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Abstract. The layerwise theory of Reddy is used to study the low velocity 
impact response of laminated plates. Forced-vibration analysis is developed 
by the modal superposition technique. Six different models are introduced 
for representation of the impact pressure distribution. The first five models, 
in which the contact area is assumed to be known, result in a nonlinear 
integral equation similar to the one obtained by Timoshenko in 1913. 
The resulting nonlinear integral equation is discretised using a time-element 
scheme. Two different interpolation functions, namely: (i) Lagrangian and 
(ii) Hermite, are used to express the impact force. The Hermitian polynomial- 
based representation, obviously more sophisticated, is introduced to verify 
the Lagrangian-based representation. Due to its modular nature the 
present numerical technique is preferable to the existing numerical 
methods in the literature. The final loading model, in which the time 
dependence of the contact area is taken into account according to the 
Hertzian contact law, resulted in a relatively more complicated but more 
realistic, nonlinear integral equation. The analytical developments 
concerning this model are all new and are reported for the first time in this 
paper. Also a simple, but accurate, numerical technique is developed for 
solving our new nonlinear integral equation which results in the time- 
history of the impact force. Our numerical results are first tested with a 
series of existing example problems. Then a detailed study concerning all 
the response quantities, including the in-plane and interlaminar stresses, 
is carried out for symmetric and antisymmetric cross-ply laminates and 
important conclusions are reached concerning the usefulness and accuracy 
of the various plate theories. 
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1. h~troduction 

Composites are often used in situations involving the sudden application of loads. 
The dynamic response of the structure ensues after load application and a state of 
stress leading to failure may be generated. It is necessary to understand the response 
characteristics of the material body for all important effects, including geometry, 
boundary conditions, and lo~ading. 

One of the major obstacles that prevents application of these materials in primary 
structures is the damage induced due to service or accidental loads (e.g., bird impact), 
and the consequent reduction in stiffness, strength and life of these structures. 
Therefore, damage-resistant and durable composite materials are essential for the 
design of lighter and easier-to-maintain structures. The composite laminate is a 
fundamental building block of a composite structure. Hence, an understanding of 
damage development and failure behaviour in a composite laminate is a basic require- 
ment for understanding the failure behaviour of a composite structure. Investigations 
in the area of wave propagation in laminated media have been conducted by geologists 
and physicists interested in the study of the wave propagation of seismic waves. The 
increasing use of laminated composites in aerospace, automotive and naval structures 
has led to a more elaborate area of research. These structures are subject to high 
velocity impact by birds, meteoroids, and undersea animals. Detailed reviews of some 
of these studies were given by Kapania & Raciti (1989) and Abrate (1991). Only a 
brief review of some of the pertinent recent analytical studies is presented in the 
following pages. 

The transient response of laminated plates subjected to impact loads was investigated 
by analytical and numerical methods. Goldsmith (1960) used the normal modes method 
to determine the dynamic response of an isotropic plate or beam to a rigid impactor. 
Timoshenko (1913) used normal modes and a Hertzian contact law to analyse the 
deflections of a beam due to impact. The resulting nonlinear integral equations were 
solved by numerical integration. Sun & Chattopadhyay (1975) extended Timoshenko's 
method to a laminated simply-supported composite plate. Ramkumar & Cben (1983) 
used the Fourier integral transform to find the response of an infinite anisotropic 
laminated plate to an experimentally determined impact force. Petersen (1985) used 
the finite method based on a shear deformable plate theory with rotary inertia to 
analyse laminated plates subjected to impact loads. Thangiitham et al (1987) obtained 
low-velocity impact responses of orthotropic plates using a higher-order theory that 
incorporates: (i) the transverse normal stress, (ii) rotary inertia effects, and (iii) fulfills 
the shear stress boundary conditions on the bounding surfaces. Sun & Liou (1989) 
used a three-dimensional hybrid stress finite element method to investigate laminated 
plates under impact loads. Cairns & Lagace (1989) obtained transient response of 
graphite/epoxy and kevlar/epoxy laminates subjected to impact using the 
Rayleigh-Ritz method. 

For the study of impact response of metals and composites, many researchers used 
the Hertzian contact law, which relates impactor and plate motion with contact force. 
However, Yang & Sun (1981) showed that the Hertzian contact law was not adequate 
by performing statical indentation tests on graphite/epoxy composite laminates using 
spherical steel indentors of different sizes. They found that significant permanent 
indentations existed. In order to account for the permanent indentation, Tan & Sun 
(1982) proposed a modified Hertzian contact law following Yang & Sun (1981). They 
compared experimental results with the predictions of finite element analysis using 
the statically determined contact law. Sun &Chen  (1985) analysed initially stressed 
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composite plates under impact loads using this modified Hertzian contact law. 
Bogdanovich & Yarve (1989) proposed a method which combined the calculation of 
stress-strain states in a laminated plate on the basis of spline-approximation of 
displacements. A variational approach was used for studying the process of impact 
contact interaction between the indentor and the plate. This method, capable of 
taking into account the high-velocity transverse (through-the-thickness) stress waves 
was subsequently extended to the calculation of damage zones in laminated composite 
plates subjected to low velocity impact (Bogdanovich & Yarve 1990). Sankar & Sun 
(1985b) used plane stress finite elements to study the low-velocity impact of laminated 
beams subjected to initial stresses. 

Most of the impact problems have been formulated using the small deflection 
theory, which is adequate if the impact load is small. However, if a plate undergoes 
large deflections of the order of the thickness of the plate, it is necessary to include 
the geometric nonlinearity. Chen & Sun (1985) investigated the nonlinear transient 
response of composite laminates subjected to impact loads with initial stresses. They 
use5 the finite element method based on the Mindlin plate theory in conjunction 
with an experimentally established contact law (ran & Sun 1982). Kant & Mallikarjuna 
(1991) used a higher-order theory and C O finite elements to analyse a laminated plate 
under impact loads using the modified Hertzian contact law by Tan & Sun (1982). 
Obst & Kapania (1992) studied the geometrically nonlinear impact response of 
laminated beams using a third-order shear deformation theory. These authors also 
considered the effect of initial stresses. Effect of geometric imperfections on the 
geometrically nonlinear impact response of thin laminated plates was studied by 
Byun & Kapania (1992). 

It is important to predict the combined effect of various damage modes and the 
external environment on the degradation and failure of the laminate. However, it 
appears that not much work has been done to understand and quantify the combined 
effect of these damage modes on the performance of composite laminates, whereas this 
understanding is essential for efficient design and production of damage resistant and 
durable laminated composite structures under impact loads. Hence, there is a need 
for developing a general tool to predict the combined effect of various damage modes 
on the performance of the composite structures with complex geometry and loading 
conditions. 

To study the impact-generated damage, it is important to get very accurate infor- 
mation for in-plane and transverse stresses. However, finite element models based on 
the classical laminated plate theory (CLPT) or the first order shear deformation theory 
(FSDPT) cannot give accurate interlaminar stresses from constitutive relations. The 
equilibrium equations of 3-D elasticity give accurate interlaminar stresses. A post- 
processor for transverse normal and shear stresses as well as in-plane stresses was 
developed by Byun & Kapania (1991) using the finite element codes employing the 
CLPT and first order shear deformation theory. The transverse stresses were obtained 
by integrating the 3-D elasticity equilibrium equations. The postprocessor uses global 
interpolation of the nodal displacements obtained from the finite element analysis. 
Using a finite dements program based on both CLPT (Kapania & Yang 1986) and 
FSDPT (Reddy 1980), the transverse stresses were obtained for both symmetrically and 
unsymmetrically laminated plates. Good agreement with the 3-D elasticity results 
given by Pagano (1969) for symmetrically laminated plates and by Chaudhuri & 
Seide (1987) for unsymmetrically laminated plates was obtained. This formulation 
did not include the inertia effects. 

An alternate way to accurately calculate the in-plane and transverse stresses, 
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without directly integrating the equilibrium equations, is to use Reddy's layerwise 
theory (Reddy 1987). One of the objectives of the present work is to use this theory 
for studying the impact response of laminated plates and to compare its performance 
to that of Reddy's first-order (Reddy 1983) and third-order (Reddy 1990) shear 
deformation theories. The layerwise theory of Reddy is expected to be more efficient 
than performing a conventional three-dimensional finite element analysis of impact 
response. 

Recent experimental studies by Qian & Swanson (1990) and Swanson et al (t991) 
have shown that to accurately calculate the stresses in the vicinity of the impact, it 
is important to account for the distribution of the impact load. Note that it is very 
important that the stresses under the impactor be obtained very accurately as the 
matrix failure may initiate under the point of impact (Pintado et al 1991). In the 
present study, six different distributions, labelled as cases I through VI (with varying 
complexity), were conceived and the expressions for the generalized forces (to be used 
in the modal superposition technique) corresponding to each distribution were 
derived. 

The first three models, in which the impact load is presented as (i) a concentrated 
load (model I), (ii) a uniform load distributed over a rectangular contact region 
(model II), and (iii) a sinusoidally distributed load (model III) over a rectangular 
contact region, are already considered in the literature. In model IV the load is 
assumed to be uniformly distributed over a circular region. This model is implemented 
in finite element codes by various researchers. Here, however, we considered it in 
our analytical solutions. In model V the impact load is assumed to be spherically 
distributed over a circular region in accordance with the Hertzian contact law. The 
analytical expression for the generalized forces corresponding to this load is also 
obtained for the first time in this paper. Despite the fact that the size of the contact 
region varies with time, it is assumed that the size of the contact region is known in 
cases I through V loading models. For models I through V, we obtain a nonlinear 
integral equation, whose solution yields time histories of the impact force, displace- 
ment, and other response quantities. Finally in model VI we incorporated certain 
relations, from the Hertzian contact law, into the case V loading model and obtained 
a slightly different nonlinear integral equation in which the time variance of the 
contact region is taken into account. 

An iterative scheme with a small time increment is often used to obtain the response 
time-histories. Sa~kar & Sun (1985a) developed a numerical scheme in which the 
impact force is represented by a series of ramp functions. These ramp functions 
increase linearly from zero to unity during a time step and retain this value for the 
subsequent duration. Using a series of these ramp functions, one can calculate the 
value of the dynamic Green's function for a given structure. The advantage of this 
approach was that the iterations for solving the nonlinear equation for calculating 
the impact force were separated from the structural response calculations. In the 
present study, a different approach is proposed. The impact force is assumed to be 
represented by a series of piecewise basis functions (finite elements) in time. As a first 
step, the impact force is represented as a series of piecewise linear Lagrange inter- 
polation functions (the so-called hat functions). An obvious advantage of this approach 
is its modularity, i.e., one can easily replace the linear interpolating polynomials by 
higher-order functions. Indeed, in this study we have also represented the impact 
force by using the time-finite-elements using cubic Hermite interpolating polynomials 
with minimal changes in the overall analysis. 
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2. Forced-v ibrat ion  analys is :  G e n e r a l  "results 

Owing to the complex nature of dynamic load transfer characteristics, the response 
analysis of an impacted plate is more complicated than an ordinary dynamic problem 
in which the distribution of the transverse load is known. That is, the solution of a 
nonlinear integral equation" is necessitated which, on the other hand, will result in 
the simultaneous knowledge of impact force and response quantities of a plate. For 
most part, however, the usual procedures used in an ordinary response analysis 
calculations can be utilised to determine the general analytical expressions for the 
response quantities in terms of the unknown impact force. 

The systems of the differential eigenvalue equations of a laminated plate using the 
layerwise theory, presented in a report (Nosier et al 1992), can be shown to be self- 
adjoint. Therefore, we can make a positive statement about the orthogonality of the 
eigenfunctions, provided the eigenfrequencies (i.e. natural frequencies) are distinct. As 
a result, modal analysis can be conveniently used to obtain the response. 

2.1 Orthooonality relationships of normal modes 

The orthogonality relationships in various plate theories can be obtained by the use 
of standard procedures in the analysis of continuous systems. In the layerwise plate 
theory (LWPT), for example, if we let U~k, V~k, and Wren k~ (see Nosier et al 1992) 
and Up~,~, Vp¢,~, and W ~oq, denote the eigenfunctions corresponding to distinct 
eigenfrequencies tomk and ton,, respectively, the orthogonality relation can be stated 
as;  

rb |o [IU(U~.k U~, + V~k i J i Vvq, + Wm~ Wwr)]dxdy 
r o d  o 

0, if m ~ p and/or n ~ q and/or k ~ r, 

= Nm, ,, i f m = p , n = q ,  a n d k = r .  (1) 

Similarly, in third-order shear deformation theory (TSDPT, 2 = 1) and first-order shear 
deformation theory (FSDPT,  ,~ ---- 0)  w e  have: 

o o 

+ r~(u.,~v , . + % _  v,~,+ v,,,v., ,  + v,_~ v,~,). 

+ r~(%.., v,,,,. + v,_,%,,.) 

- ~3~-~i.(u.~ w~,,,. + w . , , .  u~,. + v . ,  w..,,, + w.~,,  v~,,) 

- ~ r , ( % . . ,  w~,.= + w . ~ . v  + v , . . ,  w,~,., + w.~. ,v , , . , )  

+ 2(4 .~=I7(Wm=:  W +  W ~ , . , , W . , , ) ] d x d y  
\3h  z ] , , , 

~0, if m ~ p and/or n ~ q and/or k ~ r, (2) 

( N m ~ ,  if  m = p, n = q, a n d  k = r, 
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and in CLPT 

fb fa ll(UmnkU,e, + Vmnk Vpq,+ Wren k Wpqr)dxdy 
0 0 

~'0, if m ¢ p and/or n ¢ q and/or k ¢ r, (3) 

( N.,.k, if m = p, n = q, and k = r. 
For a simply-supported plate the generalized masses N.,.k in various theories are 

given as (see Nosier et al 1992): 
L W P T  

N . .  k = (ab/4)liJ(Aink AJm. ~ + Bkn~ B~.  k + C'.~., C j,..,). 

T S D P T  ( 2  = 1), F S D P T  ( 2  = 0 )  

(4) 

Nm. k = ( ab / 4 ) [ I1 ( A 2~k + 8 2rnnk + E 2mnk ) + 2"{2 ( A ,..k C ,..k + B m.k D m.k ) 

+ I3(C2.k + O2.k) -  2(8/3h2)I.(ot,.A.,.kE.,.k + fl.Bm.kEm.k) 

_ 2(8/3h2)-[5(~mC,.~, + fl.D,.,~)Em~, + 2(4/3h2)217(~ + a2~E2 "1 
~"n Y rank-J" 

(5) 

CLPT 

Nm. k = (ab/4)I 1(A2 ~ + B2m.k + E2 k). (6) 

Note that a repeated index in (4) indicates summation of terms over the range of 
that index. 

2.2 Response analysis, oeneral results 

As we pointed out earlier, the response of the laminate to transverse excitation can 
be obtained conveniently by modal analysis. To this end, we illustrate the analysis 
within LWPT and summarize the appropriate results of the equivalent single-layer 
theories. According to normal mode analysis, we expand the primary response 
quantities as 

~ ,  oo 3(N+ 1) 

uJ(x,y,t)= ~ ~ V~.k(x,y)'~,..k(t), (7a) 
m = l  n = l  k = l  

oo 3(N+ I) 

va(x,y,t)= ~ ~, ~, V~.k(x,y)'~m.k(t), (7b) 
m = l  n ~ l  k = l  

oo 3(N,+ 1) 

wi(x,y,t) = ~, E ~, WJ..,(x,y).~.. (t), j = l , 2 ,  N + I ,  (7c) 
. . . . . . . . . . .  ~ " • • 

m = l  n = l  k = l  

where W j W and W j are the eigenfunctions and ~.,.k are the time-dependent 
rank ~ rank ~ rank 

generalized coordinates, yet to be determined. 
Upon substitution of (7) into the equations of motion we obtain (see Nosier et al 

1992) 

oo 3(N+1) i J u J  . 2 _ 

X X i (83) 
m = l  n = l  k = l  
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o0 3 ( N +  l )  

E E o) = o, (8b) 
m = l  n = l  k = l  

w~ " ~0~.k(~.. ~) = al  P~. (8c) 
m = l  n = l  k = l  

Now we multiply (8a), (8b), and (8c), respectively, by U i V i W i and add the pqr ' pqr ~ pqr 

results so obtained. We obtain 
o~ 3 ( N +  1) 

m = l  n = l  k = l  

i j  j i v j  V i .~_ W j  i W i 1 p Wpq,)] = 6 ,  x [I (UmnkUpqr-F- rank pqr rank pq, P ,  Weq, 5. 
(9) 

Integration of (9) over the surface of the plate and application of the orthogonality 

relation (1) results in 

"(m,k(t) + ¢02 k (m,~(t) = (1/Umk )" Q,,k(t), (10a) 

where the generalized forces Qm,k are given by: 

Q.,.k(t) = P," WX,..kdX dy. (10b) 
0 0 

With the initial conditions being homogeneous, the formal solution of (10a) can be 
presented as 

I' 
(m.k(t) = (1/~Om.kNm.k) Qm.k(t)'sin ~O,~.k(t -- ~)d~. (11) 

0 

Similarly, the primary response quantities of the plate within the equivalent single- 
layer theories are obtained from 

m = l  n = l  k = l  

m = l  n = l  k = l  

m=l n = l  k = l  

m=l n = l  k = l  

m=l n = l  k = l  

where ~m,~(t) are given 
are defined as 

(12) 

by (11), with appropriate Nm, k in various theories, and Q,,,k(t) 

fb o 
Q,,.k(t) = Pz" W,..kdX dy. 

0 0 

In (12), K = 5 in TSDPT and FSDPT and K = 3 in CLPT. 

(13) 
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Note that the assumption of transverse inextensibility is made in all the equivalent 
single-layer theories considered here. For  this reason the local nature of the impact 
damage cannot be taken into account in such theories. On the other hand, comparing 
the expression of the generalized forces Qrank(t) in LWPT, (10b), with that in the 
equivalent single-layer theories (13), clearly reveals the appropriateness of LWPT for 
the impact problems. 

We express Nra,k appearing in (4) as 

where 

1 ° 1 • A 

N rank = Crank Crank N ,~.k , 

Arank Crank ~Trank = ( a b / 4 ) l U ( ' ~ - f i T -  Ai J ~ -A-V--A-i--+~.---S B~nk ' C~kt ~" 
\Crank C.,nk Crank Crank Cra.k CrankJ 

(14) 

Also the eigenfunctions can be presented as 

U~n k = A J ^ rank U mn , 

vJ = BJ F'm, 
rank rank 

W jrank = CrankJ ITVmn, j = 1, 2, . . . .  N + 1, (15) 

where Us. = cos ~rax sin fl.y, f/ra. = sin ~=x cos flyy, I?¢~. = sin ~mx sin fl.y; and ~= and 
fin are defined in Nosier et al (1992). 

With the help of (15), we can express the generalized forces Qrank(t) as 

Qra.~(t)= 1 ^ Crank Q,..(t), (16) 

where Qran(t) = S b S~ P,  l~n(x ,  y) dx dy. 
Introducing (14) and (16) into (11) results in 

where 

1 1 1 A 

~ra"dt) = o~rank C~nk/frank" ¢,.nk(t), 

f, ~'rank(t) -- (~=.(t)-sin m=nk(t - ~)d~. 
0 

(17) 

(18) 

Finally, upon substitution of 

~ ,  oo 3(N+ 1) 

uJ(x,y,t) = E Y', 
m = l  n = l  k = l  

m = l  n = l  k = l  

ov 3(N+ 1) 

w (x,y,o= 2 
m = l  n = l  k = l  

(15) and (17) into (7) we obtain 

1 ( A ~ . k )  U ^ t - ~ • ra.(x,y).¢ra.k(), 
O)mn k N mnk Crank 

i 

o~.. k j fnk  \ c ' .  k ]  
J 

1 (C~k '~  • W..(x,y)'t .nk(t).  (19) 

Equations (19), in conjunction with (14), (15), (16), and (18), constitute the complete 
solution of the forced-vibration problem of a plate within LWPT. 

Similarly, following the same line of reasoning, the primary response quantities Of 
the plate according to various equivalent single-layer theories, as given by (12), can 
be obtained (see Nosier et al 1992). 
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2.3 Representation of  impact load 

Determination of impact induced surface pressure and its spatial distribution is 
a major task in impact analysis. Often, the functional dependency of the pressure on 
temporal and spatial coordinates is assumed to be separable as 

P,(x,  y, t) = F(t) .D(x,  y), (20) 

where F(t) denotes the time-dependent amplitude of the pressure and the function 
D(x, y) describes the spatial distribution of the impact pressure in contact area. The 
amplitude F(t) is related to the identation of the plate at the contact point by a 
contact law. 

Here we describe several models for presenting the spatial distribution of the 
pressure Pz and evaluate the generalized forces Qm.(t) in each model. Later, it will 
be demonstrated that the time history of the plate deflection is virtually independent 
of D(x,y)  as long as the total impulse, transmitted to the plate by the impactor, 
remains the same. The stress field in the contact region and in the vicinity of the 
contact area, is, however, very sensitive to the particular choice of pressure distribution. 

Case-I - loading model: Assuming that the impact load can be described by a con- 
centrated load at the point of contact, we have 

P~(x, y, t) = F( t ) '6(x  - ao, y - bo), (21) 

where the generalized function 6 is the two-dimensional Dirac's delta function. The 
generalized force Q.,.(t) is determined by substituting (15) and (21) into (16): 

Q.,.(t) = F( t ) 'Km. 'H, ,  ., (22) 

where K,,. = sin ~,.~o'sin fl, bo, and H,,, = 1. 
Modelling the impact load as a concentrated load will result in an infinite shear 

force at the contact point in the plate. In cases II through V, it is assumed that the 
load is distributed over a known small rectangular or circular area. Further, its 
distribution will be uniform (cases II and IV), sinusoidal (case III), or spherical (case V). 

Case-l I  - loading model: Assume that the impact load is uniformly distributed over 
a small rectangular area (~ x b-) as shown in figure 1. That is, 

{ F(t) 

pz(x,  y, t), = --~-'  

O, 

,~ b b- 
a o - ~  <<. x <<. ao + ~ , b o - ~  <~ y<<. bo +~,  

otherwise. 

(23) 

Evaluating Q.,.(t) and expressing it as in (22), we have 

- -  - -  D - -  

H,, = ( s i n ~ . , a / ~ , . a ~ ( s i n f l . b - / f l . b - ~ .  
\ 2 /  2 1 \  21 2,1 

(24) 

In cases I through V. K,.. will be as given earlier. 

Case-I I I  - loading model: Here we assume that a cosine-shaped load is distributed 
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IZ 
X 

m m m  

I 
i 

, <  b 

~ Y  

X 

Figure 1. The impact load modelled as a uniform load distributed over a small 
rectangular region (ti x b); case-II loading model. 

over  a small rectangular  area. Hence  

~2 ~ 7[ 

F(t)" 4t~b" c o s - ( x  - ao)-cos 7--(y - Y), a o 

and  

P,(x,  y, t) = 

O, 

ao - -2 <<. x ~ ao + ~ 

G G 

otherwise, 

(25) 

(26) 

Case-I V -  loading model: It is more  realistic to model  the contac t  area as a circular 

region, at least for  an isotropie plate. Also, in the case of  o r tho t rop ic  plates the contac t  

area is only slightly elliptical (see Greszczuk 1982). As a first approx ima t ion  we 

assume that  the impact  load is uniformly dis tr ibuted over  this circular contac t  area, 

see figure 2. Tha t  is, 

F(t)/ltR2o, over  the shaded area, (27) 
Pz(x, y, t) = ( 0, otherwise, 
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I Z  

i ~ y  
l 

1F 

X 

~Q 

1 . -Y Z ~  

T-- 
2R. 

Figure 2. The impact load modelled as a uniform load distributed over a small 
circular region; case-IV loading model. 

and, therefore, (see appendix D in Nosier et al 1992) 

Hm. = 2(J 1 (R))/R, (28) 

where/~ = (~2 + t-.a2W2R, --o," and J1 is the Bessel function of the first kind and of order 

one. 

Case-V- loading model. In the Hertzian contact law, the distribution of the contact 
load in the circular contact area is found to be spherically shaped (Timoshenko & 
Goodier 1970). It is to be remembered, however, that in the Hertz model both the 
target and the projectile were assumed to be isotropic and elastic; the target was 
assumed semi-infinite. For a spherically-shaped load we have (see figure 3): 

P~(x, y, t) = 

l - 2  

O, 

in the shaded area, 

otherwise, 

(29) 
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lZ 
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X 

~ • b o 

i i  

j Z 

X 

y-- 
2R. 

k 

Figure 3. The impact load modelled as a spherically-shaped load over a small 
circular region; case-V loading model. 

In this case we have (see appendix D in Nosier et al 1992): 

Hm. = (3//~2) [(sin R ) / R  - cos/~], (30) 

where/~ is as defined earlier in conjunction with (28). 
Having expressed the generalized forces in terms of the unknown amplitude of the 

impact load, the displacement of the plate at the contact point (x = ao, y = bo) 

according to, for example, LWPT, is obtained by substituting (22) into (18) and the 

result so obtained into (19), with j = 1: 

u3 (ao, bo, - hi2, t) = w 1 (a o, b o, t) = 

~', ~ B ,n~k  F(z)sinmm~k ( t - r ) d z '  (31) 
r a = l  n = l  k = l  

where /~mnk = (1/o~mnkN,,*k)KZ~Hr'~" Similarly, the plate displacement at the contact 
point according to HSDPT, FSDPT, and CLPT can be obtained (see Nosier et al 1992). 

By invoking a contact law, the displacement and the amplitude of the impact force 
along with other pertinent response quantities can be determined. 
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Case-Vl - loading model - special treatment: In cases II through V we have assumed 
that the impact pressure is distributed in a certain fashion over a known contact 
region. Generally, however, this contact area is unknown and changes with time. On 
the other hand, we mentioned that in the Hertz model, being based on completely 
elastic behaviour, the load distribution is spherically shaped. Furthermore, in Hertz's 
law of contact the magnitude of the total impact load F(t) is related to the indentation 
a(t), at the contact point, as 

F(t) = K 2 ~ta/2(t), (32) 

with K2 being a constant coefficient. 
We can relate the radius Ro of the circular contact area in the case-V loading to 

the force F(t) by using the relationship 

Ro(t) = R] :2 ~t1:2 (t), (33) 

which is valid for elastic deformation (Hertzian) law. That is, elimination of ~t(t) from 
(33), with the help of (32), results in 

Ro(t ) = t R X/2 / K1/a ~" F1/a t t~ (34) 

where R s denotes the radius of the spherical impactor. 
Upon substitution of (34) into (30) and the result so obtained along with (22) into 

(18), we obtain 

f t 

k m./7.,.)3 ~',.~k(t) =(3 .,|0 {sin[?'"F1/3(z)] - ?m"Fl/3(z)'c°sCymFl/a(z)] } 

x sin 09m.k(t -- z)dz, 
(35) 

where ~m. = (ct2.. + f12)l/2(R~/2/K[/3) • The displacement of the plate at the contact point 
is found by substituting (35) in (19), with j = 1: 

ua (ao, bo, - h/2, t) = w l(ao,  bo, t) 

f, - -m=ln=l ~ ~ 3(~+1) Bmnk o{Sin[]~m'~F'/3(T)]-]~mnFl/a(z)'c°s[]PmnF1/3(z)]} 

x sin o~ k(t -- z)dz. 
(36) 

Similarly, the displacement at the contact point according to the equivalent 
single-layer theories is given by: 

ua (a o , b o , - h/2,t) = w(a o, b o, t) 

= ~ ~ B.,.k {sin[~', . .FV3(~)3-?., .F~/3(z) 'c°s[~,. .Fa/3(z)]} 
m = l  n = l  k = l  0 

x sin ~m,k(t -- z)dz, 
(37) 

where/~,,,n~ 3 2 3 ^ ^ = K,,,./(?,,~a~,,~kNmnk) in all theories, where the appropriate expressions 
for Nm. k must be used. 

In the case-VI model, the contact area, being time-dependent, is increased in the 
loading process from zero to a maximum when the force amplitude is maximum and 
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then decreases in the unloading process until it becomes zero again at the time of 
rebound. 

In the next section, two algorithms will be introduced for the determination of the 
impact force and responses quantities for loading cases I through V. The determination 
of impact force and response of the plate for the case-VI loading model will be 
followed in a separate section. The variation of the total impact force F(t) and the 
transverse displacement of the laminate will, of course, be approximately identical 
for all the loading models we are considering here. This conclusion is also valid as 
far as the stress field away from the contact point is concerned. The significance of 
the various models will become apparent only when we consider the stress field in 
the vicinity of the impact zone. 

3. Impact response. Analysis 

The direct measurement of the dynamic contact force is a complicated task due to 
the existence of a wide range of plate and impactor parameters. It will, therefore, 
be assumed that the vibrations of the impactor and the laminate can be neglected 
so that an elastostatic indentation law can be used. That is, the impact duration will 
be assumed to be long compared to the stress-wave transit times in the impactor 
and the laminate. 

3.1 Contact  laws 

The most famous elastic contact law was derived by Hertz (see (32)) for the contact 
of two spheres of elastic isotropic materials. The contact between a sphere on a half- 
space is a limiting case. In (32) ct denotes the indentation and the contact coefficient 
K 2 is given by 

K 2 = (4~3)IRis/2~(61 + 62)], (38) 

where 61 = ( 1 -  v~)/Es; and 62 = ( 1 -  v2)/E. In (38), R s denotes the radius of the 
spherical impactor. Also (v~, Es) and (v, E) are the Poisson ratio and Young's modulus 
of the impactor and the half-space, respectively. The indentation law for an isotropic 
spherical impactor and a transversely isotropic half-space (see Conwag 1956) is also 
given by (32). The x-y  plane is assumed to be the plane of isotropy. The expressions 
of g 2 and 61 are again given as mentioned earlier in conjunction with (38), and 

,~ = , ~  { [ (A~ A~)  ~ + c~] ~ .- ( . ~  + G~)~) ~/~ 

+ {2G~/2(AI,,4.22 -/T~2)} (39) 
where 

J l ~  = Ez/{1 - [2v~ez/(1 - v)E]} ,  A2~ = [ ( E / E , ) -  v ~ ] ~ 1 ~ / ( 1  - v2), 

A12 = v ~ A l l / (  1 - v). 

Here, v and E are the Poisson ratio and Young's modulus in the plane of isotropy 

( x - y  plane), respectively. That is, v = v12 = Vzl and E = Ex = E 2. Also, v~ = v13 = v23 
and E~ = E 3 with the shear modulus Gz = G13 --- G23. 

When the plate is laminated of orthotropic layers, Sun (1977) employed the Hertz 
law with 62 = 1/Ez where E2 is the Young modulus transverse to the fibre direction 
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in the x - y  plane. The value of K 2 so determined was observed by Yang & Sun 
(1981) to be higher than that obtained experimentally for a cross-ply laminate. At 
the present time the exact value of di 2 for an orthotropic half-space is not known. 
However, the approximate numerical solution for 62 shows that 62 is relatively in- 
sensitive to the in-plane fibre orientation (Greszczuk 1975). For this reason, it is con- 
cluded by Greszczuk (1982) [hat for an orthotropic target, (39) can be used, as a first 
approximation, if average in-plane properties, say, v = (v12 + v2t)/2, E = (E r + E2)/2 
are used. It is, however, noted by Greszczuk (1975) that the properties that influence 
fi2 the most are those associated with the thickness (z - )  direction. When an isotropic 
sphere is pressed into either an isotropic or transversely isotropic half-space, the area 
of contact is circular according to elasticity solutions. Furthermore, the radius R o of 
this area is related to the radius Rs of the sphere and the indentation a according to 
(see Timoshenko & Goodier 1970): Ro = R~/2~ 1/2. 

The Hertzian contact law, being an elastic law, does not account for permanent 
indentation. Permanent indentation may often take place even at relatively'low 
loading levels in composite targets and, therefore, the unloading curve may in general 
be different from the loading curve. The experimental studies of Tan & Sun (1982) 
indicated that the following approximate relations can be used as a proper contact 
law for composite targets: 

loading: F = K2 ~3/2, (40a) 

unloading: F = F• [(~ - ~o)/(~. -- %)]~, (40b) 

reloading: F =Fm [(0t - ~o)(~m -- ~o)]3/2, (40c) 
where 

=~fl(~m-%)' if an,>a~, (40d) 

In (40), Fm denotes the maximum force reached before unloading, an, is the correspond- 
ing indentation, and % is the permanent indentation. The values of K 2,/~, q, and ~p 
are found experimentally. As a first approximation, however, K2 can be determined 
from (38), with 62 = 1/E2. 

3.2 Determination of  impact force 

In this section we are concerned with the determination of the impact force when 
the transverse load is represented as any one of the cases I through V loading models. 
In determining the impact force we follow the basic approach developed by Timosbenko 
(1913), who studied the impact of an isotropic beam by a sphere (also see Goldsmith 
1960). Denoting by m0, v,, and z the mass of the impactor, the velocity of the impactor 
at the moment of impact, and the displacement of the impactor after the impact, we 
have 

f 
l 

z(t) = rot -- (1/mo) F(z)(t - z)d~. (41) 
0 

Furthermore, if impact on the laminate occurs at ( x = a o , y = b o ) ,  we have (see 
figure 4): 

~(t) = z(t) - Us(a0, bo, - hi2, t), (42) 
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Figure 4. A plate before 
and after impact. 

where u3 (ao, bo, - h/2, t) is the displacement of the laminate, at the point of impact, 
whose expression is given earlier. Using Hertz contact law (see Nosier et al 1992), 
we obtain 

f, K~ 2/3 FZ/3(t) = rot - (l/too) F(z)(t - z)dz 
0 

- 

m=l n = l  k = l  0 

(43) 

where /~mnk and K have been defined earlier. Upon solving (43) the time history of 
the impact force will be obtained. Here we use two different numerical schemes to 
determine the approximate values of the impact force at various time steps. Our first 
approach will be to assume a linear variation for the force during each small time 
increment. This approach will be very similar to the one presented by Sankar & Sun 
(1985a) but it will have one essential difference. Sankar & Sun (1985a) have taken 
the force variation as 

F(t) = ~ q , R ( t  -- iAt),  (44) 
i = 0 , 1 , 2 . . .  

where the q{s are unknowns that decide the contact force history, and R ( t -  iAt)  is 
the function defined as follows: 

O, for t ~< to, 

R ( t - t o ) =  ( t - t o ) / A t ,  for to<<.t<~to+At, 

I, for t>~to+At.  

In our first approach we alternatively assume that 

(45) 

F ( t ) -  ~ fl~,(t), (46) 
i = 1 , 2  . . . .  

where ~l's are the linear Lagrange form interpolation polynomials (the so-called hat 
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functions). That is {°, 
@i(t ) = ~1~ = (1 /At )[ t ( i -  1)At], 

~2 = (1/At)[(i - 1)At - t], 

0, 

for t ~<(i-  1)At, 

for ( i -  1)At <<. t ~ iAt, 

for iAt<.t<~(i+ 1)At, 

for t > / ( i -  1)At. 

(47) 

From (46) and (47) at time t = iAt we have F(iAt)= fi .  Hence, f~ , f2  . . . .  are the 
magnitudes of the total impact force at times equal to At, 2At . . . . .  respectively. Also 
when (i - 1)At <~ t <~ iAt, we have 

F(t) = [if~_ x -  (i - 1)fj] + (1/At)(fi - f~- l ) t ,  i -- 1, 2 , . . . ,  (48) 

with fo = F(0) = 0. Next we assume that t = pAt(p = 1, 2 . . . .  ) and evaluate the two 
integrals appearing in (43), with the help of (48), and obtain 

t p - 1  

F(z)(t - z)dz = [(At)2/6]'fp + ~p E (P - i)'(At)2" f i  (49a) 
0 i = l  

and 

f '  ( 1 1 sin comkAt).f  p F(z).sin o9 k(t - z)dz = - 2 
0 OJmnk At('Dmnk 

+ t~ r i~ffi i [ ~ (1--  cos co ,,., At ) " sin to ,.., ( P - i) At ] " f , 

(49b) 

where 6p = 0 for p = 1 and 6p = 1 for all other values of p. Also at time t = pat  let 
F(pAt) = fp. Then from (43) and (49), we have: 

ap f  2/3 + bn f  . + c v = 0, (50) 

where the constant coefficients ap, bp, and Cp are given in Nosier et al (1992). Now 
3 in (50) we obtain by introducing the new variable gp as fp = gp 

bpg 3 + apg 2p + Cp = 0, (51) 

whose roots can be found exactly, and the magnitudes of the total impact force F(t) 
at various times pAt(p = 1, 2 . . . .  ) can be obtained. 

When the experimental contact law of Tan & Sun (1982) (40) is employed, (50) will 
be valid for the loading process. However, using the expression for ~t(t) from (40b) 
in (43) and carrying out the above analysis we found that for the unloading process 
the magnitudes of the total impact force at various times t = pAt are found from 

Kajp- ¢1/~ + bpfp + Cp + ~o = 0, (52a) 

where / (a ,  bp and Cp are given by Nosier et al (1992). Similarly, the magnitudes of 
the impact force at various times are obtained from 

/~ /-2/3 bpfp O, (52b) 4 J p  at- + Cp~o = 

where/(4  is given by Nosier et ai (1992). It is to be noted that when 0to= 0, (32b) 
becomes identical to (50). That is, the reloading contact law of Tan & Sun (1982) 
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will be identical to the Hertzian contact law. The manner in which (52a) will be 
solved depends on the experimentally evaluated value of q. The experimental results 
of Tan & Sun (1982) indicated that this value varied between 2 and 3. For q = 2.5, 
(52a) will be solved numerically, However for q = 2 and q = 3 (52a) can be transformed, 
respectively, into a quadratic equation and a cubic equation which can be solved 
exactly. 

The impactor position at any time t = p A t  can be obtained as: 

z ( p A t )  = V o ' ( p A t )  - -1 (At)~2 "fp - 6p v~,: (P _ i)'(At) 2"f~. (53a) 
6 m o mo i= 

The transverse displacement of the laminate at the point of contact according to the 
layerwise theory and the equivalent single-layer theories can be written as 

[ ( , u3(ao,bo,-hlZ, pAt)= ~ ~ ~ 9...~- 1 -2 sino~...~at/l./. 
m= 1 .=  x k= 1 09ran k AtCOm. k g [  

"Jl-(~p~ ~ ~ ~ nrank (1--COS~Om.kAt)'sinog..k(P--i)At " f i ,  
i = 1 m = 1 n = 1 k = 1 L Atal.,.k 

(53b) 

where the values of K for various theories have been given earlier. 
Next, in the second scheme, we assume that the contact force variation is cubic in 

time during each time increment and employ the global Hermite cubic interpolation 
polynomials. 

F ( t )  = ~'. [fiOi(t) + fi~i(t)],  (54) 
i = 1 , 2  . . . .  

where ~ ' s  and ~ : s  are given as: 

and 

where 

In (56) we 

0, for t~<( i -1)At ,  

~ i ( t  ) = ~ ( t ) ,  for ( i -  1)At <<. t <~ i A t ,  (55a) 
~( t ) ,  for i A t < . t < < . ( i + l ) A t ,  

0, for t l > ( i + l ) A t ,  

f 
0, for t~<( i -1)At ,  

~i( t )= ~( t ) ,  for ( i -1 )At<~t< . iAt ,  

ff~(t), for ( i -1 )At~< t~<( i+ l )At ,  

0, for t / > ( i + l ) A t ,  

~k~(t) = ( 3 / A t 2 ) [ t  - -  (i - -  1)At] 2 - ( 2 / A t 3 ) [ t  - (i - 1)At] 3, 

~ ( t )  = 1 - -  ( 3 / A t 2 ) ( t  - iAt) 2 + ( 2 / A t 3 ) ( t  - / A t )  a, 

~ ( t )  = ( 1 / A t 2 ) [ t  - ( i -  1)At] 3 -- ( l / A t ) I t  - -  ( i -  1)At] 2, 

~zi (t  ) = (t  - -  i A t )  - ( 2 / A t ) ( t  - iAt) z + ( 1 / A t 2 ) ( t  - iAt) 3. 

have 

dF 
f~ = F ( i A t )  and j~ = ~ t=iat 

(55b) 

(56) 

(57) 
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That is, fi is, as before, the magnitude of the total impact force at time t = iAt and 
f~ is the slope of the force-time curve at time t = iAt. Furthermore, we have 

dF = 0. The last result can be obtained by differentiation fo = F(0) = 0 and fo = ~ ,=o 

of(32) and noting that ~(0)= 0. So, in summary, we are required to determinefi  and 
f~ at each time step (t = iAt). For this purpose we need another equation besides (43). 
This second equation is obtained by direct differentiation of (43): 

! 

(2/3)K 22/3 [z(t). F- 1 / 3 ( t  ) = VO __ (l/too) F(z)dz 
0 

-- (Drank Bmnlt 
m = l  n = t  k = t  0 

F(z)'cos co,..k(t - z)dz. 

(58) 

When (i - 1)At ~ t <~ iAt, we have 

e(t)=f,-t@~-t + f ~ - t ~ - i  +f,d/~ + f i t~ ,  i =  1,2 . . . . .  

We evaluate the four integrals appearing in (43) and (58) at time t = pAt(p = 1, 2 . . . .  ): 

F(z)'(t - z)dz = F(z)'(pAt - z)dz 
O , J O  

= ( A t ) ~ - f p -  (Atp'~+~,Z(at)2[(p--O,f~--i~'f~], 
i = l  

(591 

(60a) 

t f pAt 
F(z)'cos C%,.k(t -- z)dz = 

0 ,dO 

At 12m,,k = ~ ,~  (1 -- COS c°m~kAt) 

F(T)'COS %~.k(pAt -- z)dz 

6 1% A 2 .s sinm,,,kAt 
t UJmn k 

(6oc) F(z)dz = F(x)dx = A t ' f p -  At) 2" At'fi, 
0 d O  ' =  

I t  ~pAt 
F(~).sin a~=~k(t - z)dz = F(z).sin oJ=.k(pAt -- z)dz 

0 d O  

[ 1 12 6 (1 +COSO)mnkAt)l'fp -- --t 3 4 sin c°m.~At -I 2 ~  
(.D-ran k /.~ (.Dmn k At tom. k 

+ ~  6 sin 2 ] . fp  - - - t  2 4 COmnkAt--" 3 (2+COSt°mkAt) 
L IA (.Ora.~ Att.Omn k 

"-t{ r _t ~-z..424 12 ;, ]}.f, + 6~" ~, sinwm.kAt(p-- i) (1 -- COS~Om,kAt) At2maksint~mkAt 
i = 1 L 15 O)mnk 

{ ' LAt 12~..k m 1}  "fi' i~i tOm"kAt(p--i)F f-~..4 sinCOm.kAt 4 + 6." ~ COS Atcos k(2 +coStOm.sAt ) 

(60b) 
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1 2 6 ] 
+ ..--5-- + ~ s i n t o m . k A t  (1 --cosoJmkAt ) "fo 

(.Omnk AttOmn k A t  2 .4  tll mn k 

"-1~" f 24 12 l~ +6.'~=1 cos wmkAt(p -- i) ~ ( 1 - - c o s w , ~ A t ) - - .  2 3 sino~,,~At "f  
• = ( L A t  tOmk At CO,~ d k  

- 4 12 - 
+ 6 p ' ~  1 ~sino~mkAt(p--i)rA--~---.a(2 +COSOJmkAt)-- . 2 ,~ sint°m~.Atl~'fi, 

i =  ~ [ L Ato2n,.~ At tO ,n,a ' A) 
(60d) 

where 6p has been defined earlier. F rom (57), (60), (43) and (58) we have: 

apf 2/a + bpfp + cp.~ + dp = 0, (61a) 
and 

a p L ' f ;  1/3 + 6pfo + ep.~ + d" o = 0, (61b) 

where the coefficients ap, bp . . . . .  do are given in appendix E in Nosier et al (1992}. 
Introducing fp = 9p a, (61b) becomes: 

• 4 3 2 
h4p O0 + h30g p "Jr h20g 0 + h.lo90 "k" hop = 0 .  (62) 

The expressions for hjo(j = 0, 1 . . . .  ,4) in terms of ap, b o . . . . .  all, are displayed in 
appendix E in Nosier et al (1992). 

Upon solving (62) for Op (for example by the Newton-Raphson  method),, fp and 
can be determined for every p = 1, 2 . . . . .  The impactor position at any time t = pat 

is obtained by: 

A t -  3(At) 2 . 1 (At)3 T /i P~"l(At)2[(p--i)fi---~f'l'LJ 
z(pAt)=Vo(pAt) 20 -~o JP+-~ mo JP--P ' ,~I  mo 

(63) 

The displacement of the plate at the contact  point (x = ao, y = bo) according to various 
plate theories is obtained by substituting (60b) into (31): 

u3 (ao, bo, - h/2, pAt) = 

m = l  n = l  k = l  nk 

12 6 ] 
At3c°~sinc°mkAt" m.k -t At2~03 k(1 + cosco,~At)  fo 

6 ] 
+ [  2 4 sin o~.,.~At -- 2 k At tOmn k Attoa... k (2 + cos ~.,.k At) tip 

+ 6. z~l t kAt3w~.k At2c03 sincom~ At fi 

p - l {  i 12 4 ]} .~}  
+6p~,  c°st°,..kAt(p--i) At2tO~.ksinto.,.k &t 3 (2+COStO.,.kAt " 

i= 1 At~m~ 
(64) 

where, as before, K = 3(N + 1) in LWPT, K = 5 in FSDPT and TSDPT, and K = 3 in 
C L P T .  



Low-velocity impact of  laminated composites 529 

3.3 Determination of  impact force usino loading VI 

Here we consider the determination of the total impact force according to the loading 
model VI. The transverse displacement of the laminate at the impact point according 
to various theories is determined from (35) and (37). Substituting these equations and 
(32) and (41) into (43) results in 

K-2/3F2/3(t) = rot -- (1/mo) F(x)(t -- z)dz -- /~.k 
2 

0 m = l  n = l  k = l  

x {sin[?,~.Fl/3(z)]-?m.FX/3(z)cos[TmF1/3(T)]}sino~m.k(t-~)d~, 
0 

(65) 

where ?m, has been defined earlier. The total force F(t) in (65) can be replaced by 
eitffer a(t) with the help of (32) or by the radius of contact region Ro(t) with the help 
of (34). In either case, the nonlinear integral equation (65) may not have an analytical 
solution. Therefore, only a numerical solution of this equation will be presented here. 
Assuming a linear variation for the total force F(t) during each small time increment, 
the first integral in (65) at time t = pAt(p = 1, 2 . . . .  ) is given as in (49a). To evaluate 
the second integral appearing in (65) we assume that the total force F(t) is constant 
during each small time increment. That is, for (i - 1)At <<. t <~ iAt; we assume that 

F(t) = ½(fi + f i -1  ) = fi ,  (66) 

where, as before, fi  is the magnitude of the force F(t) at time t = iAt. The variable fi  
is in t rodu~d for" simplicity• The second integral in (65) will be 

; ~  {sin[?,nF1/S(~) ] -- ymFX/3(T)cos[?,,F1/3(T)] }'sin o~mk(pAt -- T)dT 

1 (1 cos ~,.kAt)[sn(em.fp ) - -?m.fo " ( r m . f p ) ]  = - co i --1/3 --1/3 COS --1/3 

(-Dmnk 

6p p~l 
+ - -  2~ [cos tOmk(p -- OAt -- cos 09re,k( p -- i + 1)At 

£Omn k i = 1 

× Isin(~, 7~/~) - ~, 7 ; "  cos(~, .3; /~)] .  (67) 

Upon substitution of (49a), and (67) into (65) we obtain 

ao(2fp - f p-1 )2/3 + bo.~ + Cn 

+ 

m=l n = l  k = l  COmn k 

• - 1 / 3  ~1 /3  - 1 / 3  x I-sin(troY, ) -  ~'M,fp "cos(rmfp )] = 0, (68) 

where ap, bp, and cp are given in Nosier et al (1992). 
Upon numerical solution of (68) the value of fp  at t = pAt and, therefore, the value 

of fp, will be obtained. The impactor position is determined from (63). The transverse 
displacement of the laminate at the point of impact according to various theories at 
time t = pat is obtained by substituting (67) into (36) and (37). 
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4. Numerical results and discussions 

Throughout our numerical examples we assume that the impact occurs at the middle 
of the plate (or beam). That is ao = a/2 and bo = b/2. 

Example 1 

Timoshenko (1913) considered the problem of a simply-supported isotropic beam 
(1 x 1 x 30.7cm) subjected to the transverse impact of a 2-cm radius steel ball with 
an initial velocity equal to 1 cm/s. The time histories of the total impact force F(t), 
the impactor position, the beam deflection, the indentation ~(t), and the in-plane 
stress at the outer fibre of the beam are given in Nosier et al (1992). In Timoshenko's 
solution the response quantities are obtained up to time t---1778 x 10-6s  and 
therefore only two collisions were observed. The present results, on the other hand, 
indicate that a third collision also occurs at t - 1800 × 10-6s. For this problem, the 
indentation is small indicating that the contact region is very small. From the 

numerical results it was concluded that (i) the impact force can be accurately 
determined by considering a fairly reasonable number of normal modes, and (ii) the 

accurate determination of stress requires the superposition of more normal modes 
which can drastically increase the computer execution time. In obtaining the present 
results, the impact load was represented as a concentrated load (case-I loading model). 
Also the nonlinear integral equation (43) was solved "using the linear Lagrange 
interpolation functions with a time increment At = 10(#s). To check the accuracy of 
our results, we also solved (43) using the Hermite cubic polynomials. It was observed 
that when the linear Lagrange functions are used, the solution remains accurate and 
stable for a wide range of At when the impact response of the structure is obtained 
analytically. 

Example 2 

In-this example we consider the impact response of a ten-layered symmetric laminate 
(0°/90°/0°/90°/0°)s, which is also considered by Qian & Swanson (1980), with material 

properties: ElX=120GPa, E22=7.9GPa, GI2=Gla=5.5GPa, v12=v23=0.3, 
p = 1580kg/m 3, a = b = 0"2m. The laminate is impacted by a 12-7 mm diameter steel 
ball (p= 7960kg/m 3) with an initial velocity vo= 3m/s. It was assumed that the 
impactor is rigid so that the Hertzian contact coefficient K2 can be obtained from 

K2=(4/3)x/~sE22. This way it is found that K2=8.394 x 10SN/m 3/2. Qian & 
Swanson (1990) developed numerical results, based on FSDPT with the shear correction 
factors equal to 7r2/12, by using two different techniques. Their first technique was 
based on the Rayleigh-Ritz method, with numeric~il integration in time, and the 

Hertzian contact law. In their second technique they replaced the Hertzian contact 
law, by a linear contact law 

F = K 1 g. (69) 

Therefore, instead of a nonlinear integral equation they analytically solved a linear 
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integral equation similar to 

K-~ 1F(t) = rot - - -  
j~t 

1 f ( r ) ' ( t  - z)dz 
mo 0 

-.,=1 ~ ,.=1 ~ k=l ~ ~'"~ f'o f(T)'sin°~'"~(t-T)dr' (70) 

by using the Laplace transformation technique. In so doing, they had to find the 
infinite roots of a polynomial equation by using a numerical scheme. Rather than 
solving (70) analytically as in Qian & Swanson (1990), if we follow our procedure 
and use the global linear Lagrange interpolation functions for the approximation of 
the total contact force F(t), we obtain 

(K~ I + bp)'fp + ¢p = O, 

which yields 

fp  = - Cp/(bp + K~ '), 

(71) 

(72) 

where bp and Cp are the same as defined earlier. It is our belief that the solution (72) 
is more direct and less involved than the analytical one proposed by Qian & Swanson 
(1990). In that paper it was assumed that k 1 = 5-866 x 106N/m and numerical results 
based on the Hertzian and the linear contact laws were compared. Three different 
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thicknesses were assumed for the laminate. It was assumed that the impact load was 
distributed uniformly over a small square region. To check our analyses and computer 
codes, we developed the numerical results of figure 5 in that paper which are displayed 
here in figure 5. The results of Qian & Swanson (1990) are not presented here since 
they are identical to our results. It is clear from figure 5 that Hertzian and linear 
contact laws yield almost identical results for a thin plate. This, of course, is due to 
the fact that the significance of indentation vanishes for thin plates. This conclusion 
was also reached by Qian & Swanson (1990). It is to be remembered that no clear 
and scientific methodology yet exists for determination of the contact coefficient kl 
of the linear law. 

In order to obtain an assessment concerning the significance of various loading 
models considered in this report, we have displayed in figure 6 the time history of 
the impact force of the ten-layered laminate (with h =2.69 mm). The impact load in 
figure 6 is modelled according to cases I and VI loading models. Remember that in 
the case VI loading model the load is assumed to be distributed in accordance to 
the Hertzian contact law and, furthermore, the time-dependence of the contact region 
is taken into account. It is seen from figure 6 that the two models yield identical 
results for a reasonably small At. The results of two models are not, of course, identical 
when a larger time increment is assumed. This is primarily due to the fact that in 
the numerical evaluation of the second integral appearing in equation (65) we assumed 
that the contact force remains constant during each small time increment. Our 
conclusion here is that since the contact region is often an extremely small region, 
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the loading model I will yield very accurate results as far as the total impact force 
F( t )  and the transverse displacement of the laminate are concerned. This is particularly 
true when the equivalent single-layer theories are employed, since transverse inexten- 
sibility is assumed in such theories. However, it is found, based on the results of 
LWPT, that a realistic description for both stresses in the vicinity of the contact region 
and the impact force is only obtained from the case-VI loading model. The calculated 
values of the total force at various time steps can then be used to obtain the 
corresponding values of the radius of the circular contact region. 

The convergence study of the in-plane stress 0-11 (see Nosier et  al  1992 for details 
regarding the stress calculations), at the point of contact (x = a/2 ,  y = b /2 ,  z = - h /2)  

is accomplished with the help of figure 7. The results indicate that a relatively large 
number of normal modes are required to achieve convergence for the stress. It will 
soon become clear that a correct distribution for stresses near the contact region 
cannot be obtained from any of the single-layer theories during the c o n t a c t  per iod.  

When h = 2-69mm multiple (two) impacts occur in figures 5 and 6, but only 
the first impact is shown here. This problem was also considered by Sun & Chen 
(1985) who used a plastic contact law and an experimentally determined value for 
K 2 = 1.413 x 109N/m 3/2. Using this value, and based on FSDPT, we have displayed 
the time history of the impact force in figures 8 and 9. Comparison of figures 7 and 
8 reveals that, as opposed to stress calculation, a relatively low number of normal 
modes is required for the convergence of the impact force. This conclusion is also 
valid as far as the transverse displacement is concerned. We should emphasize at this 
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point that this rapid convergence is a direct consequence of the transverse inexten- 
sibility (in the thickness direction) assumption in the equivalent single-layer theories. 
We will demonstrate that the convergence of the impact force and the displacement 
at the point of contact is quite slow by using L W P T .  Furthermore, it will become 
apparent that none of the response quantities in the vicinity of the contact region is 
correctly predicted by the equivalent single-layer theories during the contact period. 
The results of figure 9 also indicate that the analytical solution remains stable and 
accurate for relatively largo values of At. 

Example 3 

Here we consider a three-layered laminate (00/900/0 °) with material properties: 
E1 = 25.1 x 106psi, E 2 = 4"8 x 106psi, E 3 = 0-75 x 106psi, G12 = 1.36 x 106 psi, .G13 = 
1.2 x 106psi, G2a = 0-47 x 106psi, v12 = 0.036, v13 = 0"171, p = 1"4667 x 1041b.s2/in '*. 
We will use the case-VI loading model in the remaining developments. We assume 
that the square plate (a = b = 10in.) is impacted by a 0.25in. radius steel impactor 
with a mass equal to 4.8 x 10-51b-s2/in. and an initial velocity of 100in./s. As we 
pointed out earlier, the contact coefficient K2 appearing in the Hertz law must be 
obtained experimentally, at least for orthotropic laminates. Here by using the modified 
Hertz law we find that K2 = 2.791 x 106 lb/in 3/2. If we follow the procedure suggested 
by Greszczuk (1982), we obtain K2 = 0-837 x 1061b/in 3/2. In evaluating K2, we also 

1 
= =~(G13 + G2a ). Clearly there exists a big assumed that vz ~(v13 +v23) and Gz 
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difference between the two values of K 2 . Most likely the actual value of K 2 lies 
somewhere between these two values. This conclusion is merely based on the observation 
that the value of the out-of-plane Young's modulus E 3 is much smaller than E2. Here, 
however, for numerical calculations we use the value of K2 = 2.791 x 1061b/in 3/2. 
Also, we again use rr2/12 for the shear correction factors in FSDPT. We have displayed 
the time-histories of the impact force and the transverse displacement of the laminate 
(a/h = 40) in figures 10 and 11, respectively. In developing the numerical results based 
on LWPT we modelled each physical layer as two layers. Figure 10 is clear justification 
for employing this theory in the impact problems. The inaccuracy of the equivalent 
single-layer theories in such problems stems from the fact that the assumptions of 
indentation and transverse inextensibility are made simultaneously. Indeed, from 
figure 11 it is observed that during contact there is a significant difference between 
the transverse displacements at the point of contact (x = a/2, y = b/2, z = - h/2) and 
at the point (x = a/2, b/2, z = hi2). After the contact period the two displacements 
become essentially identical. The slight differences cannot be distinguished from the 
figures. For clarity, the time-histories of the displacement of the plate at the contact 
point, the impactor position, and indentation during contact period are displayed in 
figure 12. 

Similar results are also generated for a thicker plate (a/h = 20) and are shown in 
figures 13 and 14. It is observed that for such a plate there is yet a more significant 
difference between the transverse displacements at the contact point and at point 
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(x  = a/2, y = b/2, z = h/2). This is the primary reason for the impact force being lower 
than that predicted by the equivalent single-layer theories. 

Results for an additional example, related to impact response of an antisymmetric 
cross-ply laminate (0o/90 °) are given in Nosier et al (1992). 

5. Summary and conclusions 

In this report we have developed the low-velocity impact dynamic analyses of a 
laminated plate according to four different plate theories. The first three theories 
belong to the class of the equivalent single-layer theories in which the transverse 
extensibility of the plate is ignored. The fourth theory, the one which takes this effect 
into account by representing the displacements in a layerwise manner, is called the 
layerwise plate theory of Reddy (LWPT). Throughout this study we have demonstrated 
the effectiveness of this theory through several numerical examples pertaining to the 
natural frequencies, the impact force, the displacement, and the in-plane and inter- 
laminar stress components (Nosier et al 1992). In particular, we have found that the" 
rate of convergence of all the response quantities, including the impact force and 
the transverse displacement, is basically the same and very slow, specially during the 
contact period and in the vicinity of the contact zone, according to the layerwise 
theory. More importantly, a full three-dimensional description of the stress field is 
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obtained only through LWPT. The results of this theory indicate a tremendous amount 
of stress concentration during the contact period in the vicinity of the contact point. 
During the contact period, the local deformation in the thickness direction in the 
neighbourhood of the contact region is the primary reason for the stress build-ups. 
On the other hand, the nature of the stress is mainly flexural in the free-vibration 
region. Indeed, for a thick plate the flexural stress is negligible as compared with the 
infinitely large values of the stress components in the contact region during the 
duration of the contact. All these observations were made through the employment 
of the layerwise theory. In fact, only now through the use of LWPT, not through a 
single-layer-theory, can the matrix cracking, fibre breakage, debonding, and other 
experimentally observed phenomena be explained. To predict the onset of any failure 
one should incorporate a failure criterion into our impact analysis. Because of the 
full 3-D capacity of LWPT, we more realistically modelled the impact pressure in 
accordance with the Hertzian law of contact. This model, named in this paper as the 
case-VI loading model, takes into account the time-dependence of the contact area. 
This, on the other hand, has necessitated the solution of a relatively more complicated 
nonlinear integral equation. In solving this equation, we made the assumption that 
the impact force was constant during small time intervals in evaluating the second 
integral appearing in this equation. In order to be able to use a larger time step in 
the analysis, the second integral must be, as in case of the first integral, evaluated by 
assuming a linear variation for the impact force during various time intervals. 
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As far as the equivalent single-layer theories are concerned, we point out that the 

response quantities predicted by these theories, especially by the shear-deformation 

theories, are accurate to a certain degree only in the free-vibration period. During 

the contact period, the results of these theories are valid only at points away from 
the contact region. On the other hand, we are often only concerned with a precise 

description of the stress field in the contact zone neighbourhood because of the 

existence of high stress concentrations. For  this reason the usefulness of the equivalent 

single-layer theories is questionable. 
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