized Burgers nanofluid over a linear stretching sheet of constant surface temperature
Tw and concentration Cw. The fluid occupies the half space y > 0 and flow is induced due to
the stretching of the sheet at y = 0 along the x − axis with velocity Uw = ax, where a > 0 is the
stretching rate of sheet. The uniform temperature and concentration far away from the surface of
the sheet are T∞ and C∞, respectively. With these assumptions along with standard boundary layer
approximation, the governing equations can be written as

∂u
∂x
+
∂v

∂ y
= 0, (16)
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,

u
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∂ y
+
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(
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u
∂C
∂x
+ v

∂C
∂ y
= DB

∂2C
∂ y2 +

DT

T∞

∂2 T
∂ y2 , (19)

with the relevant boundary conditions
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u = Uw = ax, v = 0, T = Tw, C = Cw a t y = 0, (20)
u → 0, v → 0, T → T∞, C → C∞ as y → ∞. (21)

By introducing the following dimensionless quantities, the above problem can be expressed in a
simpler form

ψ = x
√

aν f (η), η = y


a
ν
, θ (η) = T − T∞

Tw − T∞
, φ (η) = C − C∞

Cw − C∞
, (22)

where ψ(x, y) is the Stokes stream function and is defined as u = ∂ψ
∂y

and v = − ∂ψ
∂x

.
Consequently, the above governing problem reduces to

f ′′′ + f f ′′ − ( f ′)2 + β1
�
2 f f ′ f ′′ − f 2 f ′′′

�
+ β2

�
f 3 f iv − 2 f ( f ′)2 f ′′ − 3 f 2 f ′′2

�

+β3
�( f ′′)2 − f f iv� + β4

�
f 2 f v − 2 f f ′ f iv − 2 f f ′′ f ′′′ + f ′( f ′′)2� = 0,

(23)

θ ′′ + Pr f θ ′ + Pr Nbφ
′θ ′ + Pr Nt(θ ′)2 = 0, (24)

φ′′ + Pr Le f φ′ +
Nt

Nb
θ ′′ = 0, (25)

f = 0, f ′ = 1, θ = 1, φ = 1 at η = 0, (26)
f ′ → 0, f ′′ → 0, f ′′′ → 0, θ → 0, φ → 0 as η → ∞, (27)

where prime denotes differentiation with respect to η. Moreover, βi (i = 1, 2, 3, 4) are the
Deborah numbers, Pr the Prandtl number, Nb the Brownian motion parameter, Nt the thermophore-
sis parameter and Le the Lewis number. These parameters are defined by

β1,3 = λ1,3a, β2,4 = λ2,4a2, Pr =
ν

α

Nb =
τDB(Cw − C∞)

ν
, Nt =

τDT(Tw − T∞)
T∞ν

, Le =
α

DB
.

(28)

The parameters of physical interest of the present problem are the local Nusselt number Nux

giving the rate of heat transfer at the wall and the local Sherwood number Shx giving the rate of
nanoparticle volume fraction are defined by

Nux = −
x

(T − T∞)
(
∂T
∂ y

) �����y=0
, Shx = −

x
(Cw − C∞)

(
∂C
∂ y

) �����y=0
. (29)

In view of Eq. (22), it can be shown that the above physical quantities are putted in the
dimensionless form

Re−
1
2 Nux = −θ ′ (0) , Re−

1
2 Shx = −φ′ (0) , (30)

in which Re = Uwx/ν is the local Reynolds number.

A. Homotopy solutions

For the analytic solution of the problem consisting of Eqs. (23)-(27) we employ the homotopy
analysis method (HAM). The initial approximations and the auxiliary linear operators for the HAM
solutions are chosen as

f0(η) = 1 − e−η, θ0(η) = e−η, φ0(η) = e−η, (31)
£ f = f ′′′ − f ′, £θ = θ ′′ − θ ′, £φ = φ′′ − φ′ (32)

The above operators satisfy the properties given as follows:

£ f [C1 + C2eη + C3e−η] = 0, £θ[C4eη + C5e−η] = 0,
£φ[C6eη + C7e−η] = 0,

(33)

in which Ci(i = 1 − 7) elucidate the arbitrary constants.
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TABLE I. Convergence of the HAM solution for different order of approximation when β1= 0.5, β2= 0.2, β3= 0.45,
β4= 0.1, Pr= 1, Nb = Nt = 0.1 and Le = 1.1 are fixed.

Order of approximation -f′′ (0) -θ′ (0) -φ′ (0)

1 0.970712 0.484510 -0.074521
5 0.920563 0.535665 0.250488
10 0.910284 0.539382 0.250488
15 0.909913 0.538080 0.272165
20 0.910203 0.537679 0.271603
26 0.910300 0.537604 0.271490
30 0.910313 0.537600 0.271481
35 0.910313 0.537600 0.271481

B. Convergence analysis

The homotopy analysis method gives an awesome flexibility to choose the auxiliary parameters
h f , hθ and ~φ regarding adjustment and control of the convergence of series solutions. To determine
the appropriate values of h f , hθ and ~φ, we used the minimum square error which is given by

Ff ,m =
1

N + 1

N
j=0


Nf

m
i=0

FJ (i∆η)


2

. (34)

Table I is computed to examine the numerical values of - f ′′(0), -θ ′(0) and -φ′(0) for different order
of approximations. From this table, we have seen that our results for velocity, temperature and
concentration converge from 30 th order of approximation.

IV. RESULTS AND DISCUSSION

The transformed set of Eqs. (23) to (25) are highly non-linear equations and constitute a
two-point boundary value problem. Graphical analyses of the flow, heat transfer and nanoparticle
volume fraction transfer characteristics have been carried out to understand the present problem.

Figs. 1(a) and 1(b) demonstrate the variation of the Deborah numbers β1 and β2 on the velocity,
temperature and concentration distributions versus the similarity variable η. It is anticipated from
these figures that there is a rise in the temperature and concentration distributions increases with
the increase in the Deborah numbers β1 and β2. This results in enhancement in the thermal and
concentration boundary layers thickness. Moreover, the velocity profile and the associated boundary
layer thickness diminishe as the Deborah numbers β1 and β2 are augmented. It is illustrated through
Figs. 2(a) and 2(b) that the velocity, temperature and concentration distributions possess a reverse
behavior when compared with Figs. 1(a) and 1(b) for increasing values of the Deborah numbers β3
and β4.

FIG. 1. Diagram of the velocity, temperature and concentration fields for different values of the Deborah numbers β1 (panel-
a ) and Deborah numbers β2 (panel- b ) when β3= 0.45, β4= 0.1, Pr= 1.1 , Nb = Nt = 0.1 and Le = 1.0 are fixed.
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FIG. 2. Diagram of the velocity, temperature and concentration fields for different values of the Deborah numbers β3 (panel-
a ) and Deborah numbers β4 (panel- b ) when β1= 0.5, β2= 0.2, Pr= 1.1 , Nb = Nt = 0.1 and Le = 1.0 are fixed.

Figs. 3(a) and 3(b) reveal the variation of the temperature and concentration distributions in
response to a change in the Prandtl number Pr. As the value of the Prandtl number Pr increases,
the temperature profile, thermal boundary layer thickness, concentration profile and concentration
boundary layer thickness diminish. An increase in the Prandtl number Pr means slow rate of thermal
diffusion. It is also observed that concentration gradient at the surface increases when the Prandtl
number increases. Furthermore, it is also observed that fluids with low Prandtl number decay more
slowly when compared to fluids with higher Prandtl number.

The effects of the Brownian motion parameter Nb on the temperature profile and nanoparticle
fraction are shown in Fig. 4(a). It is observed that as the Brownian motion parameter Nb increases
the thermal boundary layer thickness increases and the temperature gradient at the surface decrease.
Physically, the Brownian movement of particles is simply the result of all the impulses of the fluid
molecules on the surface of the particles. The fluid molecules have significantly high velocities and
these velocities depend on the temperature of the fluid. Actually, the molecular velocities define
the temperature of a homogeneous fluid. Furthermore, the molecules of fluids at higher temper-
atures have higher velocities and vice versa. Therefore, the Brownian movement of particles is
more intense at higher temperatures. Molecular collisions with particles are almost random and
take place at the molecular time scales, which are of the order of femtoseconds and much shorter
than the time scales of the particles. Moreover, as it is seen from the graph that the concentration
boundary layer thickness decreases as the Brownian motion parameter Nb increases. The impact
of the thermophoresis parameter Nt on the temperature θ(η) and nanoparticle concentration φ(η)
distributions is shown in Fig. 4(b). This figure reveals that an increase in the thermophoresis param-
eter Nt results in an increase in the temperature distribution. Physically, when there is a temperature
gradient in the flow domain of the particulate system, small particles tend to disperse faster in
hotter regions and slower in colder regions. The collective effect of the differential dispersion of the
particles is their apparent migration from hotter to colder regions. The result of the migration is the
accumulation of particles and higher particle concentrations in the colder regions of the particulate
mixture. Therefore, the temperature on the surface of a sheet increases. This is due to fact that
the thermophoresis parameter Nt is directly proportional to the heat transfer coefficient associated

FIG. 3. Diagram of the temperature and concentration fields for different values of the Prandtl number for Pr < 1 (panel-a)
and Pr > 1 (panel-b) when β1= 0.5, β2= 0.2, β3= 0.45, β4= 0.1, Nb = Nt = 0.1 and Le = 1.0 are fixed.
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FIG. 4. Diagram of the temperature and concentration fields for different values of the Brownian motion parameter Nb

(panel- a ) and the thermophoresis parameter Nt (panel- b ) when β1= 0.5, β2= 0.2, β3= 0.45, β4= 0.1, Pr= 1.1 and
Le = 1.0 are fixed.

FIG. 5. Diagram of the local Nusselt number (panel- a ) and the local Sherwood number (panel- b ) for different values of
Nb.

FIG. 6. Diagram of the local Nusselt number (panel- a ) and the local Sherwood number (panel- b ) for different values of
Nt .

with the fluid. Moreover, it is also noticed that as the thermophoresis parameter Nt increases the
concentration boundary layer thickness also increases and the concentration gradient at the surface
decreases as the thermophoresis parameter Nt increases.

Figs. 5(a) and 5(b) illustrate the variation of local Nusselt number θ ′ (0) and the local Sherwood
number φ′ (0) in response to change in the Brownian motion parameter Nb. As it can be seen from
the graphs, the heat transfer rate on the surface of sheet decreases while the opposite behavior is
observed for each incremented value of the Brownian motion parameter Nb. This indicates that
an increment in the Brownian motion parameter Nb favor the diffusion of mass. This results in
an increase in the concentration gradient on the surface. Figs. 6(a) and 6(b) show the influence
of the thermophoresis parameter Nt on the local Nusselt number θ ′ (0) and the local Sherwood
number φ′ (0). The graphs show that the local Nusselt number and the local Sherwood number both
decreases as the thermophoresis parameter Nt increases. Furthermore, we have observed from ta-
ble II that a similar behavior is obtained for the local Nusselt number θ ′ (0) and the local Sherwood
number φ′ (0) for increasing values of Nb and Nt.
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TABLE II. Variations of the local Nusselt number and local Sherwood number for several sets of physical parameters when
Pr, Nb, Nt and Le when β1= 0.5, β2= 0.2, β3= 0.45 and β4= 0.1 are fixed.

Pr Nt Nb Le -θ′ (0) -φ′ (0)

1.0 0.1 0.1 1.0 0.539254 0.222525
1.1 0.570483 0.247336
1.3 0.626940 0.296305
1.1 0.2 0.538991 -0.099143

0.3 0.508732 -0.418895
0.4 0.479696 -0.713186

0.2 0.552397 0.448412
0.3 0.534892 0.515044
0.4 0.518096 0.548069

1.0 0.539254 0.222525
1.1 0.537600 0.271481
1.2 0.536122 0.317943

V. CONCLUSIONS

The steady forced convection boundary layer flow of a generalized Burger nanofluid past over
a stretching sheet was intended to investigate in this paper. For the nanofluid, we utilize a model
proposed by Buongiorno13 that incorporates the impacts of the Brownian motion and the ther-
mophoresis into the governing equations. The governing nonlinear partial differential equations are
transformed into strong nonlinear ordinary differential equations using similarity transformations.
The nonlinear ordinary differential equations along with boundary conditions are tackled analyti-
cally by the homotopy analysis method. From the presented study, the following conclusions were
drawn:

• It was anticipated that the nanofluid temperature θ(η) distribution and thermal boundary
layer thickness increases for the Deborah numbers β1 and β2 and quite opposite trends were
observed for the Deborah numbers β3 and β4.

• An increase in the Deborah number β4 showed an enhancement in the concentration φ(η) and
concentration boundary layer thickness.

• The concentration φ(η) and concentration boundary layer thickness were reduced for each
incremented values of the Brownian motion parameter Nb.

• The concentration boundary layer thicknes was increased for each incremented values of the
thermophoresis parameter Nt.
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