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Abstract

We show the existence of forced periodic solutions to certain symmetric
ordinary differential equations. First and second order systems of ordinary
differential equations are investigated with and without damping with periodic
and symmetric forcings. We study both resonance and nonresonance cases.

1 Introduction

Let A : Rn → Rn be an orthogonal matrix with respect to a scalar product (·, ·) on
Rn, i.e. A∗ = A−1. So |Ax| = |x| for any x ∈ Rn. We also suppose that Ap = I for
some p ∈ N. Let T > 0 be fixed. Then we consider the Banach spaces

X :=
{
x ∈ C0(R,Rn) | x(t+ T ) = Ax(t), ∀t ∈ R

}
,

Y := X ∩ C1(R,Rn) .

Clearly, if x ∈ X then it is pT -periodic. Moreover, |x(t)| is T -periodic, since |x(t+
T )| = |Ax(t)| = |x(t)|.

Now we consider the differential equation

ẋ = f(x) + h(t) , (1.1)
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for h ∈ X, f(x) = ∇F (x) and F : Rn → R smooth and A-invariant, i.e. F (Ax) =
F (x), ∀x ∈ Rn.

When A = −I then we get the anti-periodic case studied in [2]. Our results
for 1 /∈ σ(A) of Section 2 are extensions of similar ones for the anti-periodic case
A = −I. We call that case a nonresonant one, since we derive existence results
without further conditions.

On the other hand, we get for 1 ∈ σ(A) a different situation studied in Section
3. We call that case a resonant one, since the solvability of studied equations is
reduced to a global bifurcation condition. So we need addition assumptions on such
equations in order to solve that bifurcation condition. In both Sections 2 and 3, we
also derive similar results for the damped system

ẍ+ δẋ+∇F (x) = h(t) (1.2)

with δ > 0. There we use topological degree arguments.
The last Section 4 is devoted to undamped symmetric second order equations

with gradient nonlinearities, i.e. to (1.2) with δ = 0, which are not studied in
previous Sections 2 and 3. That is again a resonant case. Hence we use a Ljapunov-
Schmidt method to get a global characterization of forcing terms h(t) for which
studied equations are solvable. There we use the Banach fixed point method to
solve such equations.

Finally we note that we have already investigated related problems in [3] for
symmetric heteroclinic cycles of perturbed symmetric ordinary differential equa-
tions, and more recently, in [1] for symmetric evolution partial differential equations,
respectively.

2 Nonresonance Systems

We start with the following results

Lemma 1. It holds f(Ax) = Af(x), ∀x ∈ Rn.

Proof. Differentiating F (Ax) = F (x) we getDF (Ax)Av = DF (x)v. SinceDF (x)v =
(∇F (x), v), we have (∇F (Ax), Av) = (∇F (x), v) and so A∗∇F (Ax) = ∇F (x), and
A−1∇F (Ax) = ∇F (x) which implies ∇F (Ax) = A∇F (x). The proof is finished.

Lemma 2. If 1 /∈ σ(A) then there is a constant M > 0 such that

M‖x‖0 ≤ ‖ẋ‖2 (2.1)

for any x ∈ Y , where ‖x‖0 := max
t∈R

|x(t)| and ‖x‖2 :=

√
T∫
0
|x(t)|2 dt.

Proof. We solve the boundary value problem

ẋ(t) = h(t) ∈ X
x(T ) = Ax(0) .
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We get x(t) = x(0) +
t∫
0
h(s) ds and

Ax(0) = x(T ) = x(0) +

T∫
0

h(s) ds ,

x(0) = (A− I)−1

T∫
0

h(s) ds .

So

x(t) = (A− I)−1

T∫
0

h(s) ds+

t∫
0

h(s) ds .

The proof is finished.

Remark 1. If 1 ∈ σ(A) then (2.1) is not valid, since then ∃v ∈ Rn such that
Av = v and a constant function x(t) = v belongs to Y , for which (2.1) is not true.

Theorem 1. For any h ∈ X, equation (1.1) has a solution x ∈ Y .

Proof. By using the Leray-Schauder topological degree method [5], it is enough to
prove that there is a constant K > 0 such that any solution x ∈ Y of (1.1) satisfies

‖x‖0 ≤ K .

So let x ∈ Y solve (1.1). Then we get

‖ẋ‖2
2 =

T∫
0

(
∇F (x(t)), ẋ(t)

)
dt+

T∫
0

(
h(t), ẋ(t)

)
dt =

F (x(T ))− F (x(0)) +

T∫
0

(
h(t), ẋ(t)

)
dt =

F (Ax(0))− F (x(0)) +

T∫
0

(
h(t), ẋ(t)

)
dt =

F (x(0))− F (x(0)) +

T∫
0

(
h(t), ẋ(t)

)
dt

≤ ‖h‖2‖ẋ‖2 .

Hence
‖ẋ‖2 ≤ ‖h‖2 .

Then Lemma 2 gives
K = ‖h‖2/M .

The proof is finished.

Similarly, if we consider (1.2) for δ > 0, then we have
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Theorem 2. For any h ∈ X, equation (1.2) has a solution x ∈ Z := X ∩
C2(R,Rn).

Proof. Again, it is enough to show the existence of a constant K > 0 such that any
solution of (1.2) satisfies ‖x‖0 ≤ K. So let x ∈ Z solve (1.2). Then

T∫
0

(ẍ(t), ẋ(t)) dt+ δ

T∫
0

|ẋ(t)|2 dt+

T∫
0

(
∇F (x(t)), ẋ(t)

)
dt =

T∫
0

(h(t), ẋ(t)) dt .

Hence

|ẋ(T )|2 − |ẋ(0)|2

2
+ δ

T∫
0

|ẋ(t)|2 dt ≤ ‖h‖2‖ẋ‖2 .

But |ẋ(T )| = |Aẋ(0)| = |ẋ(0)|. Consequently, we get

K =
1

Mδ
‖h‖2 .

The proof is finished.

Example 1. Consider n = 2 and

A =

(
0− 1
1 0

)
.

Then (1.1) has the form
ẋ1 = f1(x1, x2) + h1(t)
ẋ2 = f2(x1, x2) + h2(t) ,

(2.2)

where fi(x1, x2) = ∂F
∂xi

(x1, x2), F ∈ C1(R2,R) with F (−x2, x1) = F (x1, x2). This
gives

f1(x1, x2) = f2(−x2, x1), f2(x1, x2) = −f1(−x2, x1)
h1(t+ T ) = −h2(t), h2(t+ T ) = h1(t) .

(2.3)

Consequently, Theorem 1 can be applied to a forced gradient system (2.2) under
symmetry conditions (2.3).

3 Resonance Systems

Now we study the case when 1 ∈ σ(A). Let

R1 := ker(I− A) , R2 := R⊥1 .

We consider the Banach spaces

Xi :=
{
x ∈ X | x(t) ∈ Ri

}
,

Yi := Xi ∩ C1(R,R) ,
Zi := Xi ∩ C2(R,R) , i = 1, 2 .
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We note that X1, Y1 and Z1 are just Banach spaces of T -periodic functions. We
need the following result.

Lemma 3. There is a constant M > 0 such that inequality (2.1) holds for any
x ∈ Y2.

Proof. We again solve the boundary value problem

ẋ(t) = h(t) ∈ X2

x(T ) = Ax(0), x ∈ Y2 .

We get x(t) = x(0) +
t∫
0
h(s) ds and

(A− I)x(0) =

T∫
0

h(s) ds .

Now we have

h(t) ∈ X2 ⇔ h(t) ⊥ ker(I− A) ⇔ h(t) ∈ Im (I− A∗) .

But since

I− A∗ = I− A−1 = A−1 ◦ (A− I) = (A− I) ◦ A−1 ,

we obtain

Im (I− A) = Im (I− A∗) = ker(I− A)⊥ .

Consequently, R2 = Im (I− A) and hence

h(t) ∈ Im (I− A)

for any t ∈ R. Hence
T∫
0
h(s) ds ∈ Im (I− A), and then

x(0) = (A− I)−1

T∫
0

h(s) ds ,

where (A− I)−1 : R2 → R2. Thus

x(t) = (A− I)−1

T∫
0

h(s) ds+

t∫
0

h(s) ds ∈ R2

for any t ∈ R. The proof is finished.

Let P : Rn → Rn be the orthogonal projection onto R2, and Q := I − P . We
split any x ∈ X by

x(t) = u(t) + v(t), v(t) ∈ R1, u(t) ∈ R2, ∀t ∈ R , (3.1)
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and then we decompose (1.1) as follows

u̇(t) = P∇F
(
u(t) + v(t)

)
+ h2(t) (3.2)

and
v̇(t) = Q∇F

(
u(t) + v(t)

)
+ h1(t) (3.3)

for hi(t) ∈ Xi, i = 1, 2.

Lemma 4. Decomposition (3.1) holds if and only if v ∈ X1 and u ∈ X2.

Proof. Let (3.1) hold. Then from Ax(t) = x(t+ T ) we get

Au(t)− u(t+ T ) = v(t+ T )− v(t) ,

and so
R2 3 (A− I)u(t) + u(t)− u(t+ T ) = v(t+ T )− v(t) ∈ R1 .

Hence
v(t) = v(t+ T ), Au(t) = u(t+ T )

which gives v ∈ X1 and u ∈ X2. Reversely, if v ∈ X1 and u ∈ X2 then clearly
v(t) ∈ R1 and u(t) ∈ R2, ∀t ∈ R. The proof is finished.

Lemma 5. If v ∈ X1 and u ∈ X2 then

Q∇F (u+ v) ∈ X1, P∇F (u+ v) ∈ X2 .

Proof. We must show

Q∇F
(
u(t+ T ) + v(t+ T )

)
= Q∇F

(
u(t) + v(t)

)
, (3.4)

and
P∇F

(
u(t+ T ) + v(t+ T )

)
= AP∇F

(
u(t) + v(t)

)
. (3.5)

But since Q ◦ (I− A) = 0, u(t+ T ) = Au(t) and v(t+ T ) = v(t) = Av(t), we get

Q∇F
(
u(t+ T ) + v(t+ T )

)
= Q∇F

(
Au(t) + Av(t)

)
=

QA∇F
(
u(t) + v(t)

)
= Q∇F

(
u(t) + v(t)

)
.

This gives (3.4). By using A ◦ P = P ◦ A, which follows from (I − A) ◦ Q = 0 and
Q ◦ (I− A) = 0, we similarly derive (3.5). The proof is finished.

Now we split

v(t) = z(t) + w,

T∫
0

z(s) ds = 0, w ∈ R1 ,

and decompose (3.2)-(3.3) as follows

u̇(t) = P∇F
(
u(t) + z(t) + w

)
+ h2(t) (3.6)
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and
ż(t) = Q∇F

(
u(t) + z(t) + w

)
+ h11(t)

− 1

T

T∫
0

Q∇F
(
u(t) + z(t) + w

)
dt

(3.7)

and

0 =
1

T

T∫
0

Q∇F
(
u(t) + z(t) + w

)
dt+ h̄1 (3.8)

with h1(t) = h11(t) + h̄1, h̄1 := 1
T

T∫
0
h1(s) ds. Now it is known [2] that

‖z‖0 ≤
√
T‖ż‖2 . (3.9)

Furthermore, from (3.6)-(3.7) we have

‖u̇‖2
2 + ‖ż‖2

2 =

T∫
0

(
∇F (u(t) + z(t) + w), u̇(t) + ż(t)

)
dt+

T∫
0

(h2(t), u̇(t)) dt+

T∫
0

(h11(t), ż(t)) dt ≤

F (u(T ) + z(T ) + w)− F (u(0) + z(0) + w) + ‖h2‖2‖u̇‖2 + ‖h11‖2‖ż‖2 =
F (A(u(0) + z(0) + w))− F (u(0) + z(0) + w) + ‖h2‖2‖u̇‖2 + ‖h11‖2‖ż‖2 =

‖h2‖2‖u̇‖2 + ‖h11‖2‖ż‖2 ≤
√
‖h2‖2

2 + ‖h11‖2
2

√
‖u̇‖2

2 + ‖ż‖2
2 .

Consequently, we obtain√
‖u̇‖2

2 + ‖ż‖2
2 ≤

√
‖h2‖2

2 + ‖h11‖2
2 .

By using Lemma 3 and (3.9), we get

‖u‖0 + ‖z‖0 ≤ (M−1 +
√
T )
√
‖h2‖2

2 + ‖h11‖2
2 . (3.10)

Inequality (3.10) gives a uniform estimate of all possible solutions of (3.6)-(3.7) for
any w ∈ R1. But then the set

Sw :=
{
(u, z) ∈ X2 ×X1 | (u, z) solves (3.6)− (3.7)

}
is a nonempty and compact subset. So we can consider the map w → B(w), B :
R1 → 2R1 given by

B(w) :=

 1

T

T∫
0

Q∇F (u(t) + z(t) + w) dt | (u, z) ∈ Sw

 .

Clearly, the sets B(w) are nonempty and compact. Moreover, the mapping B is
upper-semicontinuous. Summarizing, we have the following result.

Theorem 3. If 1 ∈ σ(A) then (1.1) is solvable if and only if −h̄1 ∈ ImB(·).
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To get more reasonable results than Theorem 3, we have to consider additional
conditions for F .

Theorem 4. If there is a nonsingular matrix C : R1 → R1, a nondecreasing
function φ : [0,∞) → [0,∞) and positive constants α ≥ 1, c1, c2 such that

i) (∇F (w), Cw) ≥ c1|w|α+1 − c2, ∀w ∈ R1,

ii) (∇F (u+ w)−∇F (w), Cw) ≥ −|w|φ(|u|)(|w|α−1 + 1), ∀u ∈ Rn, ∀w ∈ R1,

then (1.1) has a solution x ∈ Y for any h ∈ X.

Proof. For any u ∈ Rn, |u| ≤ r, w ∈ R1, we have

(∇F (u+ w), Cw) = (∇F (w), Cw) + (∇F (u+ w)−∇F (w), Cw)
≥ c1|w|α+1 − c2 − |w|φ(r)(|w|α−1 + 1) .

(3.11)

Let r be the right-hand side of (3.10). Now we put the right-hand side of (3.8) into
the homotopy

1

T

T∫
0

Q∇F
(
λ(u(t) + z(t)) + w

)
dt+ λh̄1 = 0 (3.12)

for λ ∈ [0, 1]. So we solve (3.6), (3.7) and (3.12). Then the estimate (3.11) implies
that for |w| = R with R sufficiently large, we have to compute the Brouwer degree

deg
(
Q∇F,BR, 0

)
, (3.13)

which is just the topological degree to the system (3.6), (3.7) and (3.12). But from
i) for 0 ≤ λ ≤ 1, u ∈ R1, |u| = R� 1, we get

(λQ∇F (u) + (1− λ)Cu,Cu) ≥ λc1|u|α+1 − λc2+

(1− λ)
1

‖C−1‖2
|u|2 = λ

(
c1R

α+1 − c2

)
+

1− λ

‖C−1‖2
R2 > 0 .

So the Brouwer degree (3.13) is equal to sgn detC 6= 0. Consequently, (1.1) is
solvable. The proof is finished.

Similarly we have the next result.

Theorem 5. If there is an open bounded subset Ω ⊂ R1 such that 0 /∈ Q∇F (∂Ω)
and

deg
(
Q∇F,Ω, 0

)
6= 0 ,

then for any ε 6= 0 small, the equation

ẋ = f(x) + εh(t)

has a solution x ∈ Y .
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We note that the above approach is valid also for (1.2). Consequently, similar
results like Theorems 3, 4, 5 hold for (1.2) as well.

Example 2. Consider n = 2 and

A =

(
1 0
0− 1

)
.

Then (1.1) has the form
ẋ1 = f1(x1, x2) + h1(t)
ẋ2 = f2(x1, x2) + h2(t) ,

where again fi(x1, x2) = ∂F
∂xi

(x1, x2), F ∈ C1(R2,R) with F (x1,−x2) = F (x1, x2).
This gives

f1(x1,−x2) = f1(x1, x2), f2(x1,−x2) = −f2(x1, x2)
h1(t+ T ) = h1(t), h2(t+ T ) = −h2(t) .

Now

R1 =
{
(x1, x2) ∈ R2 | x2 = 0

}
R2 =

{
(x1, x2) ∈ R2 | x1 = 0

}
Q∇F (x1, x2) = f1(x1, x2) .

Then Theorem 4 can be applied, for instance, if

f1(x1, x2) = x2n+1
1 + g(x1, x2)

for g bounded on R2. To be more concrete, we can take

F (x1, x2) =
x2n+2

1

2n+ 2
+ x1 cosx2 .

Then g(x1, x2) = cosx2.

4 Undamped Second Order Equations

In this section, we study (1.2) for δ = 0 of the form

ẍ+∇F (x) = h(t) . (4.1)

Then Theorem 2 is not valid for (4.1). In order to solve (4.1), we use Theorem 1 of
[4], which we quote here for the reader’s convenience:

Theorem A. Let H be a Hilbert space. Assume that L is selfadjoint and N is
a continuous gradient operator. Let Ã, B̃ : H → H be two continuous linear and
selfadjoint operators such that the following hold:

i) N − Ã and B̃ −N are monotone,
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ii) L− (1− λ)Ã− λB̃ has a bounded inverse for every λ ∈ [0, 1],

then L−N is a bijection from D(L) to H.

In our case we take

H = L2((0, T ),Rn), Lx = ẍ, N(x)(t) = −∇F (x(t)) ,

D(L) =
{
x ∈ W 2,2((0, T ),Rn) | Ax(0) = x(T ), Aẋ(0) = ẋ(T )

}
.

It is not difficult to verify that L is really selfadjoint with a point spectrum σ(L).
So in order to find σ(L), we solve

ẍ = λx, x ∈ D(L) . (4.2)

Elementary calculation shows that (4.2) has the following solutions:

i) λ = 0 if and only if 1 ∈ σ(A) and then x(t) = v ∈ ker(I− A),

ii) λ = −ω2 < 0 with cosωT ∈ σ
(

A∗+A
2

)
.

We note (
A∗ + A

2
x, x

)
= (Ax, x) ,

which implies

−|x|2 ≤
(
A∗ + A

2
x, x

)
≤ |x|2 .

So

σ
(
A∗ + A

2

)
⊂ [−1, 1] .

We remark that 1 ∈ σ
(

A∗+A
2

)
if and only if 1 ∈ σ(A). Summarizing we obtain the

following result

Lemma 6. It holds σ(L) = M for

M :=

{
−
(
ω + 2kπ

T

)2

| ω ∈ [0, π], cosω ∈ σ
(
A∗ + A

2

)
, k ∈ Z

}
.

Now we can apply Theorem A to derive the next result

Theorem 6. If there are two constants α < β such that

i) [α, β] ∩M = ∅,

ii) σ(HessF (u)) ⊂ [−β,−α], ∀u ∈ Rn.



Forced Symmetric Oscillations 83

Then (4.1) has a unique solution x ∈ Z for any h ∈ X.

Proof. We apply Theorem A to (4.1) in the above framework with Ã = αI and
B̃ = βI. The proof is finished.

When h is only pT -periodic continuous in (4.1) then we can apply the above
procedure, but then we get

Mp =
{
− 4k2π2

p2T 2
| k ∈ Z

}
instead of M. Indeed, we have here the case A = I and T is replaced by pT . The
set Mp for large p is denser than the set M. This gives that for some F we can
show the existence of pT -periodic solution of (4.1) with h ∈ Y but not for general
pT -periodic continuous h. For instance, if 1 /∈ σ(A) then 0 /∈ M while 0 ∈ Mp. If
F satisfies i), ii) of Theorem 6 for α < 0 < β then we have a unique solution x ∈ Z
for any h ∈ Y , while for a general continuous pT -periodic h we do not know the
existence of pT -periodic solution of (4.1). More precisely, assuming conditions i), ii)
along with [α, β] ∩Mp = {0} and then by using the Ljapunov-Schmidt reduction
procedure and Theorem A like in [6] to (4.1), we obtain the bifurcation equation

1

pT

pT∫
0

∇F (ψ(c, h2)(t) + c) dt = h1 (4.3)

for a mapping ψ and

h(t) = h2(t) + h1,

pT∫
0

h2(t) dt = 0,

pT∫
0

ψ(c, h2)(t) dt = 0, c ∈ Rn .

Hence the existence of a pT -periodic solution of (4.1) for pT -periodic continuous h
is reduced to (4.3). Summarizing we arrive at the particular following result.

Theorem 7. Let 1 /∈ σ(A). If there are two constants α < 0 < β such that

a) [α, β] ∩M = ∅,

b) [α, β] ∩Mp = {0},

c) σ(HessF (u)) ⊂ [−β,−α], ∀u ∈ Rn,

d) ∇F is uniformly bounded on Rn, i.e. sup
u∈Rn

|∇F (u)| <∞,

then for any h ∈ X, (4.1) has a unique solution x ∈ Z, which is of course
pT -periodic. While there is a huge set S of pT -periodic continuous functions h ∈
CpT (R,Rn) for which (4.1) has no pT -periodic solution.

Proof. Let M1 := sup
u∈Rn

|∇F (u)|. Then the mentioned set S is given by

S :=

h ∈ CpT (R,Rn) | |h1| > M1, h(t) = h2(t) + h1,

pT∫
0

h2(t) dt = 0

 .
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This follows directly from (4.3). The proof is finished.

We can easily check that conditions a) and b) of Theorem 7 hold for an arbitrary
β > 0 and α such that

0 > α > max
{
− arccos2 λmax

T 2
,− 4π2

p2T 2

}
,

where λmax is the largest eigenvalue of matrix A+A∗

2
.

Moreover, we note that if h ∈ X ⊂ CpT (R,Rn) then

pTh1 =

pT∫
0

h(t) dt =
p−1∑
i=0

(i+1)T∫
iT

h(t) dt =
p−1∑
i=0

T∫
0

Aih(t) dt =

( p−1∑
i=0

Ai
) T∫

0

h(t) dt = (I− Ap) ◦ (I− A)−1

T∫
0

h(t) dt = 0 .

Hence h1 = 0 for any h ∈ X. Consequently, X ∩ S = ∅ which of course follows also
from the statement of Theorem 7.

Finally, it follows from (4.3) that for any h ∈ CpT (R,Rn) with

h(t) = h2(t) +
1

pT

pT∫
0

∇F (ψ(c, h2)(t) + c) dt

for c ∈ R and h2 ∈ CpT (R,Rn) \ X with
pT∫
0
h2(t) dt = 0, there is an pT -periodic

solution of (4.1) which does not belong to Z.
Summarizing, under conditions of Theorem 7, there are many h ∈ CpT (R,Rn)

for which there is no a pT -periodic solution of (4.1), while there are many h ∈
CpT (R,Rn) for which there is a pT -periodic solution of (4.1) not belonging to Z, but
for any h ∈ X, there is a unique pT -periodic solution of (4.1) belonging to Z.
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[1] AIZICOVICI, S. and FEČKAN, M. Forced symmetric oscillations of evolution
equations, Nonlinear Analysis 64 (2006), 1621-1640.

[2] AIZICOVICI, S. and PAVEL, N. H. Anti-periodic solutions to a class of nonlin-
ear differential equations in Hilbert space, J. Funct. Anal. 99 (1991), 387-408.
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