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	e modal analysis method (MAM) is very useful for obtaining the dynamic responses of a structure in analytical closed forms.
In order to use the MAM, accurate information is needed on the natural frequencies, mode shapes, and orthogonality of the mode
shapes a priori. A thorough literature survey reveals that the necessary information reported in the existing literature is sometimes
very limited or incomplete, even for simple beam models such as Timoshenko beams. 	us, we present complete information on
the natural frequencies, three types of mode shapes, and the orthogonality of the mode shapes for simply supported Timoshenko
beams. Based on this information, we use the MAM to derive the forced vibration responses of a simply supported Timoshenko
beam subjected to arbitrary initial conditions and to stationary or moving loads (a point transverse force and a point bending
moment) in analytical closed form. We then conduct numerical studies to investigate the e
ects of each type of mode shape on
the long-term dynamic responses (vibrations), the short-term dynamic responses (waves), and the deformed shapes of an example
Timoshenko beam subjected to stationary or moving point loads.

1. Introduction

	e dynamic analysis of elastic structures subjected to mov-
ing loads (or masses) has been an interesting research topic
in structural engineering. When moving loads are applied
to a structure, dynamic de�ections and stresses may become
considerably higher than those induced by static loads.
Because of these characteristics of moving load problems,
various structures subjected to moving loads have been
investigated including beams, bridges, railroads, highway
structures, pavement, and overhead cranes.	e discussion in
this study will be limited to the �exural one-dimensional (1D)
beam structures.

To examine the transverse vibrations of a 1D beam
structure, the Timoshenko beam model has been widely
adopted to take into account the e
ects of shear deformation
and rotatory inertia on the dynamic responses. In transverse
vibration analysis, various solution techniques have been
described in the literature including MAM or eigenfunction
expansion methods [1, 2], mode summation methods or
assumed mode methods [3–5], semianalytical methods [6–
11], integral transform methods (Laplace-Carson transform

and Fourier transform) [12–14], transfer matrix method [15],
Lagrange multiplier methods [16, 17], Galerkin methods
[18, 19], �nite element methods [20, 21], �nite di
erence
method [22], time-domain spectral elementmethod [23], and
frequency-domain spectral element method [24].

In order to obtain analytical closed-form solutions for
a moving load problem by using the MAM, information
is needed regarding the eigensolutions (natural frequencies
and mode shapes) and the orthogonality properties of the
mode shapes. To obtain the eigensolutions for a Timoshenko
beam subjected to speci�c boundary conditions, we begin
by obtaining general solutions for the corresponding free
vibration problem. Many researchers have developed general
solutions of the transverse vibrations of a Timoshenko beam
includingTraill-Nash andCollar [25],Huang [26], andHan et
al. [27]. In [25–27], the general solutions are obtained for two
frequency ranges, � < �� and � > ��, excluding the cuto

frequency ��. van Rensburg and van der Merwe [28] seemed
to be the �rst to present general solutions for three frequency
ranges, � < ��, � = ��, and � > ��. Leissa and Qatu [29]
also presented the same general solutions for three frequency
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ranges. However, in this study, we develop a new expression
of general solutions for two frequency ranges, � ≤ �� and� ≥ ��, including the cuto
 frequency ��.

By imposing the boundary conditions for a speci�c
problem on the general solutions, we obtain eigensolu-
tions for the speci�c problem. In this study, we limited
our consideration to simply supported (hinged-hinged or
pinned-pinned) boundary conditions. For simply supported
Timoshenko beams, Traill-Nash andCollar [25] �rst reported
the appearance of a “second frequency spectrum” when the
vibration frequency � is larger than a speci�c frequency
known as the cuto
 frequency ��. 	ey suggested that the
pure shearing oscillation may occur at � = ��. However, they
did not present the natural frequencies in explicit analytical
form.Dolph [30] presented the natural frequencies andmode
shapes for both bending and shear vibrations in explicit
analytical form. However, he did not present the mode
shapes at � = ��. 	ough Huang [26] presented the mode
shapes for a simply supported Timoshenko beam, the mode
shapes fail to satisfy the boundary conditions for bending
moment as criticized by van Rensburg and van der Merwe
[28]. Han et al. [27] derived the natural frequencies and
mode shapes for bending and transverse shear vibrations
in explicit analytical form and discussed the MAM used to
obtain forced vibration responses. However, they did not
investigate whether there are mode shapes at � = �� or not.
van Rensburg and van der Merwe [28] derived the mode
shapes for the bending and transverse shear vibrations by
determining the coe�cients of assumedmode shapes needed
to satisfy governing equations. 	ey reported that �� itself is
a natural frequency and presented the mode shape at � = ��,
which has been recognized as the “pure shear mode” [31].
However, they did not present natural frequencies in explicit
forms. 	us, in this study, we presented a complete set of
natural frequencies andmode shapes for all frequency ranges
in explicit forms.

To apply theMAM to a forced vibration analysis of a Tim-
oshenko beam, the orthogonality properties of mode shapes
are essential. For simply supported Timoshenko beams,
Dolph [30] derived the orthogonality properties of mode
shapes and other researchers [1, 32, 33] used the orthogonality
properties derived by Dolph [30] for the modal analysis of
forced vibration problems. However, Dolph [30] and other
researchers [1, 32, 33] did not consider the orthogonality of
the mode shapes at � = ��. Although van Rensburg et al.
[34] mentioned the existence of a mode shape at � = ��, they
did not include it in their free vibration analysis of a simply
supported Timoshenko beam. Roux et al. [31] included the
pure shear mode shape at � = �� in a series solution
of the free vibration of a simply supported Timoshenko
beam, but they did not apply the orthogonality properties
of pure shear mode shape at � = �� to determine the
coe�cients of the series solution. Based on our literature
survey of the modal analysis of forced vibrations of simply
supported Timoshenko beams, we �nd that there have been
no reports in which the pure shear mode shape at � = ��
is considered in themodal analysis of the forced vibrations
of simply supported Timoshenko beams. We also �nd that

there have been no reports in which the vibrations of a simply
supported Timoshenko beam induced by a stationary or
moving bending moment are considered by using the MAM.
	us, in this study, we present the closed-form solutions of a
simply supported Timoshenko beam subjected to stationary
or moving bending moment, including the pure shear mode
shape at � = ��.

In this study, we discuss the mathematical formulation
of the general solutions of the free vibration of a Timo-
shenko beam subjected to arbitrary boundary conditions in
Section 2. 	e general solutions are presented for frequency
ranges � ≤ �� and � ≥ ��. We then derive natural
frequencies and mode shapes in explicit forms for the
case of simply supported boundary conditions. Finally, we
present the orthogonality properties of the mode shapes. In
Section 3, we describe the MAM for the forced vibration of
a simply supported Timoshenko beam subjected to arbitrary
initial conditions and to stationary or moving loads (a point
transverse force and a point bending moment). In Section 4,
we describe our numerical results. Lastly, in Section 5, we
present concluding remarks.

2. Mathematical Theory

2.1. Mathematical Model of a Timoshenko Beam. 	e govern-
ing equations for a Timoshenko beam of length � can be
written in a matrix form as [35]

M
�2u (�, �)��2 + Ku (�, �) = f (�, �) , (1)

where

u (�, �) = {
 (�, �)� (�, �)} ,
f (�, �) = {
 (�, �)� (�, �)} ,

(2)

M = [�� 00 ��] ,

K = [[[[
−��� �2��2 ��� ���−��� ��� ��� − �� �2��2

]]]]
,

(3)


(�, �) is the transverse displacement, �(�, �) is the rotation
of the cross section due to bending, 
(�, �) is the external
transverse force, �(�, �) is the external bending moment, �
is Young’s modulus, � is the shear modulus, � is the mass
density, � is the shear coe�cient factor, � is the cross-
sectional area, and � is the areamoment of inertia.	enatural
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and geometric boundary conditions relevant to (1) are given
by

� (0, �) = −�1 (�) or 
 (0, �) = 
1 (�) ,� (�, �) = �2 (�) or 
 (�, �) = 
2 (�) ,� (0, �) = �1 (�) or � (0, �) = �1 (�) ,� (�, �) = −�2 (�) or � (�, �) = �2 (�) ,
(4)

where �(�, �) and �(�, �) are the resultant transverse shear
force and bending moment, respectively, de�ned by

� (�, �) = ���(�
�� − �) ,
� (�, �) = ������ .

(5)

Finally, the initial conditions are given by

u (�, 0) = g (�) ,
�u (�, 0)�� = h (�) . (6)

2.2. General Solutions. To derive the eigenfunctions (natural
modes) for a Timoshenko beam, we must �rst obtain the
general solutions for the free vibration problem. 	us, we
consider the homogeneous governing equation reduced from
(1) as follows:

M
�2u (�, �)��2 + Ku (�, �) = 0. (7)

	e solution of (7) is assumed to be in the following form:

u (�, �) = {!(�)Θ (�)} #��� = U (�) #���, (8)

where $ = √−1 is the imaginary unit and � is the angular
frequency. By substituting (8) into (7), an eigenvalue problem
is obtained as follows:

(−�2M + K)U (�) = 0. (9)

We assume that the solutions of (7) are in the following
form:

U (�) = {*-} #��, (10)

where / denotes the wavenumber. Substituting (10) into (9)
gives algebraic equations as follows:

[− (���/2 + ���2) /���
−/��� ��� − ��/2 − �2��]{

*-}
= {00} .

(11)

For the existence of nontrivial solutions, the determinant of
the two-by-two matrix in (11) must vanish at certain values
of /, that is, at eigenvalues. From this condition, a dispersion
equation is obtained as follows:

/4 + �2 (���� + �����) /2 + �2 (���� ������2 − ���� )
= 0. (12)

In order to obtain the four eigenvalues, the above quartic
equation can be reduced to a quadratic equation by replacing/2 with 6 (where / = ±√6). By solving this quadratic equation,
we can obtain four eigenvalues as follows:

/1 = −/2 = $8
/3 = −/4 = {{{

? (if � ≤ ��)$?� (if � ≥ ��) ,
(13)

where8,?, and?� are always real numbers and�� is the cuto

frequency de�ned by

�� = √����� , (14)

8 = 1√2
⋅ √(���� + �����)�2 + √(���� − �����)

2 �4 + 4���� �2
(15a)

? = 1√2
⋅ √√(���� − �����)

2 �4 + 4���� �2 − (���� + �����)�2
(� ≤ ��)

(15b)

?� = 1√2
⋅ √(���� + �����)�2 − √(���� − �����)

2 �4 + 4���� �2
(� ≥ ��) .

(15c)

By using the four eigenvalues given by (13), the general
solutions of (9) can be written as follows:

(i) When 0 < � ≤ ��
{!(�)Θ (�)} = {*1-1} #�	� + {

*2-2} #−�	� + {
*3-3} #
�

+ {*4-4} #−
�
(16)
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(ii) When � ≥ ��
{!(�)Θ (�)} = {*1-1}#�	� + {

*2-2}#−�	� + {
*3-3}#�


��

+ {*4-4}#−�

��.

(17)

By substituting each eigenvalue into (11), we obtain the

ratios *�/-� and *�/-� (J = 1, 2, 3, 4). By using the results,
(16) and (17) can be rewritten in terms of sinusoidal and
hyperbolic functions as follows:

(i) When 0 < � ≤ ��
{!(�)Θ (�)} = �1 { cosh?�L
 sinh?�}

+ �2 { ?M2� sinh?�?M2�L
 cosh?�}
+ �3 { cos8�−L	 sin8�} + �4 { sin8�L	 cos8�}

(18)

(ii) When � ≥ ��
{!(�)Θ (�)} = �1 { cos?��

−L
� sin?��}
+ �2 { −?�M2� sin?��−?�M2�L
� cos?��}
+ �3 { cos8�−L	 sin8�} + �4 { sin8�L	 cos8�} ,

(19)

where M2� = ��/�� is the radius of gyration and

L	 = 18 (82 − �2����� ) ,
L
 = 1? (?2 + �2����� )
L
� = 1?� (?�2 − �2����� ) .

(20)

	e present expression of general solutions given by (18)
and (19) is equivalent to the expression for three frequency
ranges, 0 < � < ��, � = ��, and � > ��, by van Rensburg and
van der Merwe [28].

2.3. Natural Frequencies and Mode Shapes. To obtain the
natural frequencies and mode shapes in analytical closed
forms for speci�c boundary conditions, we considered three
frequency ranges separately: (a) 0 < � < ��, (b) � > ��, and

(c) � = ��. Our study was limited to the simply supported
boundary conditions represented by


 (0, �) = 
 (�, �) = 0,
���� (0, �)�� = ���� (�, �)�� = 0. (21)

2.3.1. When 0 < � < ��. Substituting (18) into (21) gives a
matrix equation as follows:

w = Da = 0, (22)

where

w = {! (0) Θ� (0) ! (�) Θ� (�)}

a = {�1 �2 �3 �4}

D

=
[[[[[[[[[[

1 0 1 0?L
 0 −8L	 0
cosh?� ? sinh?�M−2� cos8� sin8�

?L
 cosh?� ?2L
 sinh?�M−2� −8L	 cos8� −8L	 sin8�

]]]]]]]]]]
.
(23)

From the �rst and second relations in (22), we obtain�1 = �3 = 0. 	en, from the third and fourth relations of
(22), we obtain

{!(�)Θ� (�)} = [[[[
? sinh?�M−2� sin8�

?2L
 sinh?�M−2� −8L	 sin8�
]]]]
{�2�4}

= {00} .
(24)

For the existence of nontrivial solutions of {�2, �4}
, we
obtain a characteristic equation from (24) as follows:

?M2� (8L	 + ?L
) sinh?� sin8� = 0. (25)

Since ? > 0, 8L	 + ?L
 ̸= 0, and sinh?� ̸= 0, if 0 < � <��, then the following condition can be obtained from (25):

sin8�� = 0. (26)

From (26), we obtain

8� = ST� (S = 1, 2, 3, . . . , S�) . (27)

Applying (27) to (15a), (15b), and (15c) yields natural frequen-
cies ��(�) as follows:
��(�) = √V (S) − √V2 (S) − 4X (S)

(S = 1, 2, 3, . . . , S�) ,
(28)
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where

V (S) = ( ��2�� + ���2�� )(ST� )2 + ���2�� ,
X (S) = ��2�� ���2�� (ST� )4 . (29)

Note that S� is the maximum value of integer S satisfying��(�) < ��, which can be determined from (28) in closed form
as follows:

S� = Integer part of (S� ≡ �T√���� + ����� ) . (30)

To obtain the mode shapes corresponding to the natural
frequencies ��(�) (S = 1, 2, 3, . . . , S�), we can determine �2
and �4 by substituting (27) into (24) as follows:�2(�) = 0,

�4(�) ̸= 0. (31)

	e Sth mode shape corresponding to ��(�) can then be
obtained from (18) in the following form:

U�(�) (�) ≡ {!�(�) (�)Θ�(�) (�)} = ��(�){{{
sin

ST��L�(�) cos ST��
}}}

(S = 1, 2, 3, . . . , S�) ,
(32)

where

L�(�) = ST� − �2�(�)����� �ST. (33)

2.3.2. When � > ��. Substituting (19) into (21) gives the
following matrix equation:

w = Ea = 0, (34)

where

E

=
[[[[[[[[[[[

1 0 1 0
−?�L
� 0 −8L	 0
cos?�� −?� sin?��M−2� cos8� sin8�

−?�L
� cos?�� ?�2L
� sin?��M−2� −8L	 cos8� −8L	 sin8�

]]]]]]]]]]]
. (35)

From the �rst and second relations in (34), we �nd �1 =�3 = 0. 	en, the third and fourth relations in (34) can be
written as

{!(�)Θ� (�)} = [[[[[

−?� sin?��M−2� sin8�
?�2L
� sin?��M−2� −8L	 sin8�

]]]]]
{�2�4}

= {00} .
(36)

For the existence of nontrivial solutions of {�2, �4}
, we can
obtain a characteristic equation from (36) as

?�M2� (?�L
� − 8L	) sin?�� sin8� = 0. (37)

Since ?� > 0 and (?�L
� − 8L	) ̸= 0, if � > ��, the following
two conditions can be obtained from (37):

sin8�� = 0 (38)

or

sin?��� = 0. (39)

In Section 2.3.1, we derived the natural frequencies ��(�)
and mode shapes U�(�) for 0 < � < �� from the same
condition given by (38). 	us, the natural frequencies ��(�)
andmode shapesU�(�) for � > �� can be obtained as follows:

��(�) = √V (S) − √V2 (S) − 4X (S)
(S = S� + 1, S� + 2, S� + 3, . . . ,∞)

U�(�) (�) = {!�(�) (�)Θ�(�) (�)} = ��(�){{{
sin

ST��L�(�) cos ST��
}}}

(S = S� + 1, S� + 2, . . . ,∞) .

(40)

From the second condition (39), we obtain

?�� = `T� (` = 1, 2, 3, . . . ,∞) . (41)

By substituting (41) into (15), we can obtain the natural
frequencies as follows:

��(�) = √V (`) + √V2 (`) − 4X (`)
(��(�) > ��) ,

(42)

whereV(`) andX(`) are de�ned in (29). To derive themode
shapes corresponding to ��(�), we can determine �2 and �4
by substituting (41) into (36) as follows:

�2(�) ̸= 0,
�4(�) = 0. (43)

	e mode shapes corresponding to ��(�) are then obtained
from (19) as follows:

U�(�) ≡ {!�(�) (�)Θ�(�) (�)} = ��(�){{{
sin

`T��L�(�) cos `T��
}}}

(` = 1, 2, 3, . . . ,∞) ,
(44)

where

L�(�) = `T� − �2�(�)����� �̀T (` = 1, 2, 3, . . . ,∞) . (45)
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2.3.3. When � = ��. 	e general solution at � = �� can
be readily obtained from either (18) or (19), by allowing � to
approach ��, as follows:

{!(�)Θ (�)} = �1 { 1
M−2� �} + �2 {01}

+ �3 { cos8��−L	� sin8��}
+ �4 { sin8��L	� cos8��} ,

(46)

where

8� = 8 (� = ��) = √���� + ����� = S�T�
L	� = L	 (� = ��) = ����� �S�T.

(47)

To obtain the �rst two terms in (46) from either (18) or (19),
L’Hospital’s rule is applied.

Applying the simply supported boundary conditions
given by (21) to (46) yields the following eigenvalue problem:

{{{{{{{{{{{

!(0)Θ� (0)! (�)Θ� (�)

}}}}}}}}}}}

= [[[[[[[

1 0 1 0
M−2� 0 −8�L	� 01 0 cos8�� sin8��M−2� 0 −8�L	� cos8�� −8�L	� sin8��

]]]]]]]

{{{{{{{{{{{

�1�2�3�4

}}}}}}}}}}}

=
{{{{{{{{{{{

0000

}}}}}}}}}}}
.

(48)

	e necessary condition for the existence of a nontrivial solu-
tion of (48) (i.e., the determinant of the matrix of eigenvalue
problemmust vanish at the eigenvalue) is self-satis�ed.	us,
we conclude that the cuto
 frequency �� is also a natural
frequency of a simply supported Timoshenko beam, which
was described by van Rensburg and van der Merwe [28].
Now we must determine the mode shape corresponding to
the natural frequency ��.

From (47), note that 8� > 0 and L	� > 0. 	us, from (48),
it can be shown that the following should be satis�ed: �1 =�3 = 0 and �4 sin8�� = 0

or �4 sin S�T = 0. (49)

To satisfy (49), we consider the following two cases.

Case 1. If S� is not an integer, then �4 = 0. In this case, the
corresponding mode shape can be derived directly from (46)
as follows:

U�(0) (�) ≡ {!�(0) (�)Θ�(0) (�)} = ��(0) {01} . (50)

	is mode shape is identical to the pure shear mode shape
presented by van Rensburg and van der Merwe [28]. Accord-
ingly, the subscript c(0) is adopted in (50) to emphasize the
pure shear mode shape.

Case 2. If S� is an integer (i.e., S�), then �4 ̸= 0. In this case,
the natural frequency �� happens to be equal to the natural
frequency ��(��) of a bending mode shape and they become
a double natural frequency. 	e mode shapes at this double
natural frequency are given by

U�(��) (�) = ��(��){{{
sin

S�T��L�(��) cos S�T��
}}}

(mode shape for ��(��))
U�(0) (�) = ��(0) {01} (mode shape for ��) .

(51)

	us, for the modal analysis of the transverse vibrations
of a simply supported Timoshenko beam subjected to a
stationary or moving load, we need to consider the following
three types of mode shapes:

U�(�) = ��(�){{{
sin

ST��L�(�) cos ST��
}}}
(mode shapes for ��(�))

U�(�) = ��(�){{{
sin

ST��L�(�) cos ST��
}}}
(mode shapes for ��(�))

U�(0) = ��(0) {01}
(pure shear mode shape for ��) ,

(52)

where S = 1, 2, 3, . . . ,∞.

2.4. Orthogonality of Mode Shapes. For the modal analysis,
we must derive the orthogonality properties of the mode
shapes given by (52). Because any set of natural frequencies
and mode shapes are the eigensolutions of the eigenvalue
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problem represented by (9), the `th and Sth sets of eigen-
solutions must satisfy the following two equations separately
as follows:

KU� = �2�MU�,
KU� = �2�MU�. (53)

From (54), we obtain

∫�
0
U


�KU�e� − ∫�0 U
�KU�e�

= (�2� − �2�)∫�0 U
�MU�e�.
(54)

By applying the simply supported boundary conditions, the
le�-hand side of (54) vanishes. 	en, by using the de�nition
ofM in (3), the right-hand side of (54) can be rewritten as

(�2� − �2�)∫�0 U
�MU�e�
= (�2� − �2�) (��∫�0 !�!�e� + ��∫

�

0
Θ�Θ�e�)

= 0.
(55)

From (55), the orthogonality property of mode shapes
with respect toM can be derived as follows:

∫�
0
U


�MU�e� = `�f��, (56)

where f�� represent the Kronecker delta symbol [36] and`� is the modal mass. By using (56), we can derive the
orthogonality property of mode shapes with respect to K,
from (53), as follows:

∫�
0
U


�KU�e� = `��2�f��. (57)

By substituting each mode shape given by (52) into (56),
it can be shown that the following orthogonality properties
are satis�ed:

∫�
0
U


�(�)MU�(�)e� = `�(�)f��

∫�
0
U


�(�)MU�(�)e� = `�(�)f��

∫�
0
U


�(0)MU�(0)e� = `�(0)

∫�
0
U


�(�)MU�(�)e� = 0

∫�
0
U


�(�)MU�(0)e� = 0

∫�
0
U


�(�)MU�(0)e� = 0

(`, S = 1, 2, 3, . . .) ,

∫�
0
U


�(�)KU�(�)e� = `�(�)�2�(�)f��

∫�
0
U


�(�)KU�(�)e� = `�(�)�2�(�)f��

∫�
0
U


�(0)KU�(0)e� = `�(0)�2�

∫�
0
U


�(�)KU�(�)e� = 0

∫�
0
U


�(�)KU�(0)e� = 0

∫�
0
U


�(�)KU�(0)e� = 0

(`, S = 1, 2, 3, . . .) ,
(58)

where the modal masses are de�ned by

`�(�) = 12� (�� + ��L2�(�))�2�(�)
`�(�) = 12� (�� + ��L2�(�))�2�(�)
`�(0) = ����2�(0)

(S = 1, 2, 3, . . .) .
(59)

To derive normalized mode shapes (i.e., the normal
modes) from (52), all modal masses given by (64) are set to
unit value as follows: `�(�) = `�(�) = `�(0) = 1. 	en,
from (64), the coe�cients of each normal mode shape are
determined as follows:

��(�) = √ 2� (�� + ��L2�(�)) ,
��(�) = √ 2� (�� + ��L2�(�))
��(0) = √ 1���

(S = 1, 2, 3, . . .) .

(60)

3. Modal Analysis of Forced Vibration

	e forced vibration responses of (1) can be represented by
using the normal mode summation method [37] as follows:

u (�, �) = ∞∑
�=1

U�(�) (�) h�(�) (�) + ∞∑
�=1

U�(�) (�) h�(�) (�)
+ U�(0) (�) h�(0) (�) ,

(61)

where h�(�)(�), h�(�)(�), and h�(0)(�) are generalized coordi-
nates to be determined in order to satisfy initial conditions.
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L
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(a) Stationary loads
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T0�(x − ��t)

x

�ft

��t

(b) Moving loads

Figure 1: A simply supported Timoshenko beam subjected to (a) a stationary impulsive point transverse force and a stationary impulsive
point bending moment and (b) a moving point transverse force and a moving point bending moment.

Substituting (61) into (1) and applying the orthogonality
conditions of the normal mode shapes yield the modal
equations as follows:

e2h�(�)e�2 + �2�(�)h�(�) = 
�(�)
e2h�(�)e�2 + �2�(�)h�(�) = 
�(�)
e2h�(0)e�2 + �2�h�(0) = 
�(0)

(S = 1, 2, 3, . . .) ,

(62)

where the generalized forces are de�ned by


�(�) = ∫�
0
[!�(�) (�) 
 (�, �) + Θ�(�) (�) � (�, �)] e�


�(�) = ∫�
0
[!�(�) (�) 
 (�, �) + Θ�(�) (�) � (�, �)] e�


�(0) = ∫�
0
Θ�(0) (�) � (�, �) e�.

(63)

	e initial conditions for (62) can be derived from (6) by
using the orthogonality properties of normal mode shapes as
follows:

h�(�) (0) = ∫�
0
U


�(�)Mg (�) e�,

eh�(�) (0)e� = ∫�
0
U


�(�)Mh (�) e�

h�(�) (0) = ∫�
0
U


�(�)Mg (�) e�,

eh�(�) (0)e� = ∫�
0
U


�(�)Mh (�) e�

h�(0) (0) = ∫�
0
U


�(0)Mg (�) e�,

eh�(0) (0)e� = ∫�
0
U


�(0)Mh (�) e�,

(64)

where S = 1, 2, 3, . . . .

By using (3), (6), and (52), we can write the initial
conditions for h�(0)(�) as

h�(0) (0) = √��� ∫�
0
� (�, 0) e�,

eh�(0) (0)e� = √��� ∫�
0

�� (�, 0)�� e�.
(65)

From (63) and (65), we note that the pure shear mode
shape U�(0) must be included in the modal analysis when a
Timoshenko beam is subjected to external bending moment�(�, �), initial rotation �(�, 0), and initial angular velocity��(�, 0)/��. However, there have been no reports in the
literature in which the external transverse force 
(�, �),
bendingmoment �(�, �), and arbitrary initial conditions were
fully considered in the modal analysis of forced vibrations by
taking into account the pure shear mode shape U�(0). In this
study, we derived the vibration responses of a Timoshenko
beam for two cases:

(1) Case 1: when the beam is subjected to a stationary
impulsive point transverse force and a stationary
impulsive point bending moment.

(2) Case 2: when the beam is subjected to a moving
point transverse force and a moving point bending
moment.

3.1. Case 1: Stationary Impulsive Point Transverse Force and
Bending Moment. As shown in Figure 1(a), a stationary
impulsive point transverse force and a stationary bending
moment acting on the arbitrary positions �� and �� of the
beam can be expressed by employing Dirac delta functionsf(�) and f(�) [36] as follows:


 (�, �) = k0f (� − ��) f (�) ,
� (�, �) = l0f (� − ��) f (�) , (66)

where k0 is the magnitude of the transverse impulsive point
force and l0 is the magnitude of the impulsive point bending
moment.
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Substituting (66) into (63) yields the generalized forces,
and substituting the results into (62) gives

e2h�(�)e�2 + �2�(�)h�(�) = m�(�)f (�)
e2h�(�)e�2 + �2�(�)h�(�) = m�(�)f (�)
e2h�(0)e�2 + �2�h�(0) = m�(0)f (�)

(S = 1, 2, 3, . . .) ,

(67)

where

m�(�) = ��(�) (k0 sin ST��� + l0L�(�) cos ST��� )
m�(�) = ��(�) (k0 sin ST��� + l0L�(�) cos ST��� )
m�(0) = ��(0)l0,

(68)

where ��(�), ��(�), and ��(0) are de�ned by (60). We solved
(67) for unknown generalized coordinates h�(�)(�), h�(�)(�),
and h�(0)(�), and then we substituted the results into (61) to
obtain the vibration responses as follows:

u (�, �) = ∞∑
�=1

U�(�) (�) (��(�) + m�(�)��(�) sin��(�)�)
+ ∞∑
�=1

U�(�) (�) (��(�) + m�(�)��(�) sin��(�)�)
+ U�(0) (��(0) + m�(0)�� sin���) ,

(69)

where

��(�) = eh�(�) (0)e� sin��(�)���(�) + h�(�) (0) cos��(�)�
��(�) = eh�(�) (0)e� sin��(�)���(�) + h�(�) (0) cos��(�)�
��(0) = eh�(0) (0)e� sin����� + h�(0) (0) cos���.

(70)

Note that the vibration responses contributed by initial
conditions are related to ��(�), ��(�), and ��(0), while the
vibration responses contributed by external forces are related
to m�(�), m�(�), and m�(0). Equation (69) clearly shows that
the shear mode shapeU�(0) must be taken into account when
a Timoshenko beam is subjected to a stationary bending
moment l0 as well as to initial rotation �(�, 0) and angular
velocity ��(�, 0)/��.
3.2. Case 2: Moving Point Transverse Force and Bending
Moment. As shown in Figure 1(b), a point transverse force
moving at a speed V� and a point bending moment moving
at a speed V� can be expressed by employing the Dirac delta
function f(�) as follows:


 (�, �) = k0f (� − V��) ,� (�, �) = l0f (� − V��) . (71)

By substituting (71) into (63), we obtain the generalized
forces. 	en, by substituting the results into (62), we obtain

e2h�(�)e�2 + �2�(�)h�(�) = ��(�) (k0n� (�) sin STV���
+ l0L�(�)n� (�) cos STV��� )

e2h�(�)e�2 + �2�(�)h�(�) = ��(�) (k0n� (�) sin STV���
+ l0L�(�)n� (�) cos STV��� )

e2h�(0)e�2 + �2�h�(0) = ��(�)l0n� (�) ,

(72)

where S = 1, 2, 3, . . ., and
n� (�) = ℎ (�) − ℎ(� − �

V�
) ,

n� (�) = ℎ (�) − ℎ(� − �
V�
) , (73)

where ℎ(�) denotes the Heaviside step function as de�ned by
[36]

ℎ (�) = {0 (� < 0)1 (� ≥ 0) . (74)

We solved (72) to obtain the following results:

h�(�) (�) = ��(�) + p�(�) [q1 (��(�), V�) ℎ (�)
+ q2 (��(�), V�) ℎ(� − �

V�
)]

+ r�(�) [q3 (��(�), V�) ℎ (�)
+ q4 (��(�), V�) ℎ (� − �

V�
)]

h�(�) (�) = ��(�) + p�(�) [q1 (��(�), V�) ℎ (�)
+ q2 (��(�), V�) ℎ(� − �

V�
)]

+ r�(�) [q3 (��(�), V�) ℎ (�)
+ q4 (��(�), V�) ℎ (� − �

V�
)]

h�(0) (�) = ��(0) + ��(0)�2� l0 {(1 − cos���) ℎ (�)
− [1 − cos�� (� − �

V�
)] ℎ(� − �

V�
)} ,

(75)
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where ��(�), ��(�), and ��(0) are de�ned by (70), and

p�(�) = ��(�)k0q0 (��(�), V�) ,
p�(�) = ��(�)k0q0 (��(�), V�)
r�(�) = ��(�)l0L�(�)q0 (��(�), V�) ,
r�(�) = ��(�)l0L�(�)q0 (��(�), V�) ,

q0 (�, V) = �3 − �(STV� )2
q1 (�, V) = � sin

STV�� − STV� sin��
q2 (�, V) = STV� sin�(� − �

V

) cos ST − � sin
STV��q3 (�, V) = � (cos STV�� − cos��)

q4 (�, V) = � (cos STV�� − cos�(� − �
V

) cos ST) .

(76)

By substituting (75) into (61), we obtain the forced
vibration responses of a simply supported Timoshenko beam
subjected to a moving point transverse force and a moving
point bending moment, with arbitrary initial conditions.

To consider the e
ects of damping on the vibrations of a
simply supported Timoshenko beam subjected to a moving
point transvers force and a moving point bending moment,
the le�-hand side of (1) was modi�ed to include a propor-
tional viscous damping termgiven in the formofC�u(�, �)/��,
where C = w1M + w2 K. Note that M and K are the linear
operators de�ned by (3), and w1 and w2 are damping param-
eters. By considering the proportional viscous damping, we
can obtain damped solutions, instead of (75), as follows:

h�(�) = ���(�) + p��(�) {q1� (��(�), V�, x�(�)) ℎ (�)
+ q2� (��(�), V�, x�(�)) ℎ(� − �

V�
)}

+ r��(�) {q3� (��(�), V�, x�(�)) ℎ (�)
+ q4� (��(�), V�, x�(�)) ℎ (� − �

V�
)}

h�(�) = ���(�) + p��(�) {q1� (��(�), V�, x�(�)) ℎ (�)
+ q2� (��(�), V�, x�(�)) ℎ(� − �

V�
)}

+ r��(�) {q3� (��(�), V�, x�(�)) ℎ (�)
+ q4� (��(�), V�, x�(�)) ℎ (� − �

V�
)}

h�(0) = ���(0) + ��(0)l0�2�� {Γ1ℎ (�) − Γ2ℎ(� − �
V�
)} ,

(77)

where

x�(�) = w12��(�) + w22 ��(�),
x�(�) = w12��(�) + w22 ��(�),
x� = w12�� + w22 ��

���(�) = ��(�)√1 − x2�(�),
���(�) = ��(�)√1 − x2�(�),
��� = ��√1 − x2�

(78)

and other symbols used in (77) are de�ned in the Appendix.

4. Numerical Results and Discussion

For all numerical results presented in this study, we recon-
sidered the uniform simply supported Timoshenko beam
that was considered by Esmailzadeh and Ghorashi [22]. 	e
geometric and material properties of the example beam are
as follows: length � = 4.352m, cross-sectional area � =1.31 × 10−3m2, area moment of inertia � = 5.71 × 10−7m4,
Young’s modulus � = 2.02 × 1011N/m2, shear modulus� = 7.7 × 1010N/m2, mass density � = 15267 kg/m3, and
shear correction factor � = 0.7. For the analyses of forced
vibrations and waves, we assumed that a point transverse
force and a point moment applied on the example beam have
the following magnitudes: k0 = 1N and l0 = 1N⋅m. We also
assumed that the example beam has null initial conditions.

Table 1 shows the natural frequencies ��(�) and ��(�)
in Hz and the corresponding mode shape parameters L�(�)
and L�(�). 	e cuto
 frequency of this example beam was
found to be 14323.70Hz. Accordingly, the number of natural
frequencies ��(�) below the cuto
 frequency �� is S� = 74.

Figure 2 shows the dynamic responses predicted at �/� =0.25 when the example Timoshenko beam is subjected to a
stationary impulsive point transverse force k0 applied at its
middle point (�/� = 0.5). 	e responses are the transverse
displacement 
(0.25�, �), the total slope 
�(0.25�, �), the
slope due to bending �(0.25�, �), and the shear angle due to
transverse shear force �(0.25�, �). 	e shear angle is de�ned
by �(�, �) = 
�(�, �) − �(�, �) [37]. 	e long-term dynamic
responses (vibration responses) are displayed at the top of
Figure 2, while the short-term dynamic responses (wave
propagations) are displayed at the middle and bottom of
Figure 2. To investigate the contribution of each type of mode
shape to the total dynamic responses, the dynamic responses
obtained by taking into account only the mode shapes U�(�)
are compared with those obtained by taking into account
both mode shapes,U�(�) andU�(�). Note that the mode shape
U�(0) has no e
ect on the dynamic responses when a simply
supported Timoshenko beam is subjected to stationary or
moving transverse forces, as can be readily checked with
(67) and (72). From Figure 2, we investigated the following:
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Figure 2: Continued.
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Figure 2: Dynamic responses at �/� = 0.25 of a simply supported beam subjected to a stationary impulsive point transverse force applied at�/� = 0.5: (a) transverse displacement (
); (b) total slope (
�); (c) slope due to bending (�); (d) shear angle (�).



Shock and Vibration 13

2

Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
/L

3 4 50 1

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

(×
10

−
3

m
m

)

(a) Transverse displacement (�)

1 2 3 4 5

Time (ms)

x
/L

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−3

−2

−1

0

1

2

×
10

−
4

ra
d

)
(

3

(b) Total slope (��)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
/L

1 2 3 4 50

Time (ms)

−3

−2

−1

0

1

2

×
10

−
4

ra
d

)
(

3

(c) Slope due to bending (�)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
/L

1 2 3 4 50

Time (ms)

−3

−2

−1

0

1

2

×
10

−
4

ra
d

)
(

3

(d) Shear angle (�)

Figure 3: Wave propagations in a simply supported beam subjected to a stationary impulsive point transverse force applied at �/� = 0.5: (a)
transverse displacement (
); (b) total slope (
�); (c) slope due to bending (�); (d) shear angle (�).

(1) although the e
ects of the mode shapes U�(�) on the
long-term dynamic responses are not signi�cant, the mode
shapes U�(�) must be taken into account to capture accurate
wave characteristics in the short-term dynamic responses.
(2) 	ere are multiple sharp peaks in the long-term time
histories of the total slope 
� and shear angle �. As shown
in Figures 2(b) and 2(d), the sharp peaks appear repeatedly
at about 0.6ms, 1.5ms, 2.7ms, 3.9ms, and so on. Comparing
Figures 2(b) and 2(d)with the corresponding short-term time
histories (wave propagations) shown in Figures 3(b) and 3(d)
shows that the sharp peaks are mainly due to the propagation
of shear waves.

Figure 4 shows the dynamic responses predicted at �/� =0.25 for a case in which the example Timoshenko beam
is subjected to a stationary impulsive point moment l0
applied at its middle point (�/� = 0.5). From Figure 4, we
investigated the following: (1) although the e
ects of mode
shapes U�(�) on the long-term transverse displacement are
not signi�cant, the mode shapes U�(�) must be taken into

account to capture accurate wave characteristics in the short-
termdynamic transverse displacement.	emode shapeU�(0)
has no in�uence on the transverse displacement, as suggested
by (52), (67), and (68). (2) To accurately predict the slope due
to the bending moment and shear angle due to transverse
shear force, mode shapes U�(�) and U�(0) must both be taken
into account in the computation. 	e mode shape U�(0) was
found to be especially important for the accurate prediction
of short-time wave propagations.

Figure 5 shows the deformed shapes of the exam-
ple Timoshenko beam at �ve di
erent times (�/l� =0, 0.25, 0.5, 0.75, 1)when a point transverse forcek0 ismoving
on the beam, where l� denotes the time required for a
moving load to cross the beam from the le� end (�/� = 0)
to the right end (�/� = 1). Similarly, Figure 6 shows the
deformed shapes of the same beam when a point bending
moment l0 is moving on the beam. In both Figures 5 and
6, the deformed shapes are shown for four constant moving
speeds: 0.25Vcr, 0.5Vcr, Vcr, and 1.5Vcr, where Vcr denotes
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Figure 4: Continued.



Shock and Vibration 15

Zoom-in

Zoom-in

0 1 2 3 4 5

Time (ms)

Time (ms)

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1

Sl
o

p
e
�

(0
.2
5
L
,t

) 
(×

10
−
2

ra
d

)
Sl

o
p

e
�

(0
.2
5
L
,t

) 
(×

10
−
2

ra
d

)
Sl

o
p

e
�

(0
.2
5
L
,t

) 
(×

10
−
3

ra
d

)

Time (ms)

Only (n)

(n) + S(n)

(n) + S(n) + S(0)

UB

U UB

U U UB

Only (n)

(n) + S(n)

(n) + S(n) + S(0)

UB

U UB

U U UB

Only (n)

(n) + S(n)

(n) + S(n) + S(0)

UB

U UB

U U UB

(c) Slope due to bending (�)

Zoom-in

Time (ms)

Time (ms)

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1
Zoom-in

Sh
ea

r 
an

gl
e
�

(0
.2
5
L
,t

) 
(×

10
−
3

ra
d

)
Sh

ea
r 

an
gl

e
�

(0
.2
5
L
,t

) 
(×

10
−
2

ra
d

)
Sh

ea
r 

an
gl

e
�

(0
.2
5
L
,t

) 
(×

10
−
2

ra
d

)

1 2 3 4 50

Time (ms)

Only (n)

(n) + S(n)

(n) + S(n) + S(0)

UB

U UB

U U UB

Only (n)

(n) + S(n)

(n) + S(n) + S(0)

UB

U UB

U U UB

Only (n)

(n) + S(n)

(n) + S(n) + S(0)

UB

U UB

U U UB

(d) Shear angle (�)

Figure 4: Dynamic responses at �/� = 0.25 of a simply supported beam subjected to a stationary impulsive point bending moment applied
at �/� = 0.5: (a) transverse displacement (
); (b) total slope (
�); (c) slope due to bending (�); (d) shear angle (�).



16 Shock and Vibration

0 0.2 0.4 0.6 0.8 1

−25

−20

−15

−10

−5

0

5

t/TA = 0

t/TA = 0.25

t/TA = 0.5

t/TA = 0.75

t/TA = 1

x/L

D
is

p
la

ce
m

en
t
w

(×
10

−
3

m
m
)

(a) V� = 0.25Vcr

0 0.2 0.4 0.6 0.8 1

−25

−20

−15

−10

−5

0

5
t/TA = 0

t/TA = 0.25

t/TA = 0.5
t/TA = 0.75

t/TA = 1

x/L

D
is

p
la

ce
m

en
t
w

(×
10

−
3

m
m
)

(b) V� = 0.5Vcr

0 0.2 0.4 0.6 0.8 1

−25

−20

−15

−10

−5

0

5

t/TA = 0

t/TA = 0.25

t/TA = 0.5 t/TA = 0.75 t/TA = 1

x/L

D
is

p
la

ce
m

en
t
w

(×
10

−
3

m
m
)

(c) V� = Vcr

0 0.2 0.4 0.6 0.8 1

x/L

−25

−20

−15

−10

−5

0

5

t/TA = 0

t/TA = 0.25

t/TA = 0.5

t/TA = 0.75 t/TA = 1

D
is

p
la

ce
m

en
t
w

(×
10

−
3

m
m
)
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Figure 5: Deformed shapes of a simply supported Timoshenko beam at �ve di
erent times (�/l� = 0, 0.25, 0.5, 0.75, and 1) when the beam
is subjected to a point transverse force moving at four di
erent constant speeds: (a) V� = 0.25Vcr; (b) V� = 0.5Vcr; (c) V� = V

cr
; (d) V� = 1.5Vcr,

where V
cr
is the lowest critical speed.

Table 1: Natural frequencies andmode shape parameters of a simply
supported Timoshenko beam.

Mode
number (n)

Natural frequencies (Hz)
Mode shape parameters

(rad/m)��(�) ��(�) L�(�) L�(�)
1 6.29 14331.42 0.72 −3180.85
2 25.14 14354.54 1.44 −1594.48
3 56.41 14392.93 2.15 −1067.48
4 99.92 14446.40 2.86 −805.32
5 155.39 14514.66 3.53 −649.08
10 598.86 15064.35 6.66 −344.31
20 2122.10 17004.83 10.95 −209.53
30 4125.86 19679.14 12.87 −178.31
40 6335.86 22782.05 13.33 −172.12
50 8624.20 26151.69 13.05 −175.79
60 10935.20 29699.86 12.44 −184.42
70 13245.32 33374.30 11.71 −195.95
74 14166.78 34871.53 11.41 −201.13
75 14396.84 35247.95 11.33 −202.47
80 15545.26 37141.61 10.96 −209.36
90 17832.00 40979.20 10.24 −224.06
Note: the cuto
 frequency is �� = 14323.7Hz.

the lowest critical speed that can be obtained for a simply
supported beam by equating the time period of the �rst mode
to the time needed to pass through a double length of the
beam as follows [12]: Vcr = 2
1� = 54.79m/s, where 
1 is the
�rst natural frequency in Hz. Note that a su�cient number of
mode shapes U�(�) and U�(�), including the pure shear mode
shapeU�(0), were considered in order to obtain the deformed
shapes shown in Figures 5 and 6. From Figures 5 and 6, we
investigated the following: (1) the deformed shapes strongly
depend on the speed of a moving load, and (2) the upward
deformation does not seem to be signi�cant when a beam
is subjected to a moving point downward transverse force,
whereas it can be signi�cant when the beam is subjected to
a moving point bending moment.	e vibration responses or
the deformed shapes of a Timoshenko beam were obtained
from (61) by using the generalized coordinates computed
from (75). As shown in (75), the generalized coordinates
are the functions of q0(�, V), q1(�, V), q2(�, V), q3(�, V), andq4(�, V), which are dependent on the speed of a moving load.
	is is why the deformed shapes shown in Figures 5 and 6
strongly depend on the speed of a moving load.
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(d) V� = 1.5Vcr
Figure 6: Deformed shapes of a simply supported Timoshenko beam at �ve di
erent times (�/l� = 0, 0.25, 0.5, 0.75, and 1) when the beam
is subjected to a point bending moment moving at four di
erent constant speeds: (a) V� = 0.25Vcr; (b) V� = 0.5Vcr; (c) V� = V

cr
; (d) V� = 1.5Vcr,

where V
cr
is the lowest critical speed.

Figures 7 and 8 show the distributions of the transverse
displacement 
, the total slope 
�, the slope due to bending�, and the shear angle due to transverse shear force � at � =0.5l� when the example Timoshenko beam is subjected to a
moving point transverse force and a moving point bending
moment, respectively. We assumed that the moving point
transverse force and bending moment have the same moving
speed of 0.5Vcr. From Figures 7 and 8, we investigated the
following: (1) the deformed shapes generated by a moving
point transverse force are quite di
erent from those generated
by a moving point bending moment, and (2) the shear angle� generated by a moving point transverse force can be well
predicted by using the mode shapes U�(�) only. However, for
accurate prediction of the shear angle generated by a moving
point bending moment, the mode shapes U�(�) and U�(0)
must be considered. Note that there is a step in the curves
in Figure 7(d) to satisfy the force equilibrium at the middle of
the beam at which a moving point transverse force arrives at
an instant of � = 0.5l�.

Figures 9 and 10 show the time histories of the transverse
displacement 
, the total slope 
�, the slope due to bending�, and the shear angle due to transverse shear force � at

�/� = 0.5 when the example Timoshenko beam is subjected
to the same moving point transverse force and bending
moment, respectively. From Figures 9 and 10, we investigated
the following: (1) the dynamic responses due to a moving
point transverse force are quite di
erent from those due to
a moving point bending moment and (2) the time history of
the shear angle � due to a moving point transverse force can
be accurately predicted by using the mode shapes U�(�) only.
However, themode shapesU�(�) andU�(0)must be considered
for the accurate prediction of the shear angle due to a moving
point bending moment.

Based on Figures 7–10, we investigated the following: (1)
the long-term dynamic responses can be well predicted by
using the mode shapes U�(�) only, and (2) the mode shapes
U�(�) andU�(0)must be considered in a prediction of accurate
shear angles due to the transverse shear forces.

To verify the accuracy of the present MAM, the dynamic
responses of a simply supported Timoshenko beam obtained
by the present MAM and the frequency-domain spectral
element method (SEM) are compared in Figure 11. We
assumed that the beam is subjected to a point transverse force
moving at three di
erent constant speeds V�: (a) V� = 0.5Vcr,
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Figure 7: Deformed shapes of a simply supported Timoshenko beam at � = 0.5l� when the beam is subjected to a point transverse force
moving at a constant speed of V� = 0.5Vcr: (a) transverse displacement (
); (b) total slope (
�); (c) slope due to bending (�); (d) shear angle(�).
(b) V� = Vcr, and (c) V� = 1.5Vcr. 	e SEM is known as
an exact element method that provides extremely accurate
solutions to one-dimensional structural dynamics problems
[38]. Song et al. [24] applied the SEM to a moving load
problem to verify its high accuracy. Figure 11 shows that the
dynamic responses obtained by using the present MAM are
almost identical to those obtained by using the SEM.

To investigate the e
ects of the shear deformation and
rotary inertia on the dynamic responses of a beam, the
transverse displacements at �/� = 0.25 of a simply supported
beam obtained by using Timoshenko beam theory and
Bernoulli-Euler beam theory are compared in Figure 12.
We assumed that the simply supported beam is subjected
to a stationary impulsive point transverse force at �/� =0.5. It is well known that the phase velocity of �exural
waves in a Bernoulli-Euler beam increases inde�nitely with
increasing wave number (or frequency). On the other hand,
for a Timoshenko beam, the phase velocity of �exural waves
has a �nite maximum value, while the phase velocity of
transverse shear waves, which is in�nite at a wave number

of zero, gradually decreases to a limit value with increasing
wave number [39]. Figure 12(a) demonstrates that the time
history of transverse displacement of a Bernoulli-Euler beam
starts from � = 0 because the wave modes of in�nite or
nearly in�nite phase speeds generated by the impulsive point
transverse force applied at �/� = 0.5 can reach immediately
the measurement point �/� = 0.25. On the other hand,
the time history of transverse displacement of a Timoshenko
beam delays starting because the �exural waves in a Tim-
oshenko beam have �nite values. As the shear deformation
is completely neglected in Bernoulli-Euler beam model,
Figure 12(b) demonstrates that, as expected, the time history
of shear angle exists only in case of the Timoshenko beam.

Finally, the e
ects of damping on the dynamic responses
of a simply supported Timoshenko beam subjected to a point
transverse force moving at a constant speed V� = 0.5Vcr are
investigated by comparing the dynamic responses obtained
by considering and without considering damping. Figure 13
shows the comparison of the dynamic responses at three
locations (�/� = 0.25, 0.5, and 0.75) obtained by considering
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Figure 8: Deformed shapes of a simply supported Timoshenko beam at � = 0.5l� when the beam is subjected to a point bending moment
moving at a constant speed of V� = 0.5Vcr: (a) transverse displacement (
); (b) total slope (
�); (c) slope due to bending (�); (d) shear angle(�).
and without considering the proportional viscous damping,
where we used w1 = 0, 9.89 and 39.55 when w2 = 0. We
can observe from Figure 13 that the amplitudes of transverse
displacements in general decrease due to damping.

5. Conclusions

We examined general solutions, natural frequencies, mode
shapes, and the orthogonality properties of mode shapes
for simply supported Timoshenko beams. We also presented
the forced vibration responses of a simply supported Tim-
oshenko beam in analytical closed form when the beam is
subjected to arbitrary initial conditions and to stationary or
moving transverse forces and bending moments. 	e new
�ndings made in this study are summarized as follows:

(1) A complete set of natural frequencies and mode
shapes are presented in closed forms for all frequency

ranges: 0 < � ≤ �� and � ≥ ��, where �� is the cuto

frequency.

(2) It is shown that three types of mode shapes (denoted
by U�(�), U�(�), and U�(0)) are required for a modal
analysis of the forced vibrations of a Timoshenko
beam subjected to arbitrary initial conditions and to
arbitrary stationary or moving loads.

(3) It is found that, in addition to the mode shapes U�(�)
and U�(�), the pure shear mode shape U�(0) must be
included in the modal analysis when a Timoshenko
beam is subjected to external bending moments or to
the initial rotation and angular velocity.

(4) In general, the long-term dynamic responses (vibra-
tions) due to stationary and moving transverse forces
can be well predicted by using only the bendingmode
shapes U�(�), but this is not true for stationary and
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Figure 9: Dynamic responses at �/� = 0.5 of a simply supported Timoshenko beam subjected to a point transverse forcemoving at a constant
speed of V� = 0.5Vcr: (a) transverse displacement (
); (b) total slope (
�); (c) slope due to bending (�); (d) shear angle (�).

moving moments. It is necessary to take into account
the shear mode shapes U�(�) to accurately predict the
short-term dynamic responses (wave propagations)
due to stationary and moving transverse forces or
bending moments.

(5) 	e deformed shapes of a Timoshenko beam strongly
depend on the speeds of moving loads. 	e upward
deformation does not seem to be signi�cant when
the beam is subjected to a moving point downward
transverse force, whereas it can be signi�cant when
the beam is subjected to a moving point bending
moment.

(6) 	e e
ects of shear deformation and rotatory inertia
are investigated by comparing short-term dynamic
responses (waves) obtained by using Bernoulli-Euler
beam theory and Timoshenko beam theory.

(7) Numerical results show that the amplitudes of trans-
verse displacements in general decrease due to damp-
ing.

Appendix

Symbols Used in (77)

	e symbols used in (77) are de�ned by

���(�) = #−��(�)��(�)� [{x�(�)��(�)h�(�) (0) + eh�(�) (0)e� } sin���(�)����(�) + h�(�) (0) cos���(�)�]
���(�) = #−��(�)��(�)� [{x�(�)��(�)h�(�) (0) + eh�(�) (0)e� } sin���(�)����(�) + h�(�) (0) cos���(�)�]
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Figure 10: Dynamic responses at �/� = 0.5 of a simply supported Timoshenko beam subjected to a point bending moment moving at a
constant speed of V� = 0.5Vcr: (a) transverse displacement (
); (b) total slope (
�); (c) slope due to bending (�); (d) shear angle (�).

���(0) = #−����� [{x���h�(0) (0) + eh�(0) (0)e� } sin������� + h�(0) (0) cos����]
p��(�) = ��(�)k0q0� (��(�), V�, x�(�)) ,
p��(�) = ��(�)k0q0� (��(�), V�, x�(�))
r��(�) = ��(�)l0L�(�)q0� (��(�), V�, x�(�)) ,
r��(�) = ��(�)l0L�(�)q0� (��(�), V�, x�(�))

q0� (�, V, x) = �√1 − x2 {�2 (1 − x2) − (STV� )2}
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Figure 11: Comparison of the transverse displacements 
(�, �) obtained by the present MAM and the SEM in [24] at �/� = 0.5 of a simply
supported Timoshenko beam subjected to a point transverse force moving at three di
erent constant speeds V�: (a) V� = 0.5Vcr; (b) V� = V

cr
;

(c) V� = 1.5Vcr.

q1� (�, V, x) = {�11 (�, V, x)�0 (�, V, x) sin
STV�� − �12 (�, V, x)�0 (�, V, x) cos

STV�� }
+ #−��� {�13 (�, V, x)�0 (�, V, x) sin�√1 − x2� + �11 (�, V, x)�0 (�, V, x) cos�√1 − x2�}

q2� (�, V, x) = {�11 (�, V, x)�0 (�, V, x) sin
STV�� − �12 (�, V, x)�0 (�, V, x) cos

STV�� } − #−��(�−�/V) { �21 (�, V, x)2�01 (�, V, x) + �22 (�, V, x)2�02 (�, V, x)}
q3� (�, V, x) = {�11 (�, V, x)�0 (�, V, x) cos

STV�� + �12 (�, V, x)�0 (�, V, x) sin
STV�� }

− #−��� {�11 (�, V, x)�0 (�, V, x) cos�√1 − x2� + �14 (�, V, x)�0 (�, V, x) sin�√1 − x2�}
q4� (�, V, x) = −{�11 (�, V, x)�0 (�, V, x) cos

STV�� + �12 (�, V, x)�0 (�, V, x) sin
STV�� } + #−��(�−�/V) { �23 (�, V, x)2�01 (�, V, x) + �24 (�, V, x)2�02 (�, V, x)}
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Figure 12: Comparison of the dynamic responses at �/� = 0.25 of a simply supported beam subjected to a stationary impulsive point
transverse force applied at �/� = 0.5 obtained by Timoshenko beam theory and Bernoulli-Euler beam theory: (a) transverse displacement(
); (b) shear angle (�).

Γ1 = #−����� [#������2�� − x������ sin���� − �2�� cos����]�2�� + x2��2�
Γ2 = #������2�� − #�����/V� [x������ sin��� (� − �/V�) + �2�� cos��� (� − �/V�)]�2�� + x2��2� ,

(A.1)

where

�0 (�, V, x) = �01 (�, V, x) �02 (�, V, x)
�01 (�, V, x) = (STV − �√1 − x2�)2 + x2�2�2
�02 (�, V, x) = (STV + �√1 − x2�)2 + x2�2�2
�11 (�, V, x) = �√1 − x2 (�2�2 − S2T2V2)

⋅ {�2�2 (1 − x2) − S2T2V2}
�12 (�, V, x) = 2STV��2x√1 − x2 {�2�2 (1 − x2)
− S2T2V2}

�13 (�, V, x) = − (STV� ) {�2�2 (1 − x2) − S2T2V2}
⋅ {�2�2 (1 − 2x2) − S2T2V2}
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Figure 13: E
ects of viscous damping on the transverse displacements at three locations of a simply supported Timoshenko beam subjected
to a point transverse force moving at a constant speed of V� = 0.5V

cr
when w1 = 0, 9.89 and 39.55 with w2 = 0: (a) at �/� = 0.25; (b) at�/� = 0.5; (c) at �/� = 0.75.

�14 (�, V, x) = −�x (�2�2 + S2T2V2) (�2 (1 − x2)
− S2T2V2)

�21 (�, V, x) = {�2 (1 − x2) − (STV� )2}
⋅ [−x��2cos {�√1 − x2 (� − �

V

) + ST}
+ (��2√1 − x2 − STV�)
⋅ sin {�√1 − x2 (� − �

V

) + ST}]
�22 (�, V, x) = {�2 (1 − x2) − (STV� )2} [x��2

⋅ cos {�√1 − x2 (� − �
V

) − ST}
− (��2√1 − x2 + STV�)
⋅ sin {�√1 − x2 (� − �

V

) − ST}]
�23 (�, V, x) = {�2 (1 − x2) − (STV� )2} [x��2
⋅ sin {�√1 − x2 (� − �

V

) + ST}
+ (��2√1 − x2 − STV�)
⋅ cos {�√1 − x2 (� − �

V

) + ST}]
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�24 (�, V, x) = {�2 (1 − x2) − (STV� )2} [x��2
⋅ sin {�√1 − x2 (� − �

V

) − ST}
+ (��2√1 − x2 + STV�)
⋅ cos {�√1 − x2 (� − �

V

) − ST}] .
(A.2)
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