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The steady laminar flow of a well-mixed suspension of monodisperse solid spheres,
convected steadily past a horizontal flat plate and sedimenting under the action of
gravity, is examined. It is shown that, in the limit as Re _-oc, and e _0, where Re is the
bulk Reynolds number and e is the ratio of the particle radius a to the characteristic
length scale L, the analysis for determining the particle concentration profile has
several aspects in common with that of obtaining the temperature profile in forced-
convection heat transfer from a wall to a fluid stream moving at high Reynolds and

Prandtl numbers. Specifically, it is found that the particle concentration remains
uniform throughout the O(Re -1/2) thick Biasius boundary layer except for two O(& '_)
thin regions on either side of the plate, where the concentration profile becomes non-
uniform owing to the presence of shear-induced particle diffusion which balances the
particle flux due to convection and sedimentation. The system of equations within this
concentration boundary layer admits a similarity solution near the leading edge of the
plate, according to which the particle concentration along the top surface of the plate
increases from its value in the free stream by an amount proportional to X '_, with X

measuring the distance along the plate, and decreases in a similar fashion along the
underside. But, unlike the case of gravity settling on an inclined plate in the absence
of a bulk flow at infinity considered earlier (Nir & Acrivos 1990), here the concentration
profile remains continuous everywhere. For values of X beyond the region near the
leading edge, the particle concentration profile is obtained through the numerical
solution of the relevant equations. It is found that, as predicted from the similarity
solution, there exists a value of X at which the particle concentration along the top side
of the plate attains its maximum value em and that, beyond this point, a stagnant
sediment layer will form that grows steadily in time. This critical value of X is
computed as a function of es, the particle volume fraction in the free stream. In
contrast, but again in conformity with the similarity solution, for values of X
sufficiently far removed from the leading edge along the underside of the plate, a
particle-free region is predicted to form adjacent to the plate. This model, with minor
modifications, can be used to describe particle migration in other shear flows, as, for
example, in the case of crossflow microfiltration.

I. Introduction

We consider the steady laminar flow of a suspension of sedimenting monodisperse
solid particles past a horizontal flat plate. Far from the plate, the free-stream velocity

U_ and particle concentration ¢_ are both uniform. We also suppose that the particles
are small enough for their Reynolds number, based on their diameter and either the
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Stokes sedimentation velocity or the shear rate inside the viscous layer formed near the
plate, to be very small.

This flow situation constitutes a fairly general prototype for studying the effect of
shear-induced particle migration in shear layers. It is also a natural extension of the
problem considered by Nir & Acrivos (1990) in their study of sedimentation onto an
inclined plate, in which a concentrated sediment flows along the inclined plate owing
to gravity. In that case, the shear created within the flowing sediment gives rise to
shear-induced particle diffusion which opposes the sedimentation flux and prevents the
particles from accumulating onto the upper surface of the plate. This occurs within a
thin region close to the wall, termed the viscous layer, where viscous forces are
balanced by buoyancy. In fact, the structure of that solution has several points in
common with that of free-convection heat transfer from a vertical plate at high
Grashof and Prandtl numbers with the notable difference that the particle
concentration profile is discontinuous across the interface separating the suspension
from the flowing concentrated sediment. Nir & Acrivos (1990) derived expressions for
the particle velocity and concentration profiles within this sediment layer on the basis
of an effective continuum model, valid for very small particle sizes relative to the
characteristic length scale of the flow, which incorporated the effects of shear-induced
particle diffusion (Leighton & Acrivos 1986). Their model was recently extended by
Kapoor & Acrivos (1995) who also tested experimentally a number of theoretical
predictions pertaining to the thickness of the sediment layer and the corresponding
particle velocity profiles, and confirmed the theoretical results which were arrived at
through ab initio calculations that did not entail the use of adjustable parameters.

In view of the reliability of the effective medium model for buoyancy-driven flow, it
would be of interest to consider an analogous situation in which forced convection
plays an important role. In the problem examined here particles sediment onto the
plate, where they tend to accumulate forming a concentrated sediment. At the same
time, owing to the interaction between the free stream and the plate, a Blasius-type thin
shear layer is formed near the plate, which subsequently induces shear-induced particle
resuspension and thereby reduces their degree of accumulation. In addition, this whole
process is affected by the presence of convective particle transport. In fact, as will be
seen, an estimate of the size of the region within which the particle volume fraction
variation is confined can be obtained simply by balancing the corresponding convective
and diffusive particle fluxes.

The present study constitutes a first attempt towards constructing a more
comprehensive model of particle migration in shear layers which could then be used to
describe various processes of significant practical interest. Such an example is crossflow
microfiltration, in which a suspension of neutrally buoyant rigid spherical particles is
made to flow in a channel having a flat porous bottom surface, under conditions where
a pressure drop is imposed between the suspension and the permeate side of the
microporous membrane. Consequently, fluid is sucked through the membrane,
whereas the particles accumulate along the surface, forming a thin concentrated

particle layer. Moreover, if this suction velocity is small relative to that in the centre
of the channel, then, for all practical purposes, the flow within the bulk of the
suspension is fully developed and is not affected significantly by particle migration. As
a result, a known tangential shear stress is exerted along the particle layer which,

together with convection, will determine the concentration profile (Davis & Leighton
1987). In a different context, the shear-induced diffusion of raindrops as they approach
an airfoil can affect the structure of the thin water film on its surface whose existence

may be responsible for the observed loss in efficiency of airfoils under heavy rain and
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high wind shear (Dunham 1987). Detailed analysis of these two flow situations is left
for a future investigation; however, the mathematical and physical similarities between
them and the problem at hand are fairly evident.

In §2 the problem is formulated mathematically on the basis of the effective-medium
model, while in §3 the basic equations are reduced to their boundary-layer form. It will
be seen that the structure of the mathematical system is similar to that which describes
laminar heat transfer from a flat plate to a fluid stream moving past it at high Reynolds
and Prandtl numbers. In §4, a similarity solution is constructed valid near the leading
edge of the plate according to which the particle concentration within the diffusion
layer approaches smoothly its constant value, ¢._, in the adjacent momentum layer
without experiencing the discontinuity found by Nir & Acrivos (1990) in the absence
of forced convection. Finally, in §5, the results of a numerical solution to the
boundary-layer equations are presented which extend the theory beyond the leading
edge of the plate. It will be seen that the particle concentration along the top side of
the plate increases monotonically from its value at the tip, ¢._, until it reaches its
maximum possible value, era, at which point a stagnant layer is formed the thickness
of which will increase continuously in time. In contrast, along the underside of the
plate, the particle concentration decreases monotonically until a particle-free region is
attained.

2. Problem formulation

We wish to examine the flow of a suspension of non-colloidal spherical solid particles
in a viscous fluid convected steadily towards a semi-infinite flat plate, as shown in figure
1, and sedimenting under the action of gravity. The particles are supposed to be small
enough that their inertia is negligible. In the following a will denote the particle radius,
U_ the free-stream velocity, and p._, and /t_, respectively, the effective density and
viscosity of the suspension in the free stream, where the particle volume fraction ¢
equals ¢,_. The suspension will be modelled as an effective continuum Newtonian fluid
with concentration-dependent physical properties.

In this context the volumetric average velocity of the binary mixture is defined as

u = up¢+uI(1 --¢), (2.1)

where up, uI are the particle and fluid ensemble-averaged velocities at any location in
the mixture. Owing to the incompressibility of the fluid and of the solid particles, the
effective suspension density becomes

P(¢) = Pl + (Pv -Pt) ¢ - P._Y(¢), (2.2)

where Pl and pp are the pure fluid and solid particle densities respectively and y(¢) is
the effective density of the mixture rendered dimensionless with p,. Similarly, the
effective viscosity/t(_) is set equal to t_._'_(¢)" The equations governing the motion of
the mixture are rendered dimensionless using L, as yet unspecified, as the characteristic
length scale, Us = IU,J as the characteristic velocity, and the inertial scale p, U_ for the
pressure. Consequently, following Nir & Acrivos (1990) the continuity and momentum
equations for the mixture become, respectively,

V. u = 0, (2.3)

g9Gr
and Rey(¢)u.Vu = -ReVP+V.[;t(¢)(Vu+Vur)]+g_e(¢-(J,), (2.4)

where g is the gravitational acceleration. Besides ¢,, the dimensionless parameters
characterizing the flow are: the Reynolds number, Re = U_psL//t_, the Grashof
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u=, ¢,, p, = p_(¢,), t,_ = _(¢,)
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FIGU_ 1. Schematic of the flow.

number, Gr = 2 L 3. 2 a/L; e ,_ 1 for the effective-_(Pp-Pl)gPs /izs, and the size ratio e =

medium model to be valid. The hydrostatic pressure, (Pp-Pe)_._gY, has been
incorporated into the pressure field P, which now vanishes far from the plate

(henceforth, x and y will indicate, respectively, the Cartesian coordinates along and

perpendicular to the plate as shown in figure 1).

In dimensional form, the total particle flux is given by

D2 V(#((_)lVul)+(u* +u)¢, (2.5)
J = - O 1V_ /z(q_)IVul

with D 1 = IVul a2/?(q_), Oz = IVul a2K_ 42, (2.6)

where IVul - {Vu: Vup/" is the norm of the local gradient of the bulk velocity field

(Leighton & Acrivos, 1987a, b), u* is the particle slip velocity,

g 2ga2(pp-pl) _ 1-_u* = up-u = utf((9) , ut - 9 /_z , f((9) A((9)'
(2.7)

and/zf is the pure fluid viscosity. The first two terms on the right-hand side in (2.5)
account for the diffusive flux of the particles due to concentration and shear rate
gradients, respectively (Leighton & Acrivos t987a, b), whereas the last term

corresponds to the convective flux. In addition, the particle slip velocity, given by the
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first equality in (2.7), is set equal to the Stokes terminal velocity ut multiplied by a
hindrance function j(¢) which accounts for the influence of particle interactions. The
expression forf(¢) shown in (2.7) is that used by Nir & Acrivos (1990). The expressions
given above for D 1, D 2 and u* presuppose that the particle Reynolds number, whether
in terms of the sedimentation velocity or the local bulk shear rate, is vanishingly small.

In terms of the dimensionless variables introduced earlier, the steady-state particle
balance equation becomes

u. v¢ ('v fl(¢)IVul v¢ _¢
= • + _- V(/_(¢) IVul)- ¢f(¢) . (2.8)

At the solid boundary, the no-slip condition is applied together with the requirement
that the total particle flux at the plate be equal to zero, i.e.

u 0 and fl(¢)lVulV¢ c¢
= +_V(A(¢)IVu])- ¢fl¢) .n = 0, (2.9)

where n is the unit vector normal to the surface. At large distances from the wall the
flow is uniform and the suspension is well mixed, hence

u = U_, ¢ = ¢_. (2.10)

In performing the calculations to be reported below, the relative effective viscosity
of the mixture was taken to be of the form

a(¢)-/'(¢)- (I+ 1.5¢/I--¢/¢m)2
/',_ (l+l.5¢jl_¢jCm)_, ¢,,, -- 0.58 (2.11)

(Leighton & Acrivos 1987b), where Cm is the maximum possible particle volume
fraction in the flowing suspension. Also, following Leighton & Acrivos (1987 b), we let

fl(¢)=, 2._¢(1+_c,_s.8¢,) and Kc=0.6. (2.12)

3. Boundary-layer structure when Re >> 1 and e ,_ 1

We consider the case of uniform flow past a flat plate at zero angle of attack. For
large values of Re, based on the free-stream velocity U_ and the length scale L, an
O(Re -1/2) vorticity layer is formed near the plate. Above this region, the flow is uniform
and the suspension is well mixed. Applying the standard Blasius-type boundary-layer
scaling transformations

U = u, V = vRe 1/2, X = x, Y = yRe 1/2, (3.1)

with u and v denoting the longitudinal and transverse velocity components, respectively,
we obtain, for the continuity, momentum and mass transfer equations,

?_U _V
_X +_ = 0, (3.2)

( c:_U (?,U) 5 [/_ _U] 5P (3.3).y(¢) u_2+v_ = U_ (¢)_ _x'

aP _ 9 Gr(¢ - (;5_) (3.4)
Y 2 Re 5/" '

U_)_+ V_ ..... _[l_)fl(_)_4 _ _ (_) _/Jq Rel,.2_,y[_f(())],

(3.5)
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as well as the zero-flux condition at the plate,

8u8¢ Kc¢ 8U]+ )ar
Y=0, fl(¢) c_-f_(A(¢) _j _ ¢ _=0.

Next, we examine the magnitude of e_Re 3/2 which can be rearranged into

(3.6)

e2Re3/Z= (a]'2(U_ Lps] :v2 U 3/_ a2 [<,(U-</,,,)"qa_
,.L/ x / - .. - L L (3.7)

where _'s= ffJP_. Now, the term in square brackets is a measure of the shear rate near
the plate as a result of the existence of a Blasius-type boundary layer, hence the entire
expression corresponds to the shear particle Reynolds number within the boundary
layer. As mentioned in the previous section, this was already assumed to be a small
number in the context of our analysis. Having thus established that dRe 3/_ is very
small whenever the particle Reynolds number is sufficiently small, we can proceed with
the analysis in a fashion similar to the case of heat transfer to a fluid stream convected
past a flat plate at high Re and Pr.

As eZRe a/2-+ O, particle diffusion, both below and above the plate, is confined within
a narrow layer attached to the plate which is embedded within the momentum layer as
Y-+ 0. But, from the Blasius solution of the momentum boundary-layer equations, we
know that, as Y-+ 0, U ,-- Y, V ,-_ y2 (Schlichting 1968), and therefore, by requiring that
the diffusive terms in (3.5) balance those due to convection, we conclude that the
thickness of the diffusion layer must be O(d/3Rel/2). This in turn leads to the
transformations

Y U V
- e2/aReU_, 8- I7= (3.8)e2/3Rel/2 ' (e2/aRel/_)2 '

so that within the diffusion layer we obtain, respectively, for the momentum and
continuity equations

0
_[A(_) _--_] = O(dRe3/_), (3.9)

8P O(d/a Gr ] (3.10)
t '

and 8'0 8V---t---_ = 0. (3.11)
8X 8Y

In the next section we will see that, in the context of our analysis, d/aGr/Re2_ O,
which results in a uniform pressure distribution. Further, in view of (3.9), the shear
stress remains constant across the diffusion layer and hence shear-induced particle
diffusion takes place only because of gradients in the particle concentration. In terms
then of the new coordinates, the particle balance equation becomes

0_¢ p8¢_ _ _O a¢ _Ef[¢fl¢) ]_+ 8Y c_[/5'0( ) _c_] +ez/3Gr a__ ' (3.12)

with boundary conditions

d/3Gr
c_O 8¢ + ¢f(¢) Re 3,2 _ O, (3.13)=0, fl(¢) 5f 5Y

]_-_ + _, ¢ _ ¢,,, (3.14)
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where the negative ]7-values denote the region underneath the plate. We note that, in
contrast to the conventional cases involving mass transfer across boundary layers, here
the diffusion coefficient, which appears both in the particle balance equation (3.12) as
well as in the boundary condition (3.14), is proportional to the local shear rate rather
than being constant. This, as we shall see presently, affects the solution of (3.12) in a
significant way.

4. Similarity solution valid near the leading edge of the plate

As e2/3Gr/Re3/2 _-0 particle transfer due to sedimentation vanishes so that _b-_ _bs
and the Blasius velocity profile applies throughout the boundary layer. Therefore, we
construct the leading-edge expansion

e2/3Gr
=  u(x, ?)+... (4.1)

which, when substituted into (3.9)-(3.12), yields, to O(e2/3Gr/Re3/2),

- 0, (4.2)

---_-_ = 0, (4.3)
_X _y

er ert,er, erJ'

e8 = o,}
? = 0, fl(q_,) c_17 S_ (4.5)

]7_+ _, _u-_ 0.

We see then that, to this order of approximation, the shear rate within the diffusion
layer, c_/,}/0]7, is everywhere equal to +0.332 X -1/2, as given, for Y_0, by the Blasius
solution for the corresponding constant-property case. In addition, the term containing
the settling rate only appears in the boundary condition at the wall. It is this constant
term in (4.5) that accounts for the increase in the particle concentration within the
diffusion layer, or for the particle depletion below the plate.

Letting, then,
0.332 0.332 ]72

=-+_7_ f and 17=± 4X a/2 , ]7_0 (4.6)

in (4.2)-(4.5), we reduce the problem to a PDE whose form along with its boundary
conditions suggests the existence of a similarity solution. Indeed, by introducing the
transformations

]7 _bj(_.,) XS/6F_OI) (4.7)
I] -- [fl(_)s)]l/gxl/3, _.1 = 0.332[fl(q_)] z/3 ,

we obtain the ODE

,q2dF_ d2F_
+_qF_('q)-_ 12 dq - d'q 2' _/<> 0, (4.8)
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FIGURE2. Similarity solution obtained by solving (4.8) for positive _/.

with boundary conditions

dF1
- 1 as _/____0, (4.9)

d_/

FI-+0 as _/-_+_oo, (4.10)

which can readily be solved numerically to give F_(q), shown in figure 2. In addition it

can easily be seen that F_(q) = --F_(--_l) with a discontinuity at _/= 0. Also FI(0+) =
1.41.

To a first approximation then, within the diffusion layer, whose thickness relative to
the length scale L is O(Re-_/%2/3Re _/2) = O(e2/a), the particle concentration is given by

. 0.332L8( 8)]2/3Re3/ , O, (4.11)

implying that, along the top face of the plate, the increase in _bfrom its value in the free
stream is proportional to X 5/_, whereas, below the plate, _ decreases in a similar
fashion. It should also be noted that, unlike the similarity solution given by Nir &
Acrivos (1990) for sedimentation over an inclined plate, here the particle concentration
profile inside the diffusion layer, both above and below the plate, approaches
continuously _, its value in the undisturbed flow. In fact, an asymptotic analysis of
(4.8) reveals that, as _/-+_+ _, F_0/) ~ e gq3/3n. The reason for this difference in the two

concentration profiles, is that, in our case, the shear rate remains constant at any given
X throughout the diffusion layer, whereas in Nir & Acrivos (1990) the corresponding
shear rate is a monotonically decreasing function of Y and vanishes at infinity.

Up to this point, the characteristic length scale L used in our analysis has been left
unspecified. In what follows it proves convenient, however, to choose L such that

Re3� _ 0.332[fl(_)]2/a = 1, (4.12)
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giving L - a -- _ - (4.13)[ ,,, ) ' Ap p,-p,

in which case (4.11) becomes

(9 = (9s+F1(o)XS/_+... as X-_0. (4.14)

We note that if L is chosen according to (4.13),

(aZgAp_3/5{U_a_ z/5
e2Re3/2 "_ _ ._p, ] _ ", /

(4.15)

which, for small particles, is normally very small, as required by our analysis. In the
context of crossflow microfiltration Davis & Sherwood (1990) obtained a similarity
solution that has some of the characteristics of the one presented here. For instance,

in their analysis, the thickness of the sheared concentration boundary layer is also
proportional to X 1/3. Of course, their study is different in that they neglect gravity
settling, they consider fully developed flow in the bulk of the suspension as opposed to
the Blasius-type vorticity layer considered here, and finally they focus on that portion
of the membrane where the particles form a thin stagnant sediment layer, cake, with
concentration Cm = 0.58. However, if one focuses on the entrance portion of the
membrane where the flow is not fully developed and the cake layer has not yet formed,

Cw < (gin, and provided the transmembrane pressure drop is much larger than the
down-channel pressure drop, in which case the wall permeation velocity, vw, is taken
to be constant, it can be seen that, as X-_ 0, a similarity solution exists which is exactly

the same as the one presented here with L defined such that

(7" (gs = 1, (4.16)
ea/3 Re 1/2 0.332[fl(¢s)] 2/3

Vw e2 Re3/2
and o- = _ _ Re -_/2, ,_ 1. (4.17)

Substituting in (4.16) the parameter values used by Davis & Birdsell (1987),
¢_=0.02, U_=3.7cms -1, v,,=3.0x10 -3cms -_, a=2x10 -2cm, /z=20cP, p=
1.18 g cm -3, in their experimental investigation, we obtain L ,,_ 2 cm, which conforms
to the conditions in (4.17). When X-,_ L the similarity solution is not valid and the
full equations have to be solved; they are only slightly different from the full equations
derived in the next section to provide the location X_r for which the stagnant cake layer
forms. This is a very important design parameter as it controls the plugging of the
channel.

5. Solution valid when X--, 0(1)

Introducing the further transformation

we obtain for the momentum equation (3.9)

(5.1)

(5.2)
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which, when combined with the asymptotic form of the Blasius solution as Y-_ 0 given
by (4.6), leads to

1/30 332 fY
o= a(c)'d' (5.3)

_ rR_',4_12/a0.332 (e _( f_ t) [ 2X(dA/d¢) (c_¢/_X)]) _and P=+_r,rs,, 2X3/2)o [ A(¢) 1-_ _ J_clt (5.4)

on account of the continuity equation. Substituting the above into (3.11)-(3.13), we
then obtain for the particle concentration equation

1 I-/'Y dt ] _¢ 1 f/'Y - 2X(dA/d¢) (_¢/_X)]_ 0¢
____i_[Jo _J_--_+2--_-_U ° d,_[1 + a--_ JJ_

_ £ ] (5.5)

valid for all X, subject to the boundary conditions

_¢ . .1/2F(¢)=0 at Y=0,

as Y_+_, ¢-+¢, as X_0,

(5.6)

As X-+ 0 the similarity solution can easily be recovered. It is also not difficult to show

that the first correction to the similarity solution will be of the form Fz0/)X _°/8.
Equation (5.5) has to be solved numerically. Moreover, in view of the form of the

similarity solution as X_ 0, it is useful to rewrite equation (5.5) in terms of _!= Y/X 1/3
and X, and, in order to avoid large longitudinal derivatives of the concentration near
X = 0, to introduce

H --- (¢- ¢,) X (5.8)

as the dependent variable. The resulting equation is parabolic in X and was discretized
along then _/-direction using the Galerkin finite element method with the B-cubic
splines as basis functions. Integration by parts eliminates second-order derivatives and
increases the accuracy of the method to O(h 3) where h is the size of the largest element.
The longitudinal direction X is a time-like coordinate and the integration is performed
implicitly via the second-order trapezoidal rule. This gives rise to a set of nonlinear
algebraic equations that are solved using Newton's iterations. Unfortunately, because
_¢/_X appears inside the integrand in the second term of (5.5), the system matrix is
fully populated and the CPU time increases like N 2, where N is the number of
unknowns. Typically 4-5 Newton's iterations were sufficient to reduce the error,
defined in terms of the Euclidean norm l Y_k+D - Ykl2, to less than 10-8; yk denotes the
kth iterant of the vector of unknown coefficient of the B-spline representation of the
dependent variable H. The computation was terminated when the particle volume
fraction reached its maximum value, era, on the top face of the plate, or when it
vanished at the bottom. The results presented below were checked with respect to mesh
refinement and are accurate up to, at least, the third significant digit.

with F(¢)- ¢fl¢) A(¢)- /?(¢) (5.7)
¢J(¢,)' Z(¢,) a(¢)"
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FIGURE 3. Comparison of the evolution of _,,, the particle concentration along the top face of the

plate, for q_, = 0.2, as obtained via similarity (_5+ 1.41X 5'8) and as calculated via the exact solution.

The computation stops when _5_. reaches its maximum value _5,,.

5.1. Results and discussion for the region above the plate

The numerical solution of (5.5) and (5.6), to be referred to henceforth as the exact

solution, generates a concentration profile, the shape of which is qualitatively similar

to that given by the similarity solution. In addition, 4w, the particle concentration

along the top side of the plate, is found to increase monotonically from the leading edge

and to become equal to _,_ at a value of X which, according to our model, is only a

function of Ss. Beyond this point a steady-state solution of the system of equations

given above does not exist and a stagnant sediment layer, having a uniform particle

volume fraction 4m, is predicted to form whose width continuously increases in time.

The evolution of _w, the concentration at the top face of the plate, both as predicted
by the similarity expression, _,+ 1.41X _/6, and from the exact solution, is shown in

figure 3 for $s = 0.2. It is seen that the two results agree only up to X _ 0.05, thereby
implying that the range in X within which the similarity solution applies is very limited.

This interval can be extended by adding to the result of the similarity solution the first-

order correction, F2(.q = 0) X _°/6, but even so, with increasing distance from the leading

edge, the discrepancy between the two sets becomes rapidly more pronounced. Indeed,

as shown in figure 3, the similarity solution significantly overpredicts the rate of particle

accumulation on the plate. In addition, in view of (4.1), (4.7) and (4.12), we can clearly

see that the range in X over which the leading-edge solution applies decreases further

when q_s is reduced.
On comparing the similarity solution with the exact solution two important factors

are worth noting. Firstly, the shear-induced diffusion coefficient, _(4), is larger than

fl(_,), which is the value used in the similarity formulation, and this reduces the rate

of particle accumulation on the plate compared to that predicted by the similarity
solution. On the other hand, the relative viscosity within the suspension, ,_(4_), is larger

than ;_(¢_) in the exact formulation and consequently the shear rate is smaller, which
would lead to a higher rate of particle accumulation along the plate. As will be seen

later, however, the effect of the increase in the shear-induced diffusion coefficient
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(a) (b)

10 20 0 40 50 60 0 12 24 36 48 60

? ?

FIGURE 4. Evolution of the particle concentration profile in the region above the plate, as calculated
via the exact solution at different X-locations downstream. (a) _5,= 0.2 and X = 0.4, 0.5, 0.64, 0.78,
0.92; Xer = 0.93 for this value of _. (b) _5,= 0.05 and X = 0.5, 1.1, 1.7, 2.5_ 3.0, 3.5, 4.0, 4.41, 4.49;
X, = 4.5 for this value of q_,.

dominates particle migration near the plate, hence the exact solution leads to smaller

values for q_w.

The above argument loses its validity as the wall concentration approaches the

maximum value _bm, which is a singular limit in the sense that a very sharp increase in

the concentration gradient, d(gw/dX-+_, is observed. This is a result of the rapid
increase of the viscosity; ,_(ff)_ as ff _ _5m. Consequently, a region of progressively

smaller shear rates is formed and particles continue to accumulate on the plate as they

keep sedimenting (figure 3). Once the concentration reaches its maximum value, a

stagnant sediment layer is predicted to form which will remain attached to the plate

and grow in time monotonically. In their study of sedimentation over an inclined plate,

Nir & Acrivos (1990) reached a similar conclusion when the angle of inclination fell

below a certain threshold value. In the present case then, there exists a critical value of

the plate length, Xcr, decreasing in magnitude with increasing _,, beyond which a

steady-state solution of the problem does not exist. It is understood that, in the vicinity

of the region where _b_ = q_m, the presence of the stagnant layer alters the geometry of

the problem and hence the boundary-layer analysis presented in this study will no
longer apply.

Figure 4(a) shows, for _ = 0.2, the evolution of the concentration profile in the

region above the plate as predicted by the exact solution. The most important new
feature of this exact solutions concerns the appearance of an inflection point in the

concentration profile, which is seen to be moving away from the plate with increasing

distance from the leading edge. The reason for this is as follows. By evaluating (5.5) at
the plate we obtain

F(_)+X_/_ =0 at f=0, (5.9)

which, when combined with the boundary condition (5.6), gives

[_(9 F] _z_ . Fd(F/A)
_/_+XI/2L AJ=O_=X_ d_ at Y=O. (5.10)
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But F(_) _ (1 - _) 95,(2 + e_'8_,,)
d(_) (1-_5,)_(2+e 8s_) with ff = q_,,,, (5.11)

which decreases with increasing wall concentration, owing to the rapid increase in the
shear-induced diffusion coefficient with _. Consequently, _q_/_ ITM < 0 at the plate. But
since the concentration gradients are everywhere negative and become zero at the edge
of the diffusion layer, the second derivative of the concentration profile must become
positive at some distance from the plate, thereby explaining the existence of the
inflection point.

Referring to figure 4(a) again, it should be noted that, with increasing X, the
inflection point moves further away from the plate and that the thickness of the
diffusion layer, i.e. the distance along the Y-direction over which the particle volume
fraction decreases from _,,, to _, increases faster with Xthan predicted by the similarity
solution. In addition, the concentration profile can be viewed as consisting of two
parts. Within the first, extending between the plate and the inflection point, the
concentration gradient is relatively small near the plate but increases significantly as
the inflection point is approached. It will be seen later that in this region the
sedimentation flux balances shear-induced resuspension, while convection remains
negligibly small. Consequently, the variation of the particle volume fraction is
determined primarily by the magnitude of the shear-induced diffusion coefficient. In
the second region, extending from the inflection point up to the edge of the diffusion
layer, the concentration gradients decay to zero exponentially fast as _5-_ qS, far from
the plate.

At this point it will be of interest to discuss the predictions of our model as the free-
stream particle volume fraction, qS_,varies between values close to zero and _,,. The
evolution of the concentration profile, as computed from the exact solution for _, =
0.05, is shown in figure 4(b). On comparing this figure with figure 4(a) which applies
when _._--0.2, one can see that the concentration profile remains qualitatively
unaffected by the variation in q_,. On the other hand Xer , the length needed for _5,,,to
equal q_,n on the top face of the plate, is significantly larger and the scale in the lp-
direction, over which changes in the concentration take place, is also larger. At the
same time the concentration gradients far from the plate are larger than those observed
in figure 4(a). In view of these two effects, and keeping in mind that the numerical
discretization used in both cases was the same, the numerical error as X-,-Xcr and in
the vicinity of the inflection point, where the gradients are the steepest, is very large
when _5_= 0.05. In fact, it was found that, as _._-,0 the quality of the numerical
solution in this region deteriorated, for the reasons cited above, so that in order to
improve the accuracy around the inflection point it would have been necessary to
introduce some form of regriding. This was not pursued in this study, since the
accuracy of the numerical solution near the wall, where the concentration gradients are
small, was not affected. Hence, we were able to obtain reliable results for the variation

of the particle volume fraction at the wall, _w, for _ as small as 0.01.
In view of the difficulties encountered in trying to compute a numerical solution as

q_,-_ 0, it seems advisable to investigate the asymptotic structure of the solution of the
exact equations in this limit. Close examination of figures 4(a) and 4(b) reveals that the
variation of the particle volume fraction in the transverse direction, Y, is determined

primarily through the balance between sedimentation and diffusion in the region near
the wall. As was already mentioned in the previous paragraph but one, the
concentration gradient, _/_ 17,is small near the wall where the shear-induced diffusion
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coefficient is large, whereas far from the wall _¢/o_ Y increases significantly as the

particle volume fraction, and consequently the shear-induced diffusion coefficient,
decreases (see also (5.11)). This so-called inner region occupies almost the entire
sediment layer and determines its thickness.

In this context, and guided by the behaviour of the numerical solution for small ¢_,
we can recover, to leading order, the asymptotic structure of the exact solution as

¢_ _0. More specifically, in this limit, we rescale the coordinates within the inner
region according to

)(=X¢_, ]_= ]P_, 0_,/7>0, (5.12)

and express the particle volume fraction, which is an O(1) quantity, by means of

¢ = qSo(X, 1_)+ Cs q51(X, Y) + O(¢_). (5.13)

We next make use of the exact integral particle balance, as obtained by integrating
(5.5) across the diffusion layer and from X = 0 to X,

¢;2p (¢_¢_) dp dt = G$_-3_I223/2 (5.14)

plus the fact, guided by the numerical solutions, that within the inner region the
diffusion and sedimentation terms in (5.5) are of comparable magnitude and dominate
those due to convection as Cs-+0. Therefore, on substituting (5.12) and (5.13) into

3 and that, within the inner region 0 _<(5.14) and (5.5), we conclude that _ = _-, fl = g
Y _, O(1), the particle concentration profile satisfies, as ¢_-_0,

e [ 2fl(q_0) a_ 0 ]
+ F(q_0) / = O(¢,), (5.15)

l

which becomes, on integration,

a_ 0 2112 3(1-q50)
a1_ - q$0(2+ e,.8,0 ), (5.16)

where use has been made of (5.6), (2.7) and (2.12). The solution of (5.16) is subject to
the additional constraints that

with 8 given by
q50=0 for Y_>8(_'), (5.17)

o_ /t "_ dt \

which follows from (5.14) plus (5.12) and (5.13). Note that since 8 is finite, this inner
solution leads to a discontinuity in the particle concentration gradient at I_ -- 8 which

can be rendered continuous by constructing an appropriate outer solution, centred
around _'= 8, to be followed by the usual matching procedure. To a first

approximation, however, the existence of this outer solution does not affect the particle
concentration distribution within the inner region except in the immediate neigh-
bourhood of :I7"= 8.

Figure 5 shows the evolution of the particle concentration profile as given by the
solution of (5.16) subject to (5.17) and (5.18). The similarity between this graph and
figure 4(b) is obvious. The close agreement between the asymptotic solution as ¢,-+ 0
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FIGURE 5. Evolution of the particle concentration profile in the region above the plate as calculated
via the zeroth-order asymptotic solution as _ _-0, equations (5.17)-(5.19), at different X = X_ _5
locations downstream: X = 0.0025, 0.007, 0.016, 0.03, 0.051, 0.084, 0.131, 0.195, 0.271, 0.343, 0.369.
Xcr = 0.369.
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FIGURE 6. Comparison of the evolution of the particle concentration along the top face of the plate
as obtained via the zeroth-order asymptotic solution as _5 _0 ( ), and as calculated via the exact
solution for different values of _,: ...... ,0.2 ; •.., 0.1 ; -.-, 0.05 ; .... ,0.02.

and the numerical solution is further illustrated in figure 6 where _w, the particle

volume fraction at the wall, is seen plotted vs. J( for different values of q_.

At the opposite extreme, _ _ _m, the structure of the solution is easier to capture.

To begin within, as seen from the evolution of the particle concentration profile with
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FIGURE7. Evolution of the particle concentration profile in the region above the plate as calculated
via the exact solution at different locations downstream: X = 0.004, 0.008, 0.012, 0.016, 0.020, 0.024
for _b,= 0.5. X_, = 0.025 for this value of q_,.

X when _hs= 0.5, shown in figure 7, the inflection point remains close to the plate even
with increasing X. Besides, since J(cr is now very small, the similarity solution presented
in §4 applies over a larger portion of the appropriate range of X than when q_swas
smaller. This is seen in figure 8 which depicts the variation of _Swwith X according to
the two solutions for the same value of _, = 0.5. Of course, d_w/dX_oo as X_ Xcr,
and hence the deviations from the similarity solution become significant in this region,
figure 8. The asymptotic behaviour in this limit can be recovered by noting that

0 = Om--(Ora--Os) ff2( _, t)'lt-O(Om--Os) 2 as _58-+_5m, (5.19)

where 2_ _ X _ _ Y
(_m- _8)_' (_m- _,)*' (5.20)

are the relevant stretched coordinates in this region. Further, by requiring that all three
terms in the particle balance equation (5.5), namely convection, diffusion and
sedimentation must be retained as q_,-+ _m, we obtain that _ = ], fl = ], as well as the
governing equation for fa:

1 c_12/¢e 2 _ 1 _12[(Y(I__,)122( 1 +4,leO]dr]_7_[J ° 12 dt)-I 2_312_PLJo ..Q_) ]

_ a" c_2£2 2a(_a_2_2£a©.Q (5.21)

with _I2 __ J_lt2 at I> = 0,

and _-, 1 as 1>-++oo, f2-+ 1 as )(--_ 0.

(5.22)
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FIGURE 8. Comparison of the evolution of the particle concentration along the top face of the
plate as obtained via similarity and as calculated via the exact equations for _ = 0.5.

317

_)s Xer _s Xer _s Xer

0.01 15.000 0.15 1.485 0.50 0.0248
0.02 9.120 0.20 0.935 0.53 0.0125
0.05 4.497 0.25 0.580 0.55 0.0060
0.08 3.000 0.30 0.350 0.57 0.0014
0.10 2.415 0.40 0.114 0.575 0.0006

TABLE 1. Length along the top face of the plate needed for _5w to reach its maximum possible
value, _5m = 0.58, as a function of _.

The variation of Xer is depicted in a log-log scale in figure 9 while the numerically

computed values of Xcr are given in table 1. _b+/(_5m -_5+) is used as the independent

variable in figure 9 in order to facilitate comparison with the asymptotic results,

Xcr ~ 0.369_.; q/5 as q_s_0 and X_r-,-0.352(q_m--_+) 6/5 as Os_'_)m. The factor 0.369
was obtained by solving (5.16)-(5.18) and corresponds to the value of )( for which

q_0(I; = 0) becomes _m, whereas the factor 0.352 corresponds to the value of )( for

which £2(I _ = 0) vanishes and is obtained by fitting the asymptotic result (5.20) in

the numerically computed values for )(¢r, given in table 1, in the limit _+-_ _m" A
parameter of some practical interest is the dimensional critical distance from the leading

edge, x_r, at which _5,,,= _m" In view of (4.13), we have that

Xcr _ (aU_tg/5 ( v_Pi _n/5
a \ vl / _aagAp j S, (5.23)

(0.332[fl(_+)p/a,]+/5 ( ,_3/_ / 1,5_,,_ ]+]s
where S-\ _ ] _l+APqs._) [1+ X_r(O+), (5.24)Ps 1 -_-C_m )

which is a function of only _5+and of the relative density ratio Ap/pI.
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FIGURE 9. Variation, in a log-log scale, of the distance from the leading edge along the top face of
the plate at which _ = _5,. as a function of _J(_Sm-_s). The continuous curve is produced by
connecting the numerically obtained values whereas the two broken curves are produced by the
asymptotic results as _b,-_ 0 (---), and as _-_ _b,. (---).

S 10 0

10 I , , ,,,,,,I , t ,,,,,,I , ,,,,,,,I , ....... I , ,,,,
0 104 10 -3 10 -2 10 -1 10°

FIGURE 10. Variation of S, as given by (5.24), with q_, for Ap/p: = 0.2 (--), and 1.0 (---).

The product of the last two terms in (5.24) is a montonically decreasing function of

_s and approaches a constant value when _5__ _m, as expected on account of the

asymptotic behaviour of the exact equations in this limit derived above. On the other

hand, since the first term in (5.24) is a rapidly increasing function of _b8, the complete

expression for S is a monotonically increasing function of q_8, beyond q_s~ 0.1, even

up to q_s = _m, figure 10. This implies that when the suspension is densely packed,

shear-induced diffusion is sufficiently dominant to prevent the particles from

accumulating along the plate even for large distances from the leading edge. It should

also be noted however that, owing to the difficulty of constructing reliable numerical
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FIGURE 11. Evolution of the particle concentration profile in the region below the plate, as obtained
via similarity, (b), and as calculated via the exact equations, (a), at different locations downstream:
X = 0.008, 0.014, 0.02, 0.026, 0.032 for _5,= 0.2. X_ = 0.032 for this value of _5_.

solutions for _5s > 0.575, the curves in figure 10 were generated in this interval by

multiplying the first two terms of (5.24) with the asymptotic form of the product

XcT A(_Ss)6/5,-_ 0.352(q_m- _5s)6/L_(_5,) 6/5. Similarly, since as was explained earlier in this

section reliable numerical solutions could not be generated for _5_ below 0.01, the

asymptotic expression Xcr ~ 0.369_5j 4/_ was used in the interval 0 < q_, < 0.01. The

logarithmic scale used in figure 10 provides a better resolution of the curves near the

endpoints of the interval 0 _< q_s _< _Sm" Needless to add, as q_, _ _m, the variation of S

with _5, is very sensitive to the choice of the parameter functions fl, fand ,_ used in our

model. In fact, since the asymptotic forms of these parameters are at present not known

with any degree of confidence, the asymptotic results given above are, of course, subject

to revision as more reliable expressions for fl, fand ,_ become available for high particle
concentrations.

5.2. Results and discussion for the region below the plate

Below the plate and attached to it there is a region, termed the depletion layer, where

the particle concentration continuously increases from its value at the plate, _w, to that

in the free stream, _s, owing to the continuous outflux of particles sedimenting towards
the bulk of the suspension. As a result, the particle volume fraction along the underside

of the plate, _w, decreases from _Ss at the leading edge until total depletion is achieved.
Not surprisingly, near the leading edge, the concentration profiles as predicted by the

similarity solution and those calculated via the numerical solution of equations

(5.5)-(5.6) are in very close agreement. However, as X increases, the particle

concentration, as obtained from the exact numerical solution, decreases rapidly with

increasing distance from the wall and quickly reaches the constant value, _5,, at the edge

of the layer, i.e. the thickness of the depletion layer is smaller than predicted by

similarity; this behaviour is shown in figure 11 when q_s = 0.2. In addition, as shown
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FIGURE 12. Comparison of the evolution of the particle concentration along the bottom face of
the plate as obtained via similarity and as calculated via the exact equations for _ = 0.2.
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FIGURE 13. Variation, as a function of q_,,of the distance from the leading edge along the bottom face
of the plate at which _5,,. first vanishes. The continuous curve is produced by connecting the
numerically calculated values whereas the broken curve corresponds to the asymptotic expression as
ff,-_0.

in figure 12, the particle volume fraction at the wall, q_w, decreases with X much more

rapidly than predicted by the similarity solution. It should also be noted that the

concentration profiles no longer have an inflection point and that, as _w _ 0, very large
normal gradients are observed near the wall accompanied by an unbounded growth of

the longitudinal gradients; see figures 11 and 12.

This behaviour can again be explained by an argument similar to that used earlier

to account for the flow situation above the plate. Specifically, as in that case, the
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0.0100 0.0013 0.1000 0.0180
0.0125 0.0017 0.1500 0.0270
0.0250 0.0038 0.2000 0.0340
0.0500 0.0090 0.3000 0.0450

TABLE 2. Length along the bottom face ofthe plate needed for _,_to vanish, as a function of _.

variation of the diffusion coefficient which is now lower than its constant value, fl((5_),

used in the similarity formulation, is the primary factor which determines the evolution

of the particle volume fraction along the underside of the plate, hence the larger

particle depletion rate observed in figure 12. Finally, according to (5.10), the second

derivative of the particle concentration is negative along the plate, and since it remains

negative throughout the layer this excludes the possibility of having an inflection point.

Thus the situation is opposite to that in the region above the plate, where the inflection

point moves away from the plate, and as a result the thickness of the depletion layer

is smaller than predicted by similarity.

The distance from the leading edge, X_r, at which the concentration at the wall first

vanishes is plotted in figure 13 as a function of_5 s with the actual numerical values given

in table 2. A logarithmic scale is chosen to represent the data so that the comparison

with the asymptotic result as _5._-_ 0 becomes clearer. Again an asymptotic analysis that

is uniformly valid within the depletion layer can be constructed as _5s-_ 0, and by

requiring that convection should balance shear-induced diffusion and sedimentation
O(8/15)it can easily be shown that, in this limit, an Os boundary layer forms in the

Y-direction below the plate, that extends an 0(_/5) distance from the leading edge.
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