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H I G H L I G H T S

� Vibrations of magnetically affected
nanowires carrying electric current
are of concern.

� Both surface and nonlocality effects
are considered in deriving governing
equations.

� Strong equations are solved in their
weakly discretized form by Galerkin
method.

� The effects of magnetic field and
electric current on displacements
are studied.

� The roles of small-scale parameter
and surface effect on deflections are
addressed.

G R A P H I C A L A B S T R A C T

Forced transverse vibrations of current-carrying nanowires in the presence of a longitudinal magnetic
field are aimed to be investigated by considering both nonlocality and surface effects.
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a b s t r a c t

Forced vibrations of current-carrying nanowires in the presence of a longitudinal magnetic field are of
interest. By considering the surface energy and size effects, the coupled equations of motion describing
transverse motions of the nanostructure are derived. By employing Galerkin and Newmark-β approaches,
the deflections of the nanowire subjected to transverse dynamic loads are evaluated. The effects of the
magnetic field, electric current, pre-tension force, frequency of the applied load, surface and size effects on
the maximum transverse displacements are discussed. The obtained results display that for the frequency of
the applied load lower than the nanowire's fundamental frequency, by increasing the magnetic field or
electric current, the maximum transverse displacements would increase. However, for exciting frequencies
greater than that of the nanowire, maximum transverse displacements would increase or decrease with the
magnetic field strength or electric current. Additionally, the pre-tension force results in decreasing of the
maximum transverse displacements. Such a reduction is more apparent for higher values of the magnetic
field strength and electric current. The present study would be useful in the design of the micro- and nano-
electro-mechanical systems expected to be one of the most wanted technologies in the near future.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In applied mechanics, nanowires are classified as one-dimensional
structures whose length-to-width ratio is commonly greater than 20

and their transverse dimensions constrained to ten nanometers. Due
to high Young's modulus of nanowires [1–3], their potential applica-
tions in mechanically enhanced composites [4–6] as well as resonators
and actuators [7,8] have been extensively examined. Additionally,
nanowires are commonly located in vicinity of each other within
bundles. Such a fact provides them as tribological additives to enhance
friction behavior and stability of nano-electro-mechanical systems
(NEMs) made of them. On the other hand, due to their small volumes
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and high surface-to-volume ratio, such NEMs are of great interest for
detecting nano-objects with high sensitivity [9–11]. In the near future,
nanowires can be employed to link small components into tremen-
dously small circuits. By means of nanotechnology, such components
can be built out of chemical compounds. For the later application, the
mechanism of vibrations of current-carrying nanowires is aimed to be
realized in some detail.

When an electric current passes through a magnetically
affected deformed nanowire, a magnetic force would exert on
each element of the nanowire. Such a force can be evaluated via
Lorentz's formula. The magnitude of the applied force is propor-
tional to the magnetic field strength and the magnitude of electric
current. For a straight nanowire subjected to a longitudinal
magnetic field, it can be easily shown that the exerted force on
the nanowire is equal to zero. However, for a nanowire with an
initial deflection, the vector of the electric current would be no
longer parallel to the magnetic field vector. Thereby, in such a case,
a transverse magnetic force is applied on the nanowire which is a
function of the slope of the deformed nanowire as well. It implies
that under certain circumferences, the internal stiffness of the
nanowire can approach zero and the current-carrying nanostruc-
ture would be dynamically unstable. Capturing such extreme
conditions is another important goal of the present work since it
is expected that the magnetically affected nanowire should trans-
fer safely and effectively electric currents from one place to
another one. Herein, the exerted nonlocal magnetic force on the
current-carrying nanowire is evaluated, and then through using a
string model, the governing equations of the nanostructure are
derived via appropriate continuum-based models.

Nanowires also exhibit other unusual electrical properties due
to their size. In contrast to single-walled carbon nanotubes whose
the electrons can freely travel from one electrode to the other,
nanowire conductivity is strongly affected by edge effects. The
edge effects originate from surface atoms which are not fully
bonded to neighboring atoms. Such unbonded atoms are often a
source of deficiency, and may cause the nanowires to conduct
electricity more weakly than the bulk material. As the dimensions
of a nanowire reduce, the ratio of the surface atoms to the total
ones increases and the edge effects become more highlighted. In
this work, efficiency of the nanowire as well as its capability in
carrying electric current is not of concern. However, theoretical
investigations on the role of the edge effects on such consequences
are so rare, and the need for further theoretical and experimental
studies on such an interesting field is highly demanded. As it will
be explained, the effects of the surface and its related energies are
considered in the proposed continuum-based model via a surface
elasticity model.

To date, large deflections [12], free vibrations [13–16], buckling
analysis [17–21] of nanowires, their dynamic behavior in a long-
itudinal magnetic field [22–24], and their longitudinal and transverse
vibrations and instabilities in a three-dimensional magnetic field [25]
have been studied. However, vibrations of current-carrying nano-
wires in the presence of a magnetic field have not been investigated.
Given the potential applications of such nanodevices in NEMs and
importance of the subject, this work is devoted to study forced
vibrations of nanowires transferring electric currents in the presence
of a longitudinal magnetic field.

Because of the high ratios of the surface-to-volume of nanowires,
the influence of the surface layer on the overall dynamic behavior of
the nanostructure becomes highlighted. Therefore, surface energy
should be appropriately taken into account in the total strain energy
of the nanowire. To this end, the Gurtin–Murdoch model [26,27] has
been frequently exploited. According to this model, the surface of a
solid structure is modeled as a two-dimensional layer of zero
thickness in which being in contact with the inside bulk material
without slippage. By defining mass per unit area, residual surface

stress as well as non-classical constitutive equations for this layer, its
kinetic and strain energies can be evaluated. Thereby, the effects of
the surface are appropriately incorporated into the governing equa-
tions. Further, the above-mentioned energies for the bulk zone
are identical to those of the classical continuum theory. It should
be noted that the Gurtin–Murdoch theory does not give us any
information regarding inter-atomic bonds and long-range interac-
tions. To consider such effects, nonlocal continuum theory of Eringen
[28–30] is employed. In comparison to the classical version of the
continuum mechanics, in this advanced theory, the stress depen-
dency of each point of the nano-scaled medium to the stresses of its
neighboring points is taken into account through a factor, called
small-scale parameter. In the present work, both surface elasticity
theory of Gurtin-Murdoch and nonlocal elasticity theory of Eringen
are considered in modeling the problem at hand.

This paper deals with the transverse vibrations of a current-
carrying nanowire in the presence of a longitudinal magnetic field
and externally applied loads. To this end, using nonlocal constitu-
tive equations and Hamilton's principle, the equations of motion of
the nanoscale structure are derived accounting for the surface
effects. By adopting Galerkin and Newmark-β approaches, the
resulting governing equations are solved. In a particular case, the
obtained results are compared with those of another work, and a
reasonably good agreement is achieved. Subsequently, the roles of
the influential factors on the forced vibrations of the nanowire are
addressed in some detail. The obtained results would be very
helpful in the design of magnetically affected nanowires exploited
as electric carriers which is expected to be building blocks of the
upcoming NEMs.

2. Description and assumptions of the nanomechanical
problem

Consider an elastic nanowire of length lb with the initial tensile
force T0 whose two ends are prohibited from any transverse
motion. The nanowire is subjected to a transverse load denoted
by qðx; tÞ ¼ qvðx; tÞeyþqwðx; tÞez where qv and qw are the transverse
dynamic loads associated with the y- and z-axes, respectively.
The unit base vectors associated with the x-, y-, and z-axes in order
are represented by ex, ey, and ez respectively. A constant electric
current, I, passes through the nanowire whereas it is acted upon
by a longitudinal magnetic field with flux B¼ B0ex (see Fig. 1). The
coordinate system has been attached to the left end of the
nanowire such that the x-axis is coincident with the revolutionary
axis of the nanowire and the y-axis towards upward. The density
and the cross-sectional area of the nanowire are denoted by ρb and
Ab, respectively.

The following assumptions are made in studying the problem at
hand: (1) the deformation of the nanowire is investigated in the
context of the nonlocal-linear elasticity of Eringen; (2) the produced
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Fig. 1. Schematic representation of a current-carrying nanowire subjected to both a
longitudinal magnetic field and laterally distributed loads.
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tensile force within the nanowire due to the laterally applied load is
negligible in comparison to T0; (3) the electric current does not alter
with time and it is in the same direction of the deformed nanowire.
Thereby, it can be expressed by I� I0exþ I0v;xeyþ I0w;xez where I0 is
the magnitude of the electric current; (4) the cross-sectional area of
the nanowire is very small such that eddy currents can be rationally
neglected; (5) the generated magnetic field due to the electric
current I is fairly negligible in comparison to the exerted longitudinal
magnetic field; (6) the cross-sectional area of the nanowire is small
enough such that the bending rigidity of the nanowire can be
neglected; (7) the only externally applied electro-magnetic force on
the nanowire is that explained by Lorentz's formula as

fm ¼ f mveyþ f mwez ¼ I� B¼ B0I0ðw;xey�v;xezÞ: ð1Þ

In the following part, the equations of motion of a current-
carrying nanowire in the presence of a longitudinal magnetic field
are firstly provided in a more general context, called nonlocal-
surface energy continuum-based beam. Subsequently, the above-
mentioned assumptions are imposed. Thereby, the governing
equations would reduce to those of nonlocal lengthy string
accounting for the surface energy.

3. Formulations

Based on the Euler–Bernoulli beam theory accounting for the
surface energy, the governing equation associated with the trans-
verse vibration of a solid circular nanowire in the z-plane is
explained by Ref. [31]:

ðρbAbþρ0S0Þ €wþνbIbρ0

r0
€w ;xx�Ml

b;xx�ðT0þH0Þw;xx

� ðλ0þ2μ0ÞI0�
νbIbτ0
r0

� �
w;xxxx ¼ qwþ f mw; ð2Þ

where w¼wðx; tÞ is the transverse displacement along the z-axis,
the overdot represents differentiation with respect to time, the
parameter after the comma in the subscript denotes the derivative
with respect to that parameter, ρb and ρ0 in order are the bulk
density and surface density, respectively, H0 ¼ S0τ0, τ0 is the
residual surface stress under unconstrained conditions, S0 ¼ πr0,
μ0 and λ0 are the surface Lame constants, Ib and I0 in order are the
moment of inertia of the bulk and surface matters, respectively, νb
is Poisson's ratio of the bulk, Mb

l is the local bending moment, and
qw is the applied dynamic load per unit length of the nanowire.

Based on the nonlocal continuum theory of Eringen, the
nonlocal axial stress is related to the local one as Refs. [32–34]:

snl
x �ðe0aÞ2snl

x;xx ¼ sl
x ¼ Eb �zw;xxþ

T0

EbAb

� �
; ð3Þ

where e0a is the small-scale parameter and Eb is the modulus of
elasticity of the bulk. By premultiplying both sides of Eq. (3) by
z and then integrating the resulting expression over the cross-
sectional area of the nanowire,

Mnl
b �ðe0aÞ2Mnl

b;xx ¼Ml
b ¼ �EbIbw;xx; ð4Þ

where Mb
nl represents the nonlocal bending moment within the

nanowire. By combining Eqs. (2) and (4) and recalling the sixth
assumption, the nonlocal equation of motion of a lengthy current-
carrying nanowire subjected to a longitudinal magnetic field
accounting for the surface energy is obtained. Therefore,

ðρbAbþρ0S0Þð €w�ðe0aÞ2 €w ;xxÞ�ðT0þH0Þðw;xx�ðe0aÞ2w;xxxxÞ

þB0I0ðv;x�ðe0aÞ2v;xxxÞ ¼ qw�ðe0aÞ2qw;xx: ð5Þ

Similarly, the equation of motion pertinent to the nanowire
vibration in the y-plane would be obtained as

ðρbAbþρ0S0Þð €v�ðe0aÞ2 €v ;xxÞ�ðT0þH0Þðv;xx�ðe0aÞ2v;xxxxÞ
�B0I0ðw;x�ðe0aÞ2w;xxxÞ ¼ qv�ðe0aÞ2qv;xx: ð6Þ

Eqs. (5) and (6) furnish us regarding transverse vibrations of
a lengthy current-carrying nanowire in the presence of a long-
itudinal magnetic field accounting for both size and surface effects.
The boundary and initial conditions of the problem are as

vð0; tÞ ¼ vðlb; tÞ ¼ 0; wð0; tÞ ¼wðlb; tÞ ¼ 0; ð7aÞ

vðx;0Þ ¼ v0ðxÞ; wðx;0Þ ¼w0ðxÞ; _vðx;0Þ ¼ _v0ðxÞ; _wðx;0Þ ¼ _w0ðxÞ;
ð7bÞ

where v0ðxÞ and w0ðxÞ are the initial transverse displacements of
the nanowire, and their overdots represent their initial velocities.

4. A solution to the problem

In order to investigate the problem in a more general context,
the following dimensionless parameters are considered:

ξ¼ x
lb
; τ¼ Ct

lb
; T 0 ¼

T0

EbAb
; H0 ¼

H0

EbAb
; v ¼ v

lb
;

w ¼w
lb
; f 0 ¼

B0I0lb
EbAb

;

m0 ¼
ρ0S0
ρbAb

; qv ¼
qvlb
EbAb

; qw ¼ qwlb
EbAb

; v0 ¼
v0
lb
;

w0 ¼
w0

lb
; _v0 ¼ _v0

C
; _w0 ¼ _w0

C
; ð8Þ

where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=ρb

p
is the speed of the longitudinal wave in the

bulk nanowire, ξ is the dimensionless coordinate pertinent to the
x-axis, τ is the dimensionless time parameter, μ is the dimension-
less small-scale parameter, ðv0;w0Þ denotes the initial dimension-
less position of the nanowire, and ð _v 0; _w 0Þ represents the initial
velocity of the nanowire in the dimensionless form. By introducing
Eq. (8) to Eqs. (5)–(7), the dimensionless equations of motion of a
current-carrying nanowire acted upon by a longitudinal magnetic
field are obtained as

ð1þm0Þðv ;ττ�μ2v ;ττξξÞ�ðT 0þH0Þðv ;ξξ�μ2v ;ξξξξÞ
� f 0ðw ;ξ�μ2w ;ξξξÞ ¼ qv�μ2qv;ξξ; ð9aÞ

ð1þm0Þðw ;ττ�μ2w ;ττξξÞ�ðT 0þH0Þðw ;ξξ�μ2w ;ξξξξÞ
þ f 0ðv ;ξ�μ2v ;ξξξÞ ¼ qw�μ2qw;ξξ; ð9bÞ

with the following initial and boundary conditions:

vð0; τÞ ¼ vð1; τÞ ¼ 0; wð0; τÞ ¼wð1; τÞ ¼ 0; ð10aÞ

vðξ;0Þ ¼ v0ðξÞ; wðξ;0Þ ¼w0ðξÞ;
v ;τðξ;0Þ ¼ _v 0ðξÞ; w ;τðξ;0Þ ¼ _w 0ðxÞ: ð10bÞ
In order to solve the set of coupled partial differential equations in
Eqs. (9a) and (9b), the Galerkin approach is adopted. To this end,
the unknown dimensionless displacements are discretized as

vðξ; τÞ ¼ ∑
NM

i ¼ 1
aiðτÞϕv

i ðξÞ; wðξ; τÞ ¼ ∑
NM

i ¼ 1
biðτÞϕw

i ðξÞ; ð11Þ

where ϕv
i ðξÞ and ϕw

i ðξÞ denote the ith admissible mode shapes
pertinent to v and w. Also, aiðτÞ and biðτÞ are the unknown time-
dependent parameters associated with the ith vibration mode.
Such parameters should be appropriately determined at each time.
To this end, both sides of Eqs. (9a) and (9b) in order are
premultiplied by δv and δw where δ represents the variational
sign. After taking the required integration by parts, the following
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set of ordinary differential equations is derived:

M
vv
b M

vw
b

M
wv
b M

ww
b

2
4

3
5 a ;ττ

b ;ττ

( )
þ

K
vv
b K

vw
b

K
wv
b K

ww
b

2
4

3
5 a

b

� �
¼

f
v
b

f
w
b

8<
:

9=
;; ð12Þ

with the following initial conditions:

a
b

� �
τ ¼ 0

¼
a0

b0

( )
;

a ;τ

b ;τ

( )
τ ¼ 0

¼
_a0
_b 0

( )
; ð13Þ

where the nonzero vectors and submatrices in Eq. (12) are defined
by

½Mvv
b �ij ¼ ð1þm0Þ

Z 1

0
ðϕv

iϕ
v
j þμ2ϕv

i;ξϕ
v
j;ξÞ dξ; ð14aÞ

½Mww
b �ij ¼ ð1þm0Þ

Z 1

0
ðϕw

i ϕ
w
j þμ2ϕw

i;ξϕ
w
j;ξÞ dξ; ð14bÞ

½Kvv
b �ij ¼ ðT 0þH0Þ

Z 1

0
ðϕv

i;ξϕ
v
j;ξþμ2ϕv

i;ξξϕ
v
j;ξξÞ dξ; ð14cÞ

½Kvw
b �ij ¼ � f 0

Z 1

0
ϕv

i ðϕw
j;ξ�μ2ϕw

j;ξξξÞ dξ; ð14dÞ

½Kwv
b �ij ¼ f 0

Z 1

0
ϕw

i ðϕv
j;ξ�μ2ϕv

j;ξξξÞ dξ; ð14eÞ

½Kww
b �ij ¼ ðT 0þH0Þ

Z 1

0
ðϕw

i;ξϕ
w
j;ξþμ2ϕw

i;ξξϕ
w
j;ξξÞ dξ; ð14f Þ

ff vbgi ¼
Z 1

0
ϕv

i ðqv�μ2qv;ξξÞ dξ; ð14gÞ

ffwb gi ¼
Z 1

0
ϕw

i ðqw�μ2qw;ξξÞ dξ; ð14hÞ

fa0gj ¼ 2
Z 1

0
v0 sin ðjπξÞ dξ; ð14iÞ

fb0gj ¼ 2
Z 1

0
w0 sin ðjπξÞ dξ; ð14jÞ

f _a0gj ¼ 2
Z 1

0

_v0 sin ðjπξÞ dξ; ð14kÞ

f _b 0gj ¼ 2
Z 1

0

_w 0 sin ðjπξÞ dξ: ð14lÞ

For the problem at hand, the following mode shapes are
considered:

ϕv
i ðξÞ ¼ sin ðiπξÞ; ϕw

i ðξÞ ¼ sin ðiπξÞ: ð15Þ

These mode shape functions satisfy the boundary conditions in Eq.
(10a). By substituting Eq. (15) into Eqs. (14a)–(14l), the elements of
the submatrices and vectors can be easily calculated. Thereby, by
application of the Newmark-β methodology, the set of second-
order ordinary differential equations in Eq. (12) can be solved for
the unknown vectors a and b at each time. Thereafter, the
transverse displacements of the current-carrying nanowire can
be evaluated by using Eq. (11) and their maximum values in the
spatial and time domains of the problem are determined.

5. Results and discussion

5.1. A comparison study

Due to the lack of both theoretical and experimental data for
the problem at hand, the obtained results of the proposed model
are justified with those of a magnetically affected macro-scale
wire that carries an electric current. For this purpose, the pre-
dicted displacements of the proposed model are compared with
those of Sloss et al. [35]. In Ref. [35], an analytical model was
proposed to study the vibration control of current-carrying wires
immersed in a longitudinal magnetic field. The explicit expres-
sions of natural frequencies and transverse displacements of fixed-
wires were obtained, and their instabilities were discussed. Now,
consider a current-carrying wire subjected to a longitudinal
magnetic field with f 0 ¼ �2π and other given properties in
Ref. [35]. The total transverse displacement is defined by
zðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðx; tÞþw2ðx; tÞ

p
. The initial shape of the wire is given

by w0ðξÞ ¼ ξð1�ξÞ and v0ðξÞ ¼ 0. Without exerting any externally
applied load on the wire, it starts to vibrate from its initial
position. In the numerical analysis of the proposed model, we
set NM¼31 and μ¼ τ0 ¼ 0. At the time τ¼ 5, the effect of the
initial tensile force on the total transverse displacement field of
the wire is of concern. For four levels of the initial tensile force (i.e.,
T 0 ¼ 1:0001, 1.01, 1.05, and 1.1), such plots are depicted in Fig. 2.
The plotted results of the present work and Sloss et al. [35] are
presented by the dashed and solid lines, respectively. As it is seen
in Fig. 2, there is a reasonably good agreement between the
predicted results by the proposed model and those of Sloss et al.
[35] through the entire domain of the wire.

5.2. Numerical studies

Consider an aluminum nanowire with the following geometry
and physical properties: ρb¼2700 kg/m3, Eb¼70 GPa, ρ0 ¼ 5:46�
10�7 kg=m2, τ0 ¼ 0:9108 N=m, r0¼2 nm, lb¼1000 nm, and
e0a¼ 1 nm. The nanowire is initially at rest (i.e., v0¼w0¼0 and
_v0 ¼ _w 0 ¼ 0) and is subjected to an initial tensile force with
T 0¼0.001. A harmonic transversely distributed load of the form:
qw ¼ 2� 10�6 sin ðϖτÞ causes vibrations within the nanostruc-
ture where ϖ ¼ 0:7ϖ and ϖ represent the dimensionless funda-
mental frequency of the current-carrying nanowire immersed in a
longitudinal magnetic field. The exerted longitudinal magnetic
field and the electric current passes through the nanowire are such
that f 0 ¼ 0:005. In the following parts, the influences of the pre-
tension force, magnetic field as well as electric current, frequency
of the applied load, and small-scale effect parameter on the
transverse displacements of the nanowire are studied.

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

ξ

 z(
ξ,

5)

Fig. 2. Comparison of the predicted deflection field of the current-carrying wire
immersed in a longitudinal magnetic field by the proposed model with those of
Sloss et al. [35] for different levels of the initial tensile force: (○) T 0 ¼ 1:0001,
(▵) T 0 ¼ 1:01, (∇) T 0 ¼ 1:05, (□) T 0 ¼ 1:1.
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5.2.1. Effect of pre-tensioning on the dynamic response of the
nanowire

In Fig. 3(a)–(c), the time history plots of the transverse displace-
ments of the mid-span point of the current-carrying nanowire due
to the externally applied load are provided. The plotted results are
given for three levels of the pre-tension force (i.e., T 0 ¼ 0:001,
0.002, and 0.003) and for two cases: with and without considering
the surface energy effect. As it is seen in these figures, both
transverse displacements would reduce as the influence of the
pre-tension force becomes highlighted. According to Eq. (14), by
increasing the pre-tension force, all elements of the stiffness
matrices associated with both lateral directions would increase.
Thereby, it could be anticipated that the generated transverse
displacements would decrease as the pre-tensioned force grows.
On the other hand, the length of time interval associated with two
adjacent peaks of the plotted displacements becomes shorten as the
pre-tensioned force increases. The main reason of this fact is that by
increasing the pre-tension force, the fundamental frequency of the
current-carrying nanowire would also increase. Since, ϖ ¼ 0:7ϖ,
therefore, the frequency of the applied load would increase as well.
It implies that the period of the dynamic displacements would
decrease. The obtained results show that the pre-tensioning could
be exploited as an efficient approach for decreasing the dynamic
displacements of the current-carrying nanowire due to the applied
magnetic field and externally applied loads.

According to Fig. 3(a)–(c), the transverse displacements with-
out considering the surface energy effect are generally greater
than those obtained by considering the surface energy effect.
Further, the period of the dynamic displacement in the case of
without considering the surface effect is greater than that for the
case of with consideration of the surface effect. The main reason of
this fact is that the surface effect helps to the flexural stiffness of
the nanowire by increasing the total tensile force within the
nanowire (see Eqs. (14c) and (14f)). As it is seen in Fig. 3(a)–(c),
by increasing the initial tensile force, the discrepancies between
the predicted transverse displacements by the proposed model for
the above-mentioned two cases would reduce. It is chiefly related
to this fact that the ratio of the axial force due to the surface effect

to the total tensile force would lessen; therefore, the effect of the
surface energy becomes vanished.

Hereby it is emphasized that the given discussion in the
previous part is only valid for those nanowires which are made
of materials with positive residual surface stress. For nanowires
with negative residual surface stress, the bending stiffness would
reduce with the surface effect (see Eqs. (14c) and (14f)). Therefore,
the periods of dynamic displacements would magnify with respect
to the case of without consideration of the surface effect. In such a
case, it is also anticipated that the discrepancies between the
transverse displacements of two cases would lessen as the
influence of the initial tensile force becomes highlighted.

5.2.2. Effect of longitudinal magnetic field and electric current on the
dynamic response of the nanowire

The predicted dynamic displacements of the midspan point of the
nanowire are provided in Fig. 4(a)–(c) for three levels of f 0 (i.e., 0.05,
0.053, and 0.056). According to Eq. (8), this parameter is proportional
to the product of the magnetic field strength and the electric current.
Thereby, by studying the effect of this parameter on the dynamic
response, the effects of both longitudinal magnetic field and electric
current on the vibrations of the nanowire can be displayed. A close
scrutiny of the plotted results in Fig. 4(a)–(c) reveals that both
transverse displacements would grow as f 0 increases. Furthermore,
the influence of f 0 on the variation of v is more obvious with respect
to w . Actually, the transverse displacement associated with the
direction of the applied load (namely w) is highly affected by the
exerted load; thereby, the influence of the parameter f 0 on w
becomes lesser. As it is obvious from Fig. 4(a)–(c), the discrepancy
between the times associated with two adjacent peak points would
generally increase with f 0. It is mainly related to the reduction of the
fundamental frequency of the nanowire due to the increasing of f 0
(for example, the proposed model predicts that the dimensionless
fundamental frequency of the nanostructure would be 0.1528,
0.1288, and 0.0971 for f 0 ¼ 0:05, 0.053, and 0.056, respectively). It
means that the frequency of the applied load would also reduce since
the ratio of the applied load frequency to that of the nanowire has
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Fig. 3. Time history plots of transverse displacements of the nanowire for different levels of the initially tension force: (a) T 0 ¼ 0:001, (b) T 0 ¼ 0:002, (c) T 0 ¼ 0:003; (—) with
surface energy; (��) without surface energy.
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been kept fixed; thereby, the discrepancy between the times of two
adjacent peaks would magnify as f 0 grows.

5.2.3. Effect of the frequency of the applied load on the maximum
transverse displacements of the nanowire

An interesting parametric study has been conducted to deter-
mine the role of the frequency of the applied load on the
maximum dynamic displacements. In Fig. 5, the plots of the
maximum dimensionless transverse displacements of the nano-
wire in terms of dimensionless frequency of the applied load are
provided. The results are provided for three levels of the magnetic
field as well as electric current (i.e., f 0 ¼ 0:03, 0.05, and 0.08).
When the frequency of the applied load is lower than the
fundamental frequency of the nanowire, both transverse displace-
ments would increase by an increase of the frequency of the
applied load. Further, increasing the magnetic field strength or
electric current would result in an increase of the transverse
displacements. When the frequency of the applied load is greater
than that of the nanowire, by increasing the frequency of the
applied load up to a certain level, the maximum transverse
displacement associated with the direction of the applied load
would generally decrease. For such a range of the applied load
frequency, maximum value of displacement would decrease or
increase as a function of the applied frequency according to the
magnitude of the magnetic field or electric current. This matter
also holds true for another component of displacement. Such
evidence guides us to use an envelope curve to determine the
maximum transverse displacement of a nanowire because of a
harmonic load. This curve is constructed by connecting the peak
points of maximum displacement (for various levels of f 0) in terms
of the frequency of the applied load. The envelope curve would be
very useful for practical purposes, particularly when the nanowire
may experience various longitudinal magnetic fields or electric
currents during its service life.

As it is seen in Fig. 5, the effect of the magnetic field strength or
electric current is more obvious on the transverse displacement

which is perpendicular to the applied load. Additionally, the plots
of the maximum displacements as a function of the applied load
frequency have locally maximum points, in which by an increase
of the magnetic field or electric current, their peaks would
increase and take place at lower levels of the frequency. As it is
explained in the previous part, the fundamental frequency of the
nanowire would lessen by an increase of the magnetic field or
electric current. Thereby, the resonance of the nanowire due to the
externally applied load would occur at lower frequencies of the
applied load. It is also worth mentioning that the second peak of
the transverse displacement perpendicular to the applied load
occurs at the vicinity of the second natural frequency of the
current-carrying nanowire. For frequencies of the applied load
which are close to the natural frequencies of the nanowire, the
effect of the magnetic field flux or electric current on both
transverse displacements is more apparent with respect to other
frequencies.

5.2.4. Effect of the pre-tension force on the maximum transverse
displacements of the nanowire

The effect of the pre-tension force within the current-carrying
nanowire on the generated maximum transverse displacements
due to the externally applied load and longitudinal magnetic field
is of interest. To this end, the plots of the maximum dimensionless
displacements as a function of the dimensionless pre-tension force
for three levels of f 0 ¼ 0:03, 0.035, and 0.04 are provided in Fig. 6.
According to the plotted results, for all levels of f 0, the maximum
transverse displacements would decrease as the pre-tension force
magnifies. Such a fact is also more obvious for those nanowires
subjected to higher levels of the magnetic field and electric
current. For lower levels of the pre-tension force, the effect of
the pre-tension force on the variation of the maximum displace-
ments of the nanowire is more obvious. Additionally, for higher
values of the pre-tension force, the effect of the magnetic field or
electric current on the maximum transverse displacements
becomes less important.
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5.2.5. Effect of the longitudinal magnetic field and electric current on
the maximum transverse displacements of the nanowire

Equally important is to carefully determine the role of the
longitudinal magnetic field as well as electric current on the
generated transverse displacements due to a harmonic load. In
Fig. 7, the plots of maximum transverse displacements as a function
of f 0 are provided for three levels of the initial tensile force within
the nanowire (i.e., T 0 ¼ 0:0025, 0.003, and 0.0035). As it is seen in
Fig. 7, the maximum transverse displacements of the nanowire
would increase by an increase of the magnetic field or electric
current. Additionally, such an effect is more obvious for those
current-carrying nanowires with lower levels of the initial tensile
force and higher levels of magnetic field or electric current.
The main reason of this fact is that the transverse stiffness of the
nanowire generally decreases as the initial tensile force within the
nanowire decreases. On the other hand, by increasing the magnetic
field or electric current, the transverse stiffness of the nanowire
reduces. Such crucially obtained results guide us to this fact that a
combination of these factors (i.e., initial tensile force, strength of the
longitudinal magnetic field, and electric current) could endanger
stability of the current-carrying nanowires. Such an interesting

subject is out of the scope of the present study, and their analytical
solutions and the nature of the nanostructure instability will be
presented in another work which is underway by the author.

5.2.6. Effect of the small-scale parameter on the maximum
transverse displacements of the nanowire

Another numerical study has been carried out to address the
effect of the small-scale parameter on the maximum transverse
displacements of the current-carrying nanowire in the presence of
a longitudinal magnetic field. The plots of dimensionless trans-
verse displacements of the nanostructure due to a harmonic force
as a function of the small-scale effect parameter have been
demonstrated in Fig. 8. The obtained results are depicted for a
nanowire of length 50 nm with f 0 ¼ 0:055 under three levels of
the initial tensile force (i.e., T 0 ¼ 0:0035, 0.004, and 0.0045).
According to the plotted results in Fig. 8, both transverse displace-
ments would lessen as the small-scale parameter increases.
A close scrutiny of the obtained results also reveals that variation
of the small-scale parameter on the variation of the component of
displacement perpendicular to the applied load is more apparent.
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Additionally, by increasing the initial tensile force within the
nanowire, the influence of the small-scale parameter on the
maximum transverse displacements would slightly decrease.

6. Concluding remarks

Transverse vibrations of lengthy current-carrying nanowires
subjected to a longitudinal magnetic field and externally applied
loads are investigated. Accounting for both size and surface effects,
the equations of motion of the problem are obtained. By employ-
ing the Galerkin approach, the set of coupled partial differential
equations reduces to a set of second-order ordinary differential
equations. Via the Newmark-β method, the time-dependent
parameters are then evaluated at each time and the dynamic
displacements of the nanostructure are determined. The impor-
tant findings of this work are as

� The components of the transverse displacements of the nanowire
in the presence of both longitudinal magnetic field and electric
current within the nanowire are coupled. Such a coupling effect is

the main cause of generation of the displacement in a perpendi-
cular direction with respect to the direction of the applied load.

� For nanowires with positive residual surface stress, surface
effect has a tendency to reduce transverse displacements since
the transverse stiffness of the current-carrying nanowire
increases as the effect of surface energy becomes highlighted.
Such a role plus to that of the initial tensile force would provide
a more stable nanostructure.

� Irrespective of the level of the magnetic field strength or
electric current, the pre-tension force would result in a
decrease of the maximum transverse displacements. Such a
reduction is more obvious for higher levels of the strength of
the magnetic field or electric current.

� The influence of magnetic field or electric current on the
maximum transverse displacements strongly depends on the
load's frequency. For those frequencies which are lower than
the fundamental frequency, maximum transverse displace-
ments would increase with the magnetic field strength or
electric current. Such a fact is more apparent for lower levels
of the initial tensile force. If the frequency of the applied load
would be greater than the fundamental frequency, maximum
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displacements would increase or decrease as the magnetic field
or electric current magnifies.

� Generally, maximum transverse displacements of the current-
carrying nanowire would reduce as the small-scale parameter
increases. Such a fact becomes less important as the initial
tensile force within the nanowire magnifies.
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