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ABSTRACT 

The rms horizontal forces which result from the action of a linear, 
deep and intermediate water, laboratory scale waves were measured on submerged 
spheres removed several diameters from the free surface. The study focuses on 
unseparated flows encountered at small values of (d0/D), where d0 is the 
orbital diameter and D is the sphere diameter. Under these conditions, a 
steady streaming around the vertical equator of the sphere was observed, 
giving rise to a circulation in the sense of rotation of the orbital motion. 
This phenomena was found to diminish the resultant of the wave pressure on the 
sphere predicted by potential theory. In approaching the onset of separa- 
tion, the drag coefficients were found to compare in size with those reported 
for similar motions in steady unidirectional flow. 

INTRODUCTION 

Much of the experimental work addressing the problem of wave induced 
forces on submerged circular bodies have used in-line oscillatory flows; where 
the motion is simply back-and-forth and wm/u«,   -  0 (as in Keulegan and 
Carpenter, 1956; Seymour, 1974; and Sarpkaya, 1975). While the conditions of 
these experiments may approximate the flows encountered under shallow water 
waves, it is not clear whether these data are appropriate to the design of 
offshore structures encountering intermediate or deep water waves, under which 
the motion is orbital and w^/u^, = tanh k(z + h), after linear theory. 

Previous experiments in which progressive waves have been used to 
create oscillatory motion (O'Brien and Morison, 1952; and Grace and Casciano, 
1969) have involved separated local flow over spheres usually in close prox- 
imity to the bottom. Under waves, unseparated motions are a consequence of 
vorticity being confined by small particle orbits to the immediate neighborhood 
of the body, when do/D < 1, despite the fact that large Reynolds numbers may 
prevail. The unseparated flow regime has not yet received thorough experimen- 
tal scrutiny, particularly for orbital motion, and this lack of information is 
critical in the design of submerged structures whose cross-sectional dimension 
may exceed the amplitude of the water motion. 

The following study explores these areas by providing measurements of 
the wave loads on a smooth sphere which result from the orbital motions under 
linear, intermediate and deep water laboratory scale surface waves, when the 
local flow is unseparated. 

Force Estimates 

Instead of pursuing estimates of the wave force time history, we seek 
estimates of rms values of the force from Morison's equation as useful  "engine- 
ering numbers".    In this way, the time invarient coefficients of the drag and 
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inertia! terms are physically plausable as time averaged values.    With these 
coefficients, only a spectrum of the free surface is required to establish the 
relative size of horizontal rms values of the drag to the inertia forces at a 
given frequency by the following 

Ff _ Cfpyujujw _ 3^cf rd 
o rms 

F    c pV (u )        8  c I m   nr (T °>'rms         m D  J 

where d    = H   cosh- k(h " b) wnere ao rms  Mrms sinh kh 

The anticipated Strouhal dependence arising from a ratio of convective to 
unsteady inertial terms is equivalent for linear waves to a ratio of the size 
of the undisturbed particle orbits to the body, (d0/D). Thus, under the con- 
dition for which unseparated motions are found, namely (d0/D < 1), the inertia 
force appears as the larger component of the wave load. 

The inertia force can be estimated with a scattering description under 
the hypothesis of potential flow for a sphere submerged at least one diameter, 
D, under linear deep water waves. The inertia force is the resultant of the 
local wave pressure, 

II 
F., • ||»Hvs 

where three independent wave profiles combine linearly to give $ on the sur- 
face of the sphere. The first of these is the undisturbed incident wave, $K. 
Thus, if kD << 1, the undisturbed incident wave acts to accelerate the sphere 
into orbital motion like an equivalent volume of water, and contributes pV0 u« 
to the inertia force, giving a time independent value of unity for the inertia 
coefficient. However, the undisturbed incident wave cannot alone meet the 
condition of no flow through the sphere, and so a disturbance, $s,  due to the 
presence of the sphere is added. This disturbance or scattered wave is deter- 
mined so that the normal velocity over the surface of the sphere is zero 

|f (+„ + *s) = 0  at  r = D/2 

There is an additional pattern of disturbances, Froude waves, as a consequence 
of the proximity of the sphere to the free surface. However, if the sphere is 
at rest, and, if the depth of submergence is taken to be D, where d0/D < 1, 
then the Froude number is O(ed0/D)i and it may be verified that any contribu- 
tion to the force by Froude waves is altogether negligable after first order 
linear theory due to Havelock (1952) and after complete second order theory 
due to Kim (1969). 

Expanding the spacially dependent parts of the incident and scattered 
waves into a series of tesseral spherical harmonics, Lamb (1932, art 86 and 
106) as, 

exp(kz + ikx) = exp(kr sinesinu + ikrcose) =   „    s   ^n  Pn(cose) cos Su 
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yields a scattering formulation which does not rely on the plane wave approxi- 
mation as for acoustic scattering, or for scattering of surface waves by a 
vertical cylinder. The orthogonality on a spherical surface of the set of 
surface harmonics, 

Ps(cose) cos su 

taken with the condition of no flow through the sphere and the radiation con- 
dition, 

* = *M + •.(D^x)* (|«r = D/2I/|*J) 

as x •* °= yields the coefficients, A^, for the incident and scattered waves. 
These have been evaluated in Havelock (1954) and specify the pressure over the 
surface of the sphere resulting in the following expressions for the horizon- 
tal and vertical components of the inertia force 

1 3/2     u     _bk .1/2 
Fm      =   |PgD2(2,r) jj-e KD (1  + l/2)(kD/2) J3/2(kD/2) sin(-ot) 

Fm     =   J-pgD2(21r)
3/2   f e"kb (1 + l/2)(kD/2)~l/2 J3/2(kD/2) cos(-ot) 

Normalizing the amplitudes of the horizontal  and vertical  components by the 
amplitudes of   pV0 um   and    pV0Wco   respectively gives the following time 
independent inertia coefficient for both components 

cm    -    § (1 + ca)(kD)-3/2 J3/2(kD/2) 

where   ca = 1/2   and is plotted in Figure 1.    When the sphere becomes small in 
relation to the wave length, cm    is found to converge to 1.5, the value for a 
sphere in an unbounded uniformly accelerating fluid, and thereby supporting 
assumptions made in this regard in the early work of O'Brien and Morison  (1952) 
Furthermore the horizontal  and vertical components are found to lead the wave 
profile in time by constant phase angles of   ir/2    and    TT    respectively.    How- 
ever, once    kD/2 » 1, cm    becomes small and oscillating as 

9     /2 

TV" 
(kD/2)"2 cos(kD/2 - TT) 

for kD/2 >> 1. As a result, the phase of the inertia force relative to the 
incident wave profile varies rapidly with wave number, since the incident wave is 
now leaking around a very  large obstacle. The lack of a dependence in cm on 
the depth of submergence is a consequence of neglecting the effects of Froude 
waves by limiting the analysis to the case where  b > D. 

If the sphere is subjected to shallow water waves, then w„/u„-0 and 
the acoustic plane wave approximation appears admissible. Scattering of plane 
waves by a spherical obstacle is treated in Lamb (1932, art no 296) and results 
in an inertia coefficient which converges in the small body limit, kD/2 << 1, 
to 1.5 as        _    2 + (kD/2)

2 

cm   '  4 + (kD/2)t 
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Figure 1. Spherical deep water scattering solution for the inertia coefficient, 
cm, after Havelock (1954), where k is the wave number = 2ir/wave length; 
D is the sphere diameter. 

Experiment 

The horizontal component of the wave load was measured for polished 
spheres of 10 cm and 20 cm diameters subjected individually to discrete freq- 
uency waves of 0.2, 0.4, 0.6 and 0.75 Hz and heights of 5, 10, 15, and 20 cm, 
for a total of 32 separate experiments in the 2.5 meter wide wind and wave 
channel in the Scripps Institution Hydraulics Laboratory. The spheres were 
situated at mid-depth in 154 cm of water. This choice of experimental para- 
meters limited the investigation to be consistent with the previously stated 
assumptions and regimes of interest by insuring negligible Froude wave effects 
(0.012 < Fr < 0.11), orbital motion, (0.24 < vt^u^ <  0.93), and thorough cov- 
erage of the regime of small amplitude motion up to the onset of separation 
(0.053 < d0/D < 3.5). The study however was limited to examination of the 
small body limit (0.017 < kD/2 < 0.216) due to the problem of cross channel 
waves when attempting to generate waves which are shorter than the sphere dia- 
meter in a channel which must necessarily be significantly wider than D. 

The measured horizontal force, F, was resolved in the frequency domain 
into the drag and inertia components of the Morison estimator, F, by a harmon- 
ic analysis technique adapted^from Seymour (1974), involving minimizing the 
mean squared error in <(F - F)2> where 

F = °iuJuJ + C2U„ 

:fAo 
z    mo 

<(F - F)2> = <F2> + Ci <(u lu |)2> + 2c,c, <u lu lii > + c2<u2> - 2cx<Fu lu |> v ' -1 *     00 I      00 '   ' i      ^ Co'      CO1      CO <£ CO X 00 I       CO I 

2c2<Fii 



cf = 

c
m   = 

8 
C^» u„, 1     co ' 

PTTD
Z 

6 

PTTD
3 

Su  |u  | 
00 1      CO ' 

-   = 

6      Cc F, x 

Su PTTD
3
  0

2
SX 

LINEAR PROGRESSIVE WAVES 2417 

If the incident waves are linear, then 

< u lu lii > = 0 
CO I   00 '   CO 

Expressing the covariance and variance in terms of the cospectral and spectral 
estimates, <xy> = Cx y and <x2> = Sx, and taking 3/3c-j<(F - F)2> = 0, solv- 
ing for c! and c2 gives 

and 

To arrive at Cf and cm using this scheme each individual experiment 
was repeated four times during which time histories of horizontal force and 
free surface elevation were sampled and stored on magnetic tape using an IBM 
1130 computer system. As much frequency resolution as possible was desirable. 
However, a limit of 2048 samples per record was imposed by the 1130 system and 
a need for as many samples per wave cycle as possible to adequately define the 
wave profiles led to the compromise of sampling at 20 Hz to allow each run a 
duration of 102.4 sec and a frequency resolution of 0.0097 Hz. After trans- 
forming these time series using Fast Fourier transform routines, the Fourier 
coefficients for the horizontal particle position required to construct Sx 
and CF,X were obtained from those of the free surface through phase shifting 
IT/2 by'reversing the cosine and sine coefficients, changing the sign of the 
cosine coefficient and then multiplying by 

cosh k(h - b) 
sinh kh 

after linear theory. The Fourier coefficients for u^u^l were obtained by 
taking derivatives (slopes) of the free surface time series, squaring, and 
then transforming to the frequency domain. The resulting Fourier pairs repre- 
senting the square of the vertical velocity at the free surface were then phase 
shifted by TT/2 as before and attenuated to the depth of submergence as; 

cosh k(h - b)]2 

sinh kh   J 

The drag and inertia coefficients realized in this way from the principle freq- 
uency band of each run were then averaged among the set of quadruplicate runs 
comprising each separate experiment. 

Because this method relies heavily on the average time dependence of 
Um being zero, care was taken to minimize seiching and reflection in the wave 
channel by submerging a tethered floating breakwater at the beach end. In 
addition, only wave forms of small steepness were used, with 0.008 < e < 0.22. 
To minimize generation of a free second harmonic due to the paddle motion, the 
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paddle throw was adjusted to a flapper mode for the deep water waves and to a 
semi-piston/flapper mode for the intermediate water waves. 

Results of the Force Experiment 

An example of the grouped spectra of horizontal force and the free 
surface when unseparated local flow persists is found in Figure 2, using a 10 
cm sphere under a 0.75 Hz, 20 cm wave. The linear character of the incident 
waves is evidenced by the negligible energy appearing at harmonics above the 
driving frequency. The second harmonic in the force spectra is two orders of 
magnitude below the peak at the driving frequency where a phase difference of 
ir/2 with the free surface is seen, indicating the predominance of the inertia 
force. 
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Figure 2. Grouped spectra of the free surface and horizontal force for unsep- 
arated orbital motion. 

Flow visualization using dye injection from three parts embedded in 
the spheres at 90° increments around the horizontal equator demonstrated as in 
Figures 3-5 that the local flow is both laminar and unseparated for nd0/D < 3.2. 
Surprisingly, the dye streaks from the forward and aft ports produced by several 
cycles of motion show in Figures 3 and 4 a steady streaming close to the sur- 
face of the sphere, superposed on the local particle motion, causing a circula- 
tion around the vertical equator in the sense of rotation of the orbital motion, 
despite the linear character of the incident waves. Similarly, dye released 
from the side port in Figure 5 circulates in multiple cycles as laminar stream- 
ing around latitudinal belts in the vertical plane. As Trd0/D exceeded 3.2 
and the orbits became increasingly flattened the circulation became turbulent 
as seen in Figure 6, in response to adverse pressure gradients imposed by the 
wave field prior to each flow reversal. By -ndp/D = 7 the onset of separation 
was observed when portions of the dye plume would break away from the sphere 
at the moment of reversal of the local flow, disrupting the turbulent circula- 
tion. 
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Figure 3. Dye streak produced by two cycles of motion showing circulation 
proceeding over the top of the sphere at wd0/D = 3.2. Waves progressing 
from left to right. 

Figure 4. Circulation carries dye 6 cm in two cycles from rear port towards 
the underside of the sphere at ird0/D = 0.32. Waves progressing from left 
to right. 
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Figure 5. Dye spreading in a spiral from the side port towards the vertical 
equator at wd0/D =1.1. Waves progressing from left to right. 

Figure 6. Turbulent circulation carrying dye plume from the rear port around 
the bottom of the sphere for 7id0/D = 4.0. 
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The drag coefficients measured in this investigation were found to vary system- 
atically with the Keulegan-Carpenter form of the Strouhal number as shown in 
Figure 7. For ird0/D < 3.2, the sizes of the drag coefficients were typical 
of those for unseparated steady unidirectional flow around a sphere at low 
Reynolds number (0.6 < R < 25). In.the range 3.2 < ird0/D < 7 where turbu- 
lent circulation was observed, Cf was found to be comparable to values 
measured for steady unidirectional flow when closed streamlines behind a sep- 
aration bubble are found for 25 < R < 150. Indeed the turbulent circulation 
may evolve as a separation bubble formed near flow reversal and then convected 
around the sphere under the influence of orbital motion. When ird0/D > 9 and 
the onset of separation is clearly developed the values of Cf measured here 
are found to compare in size with those reported for a sphere in steady trans- 
lation with fully separated flow and open-ended streamlines at about R = 104. 
The range of Reynolds numbers covered in this study was from 0.5 x 10^ to 
4 x 10^, based on the amplitude of the horizontal velocity component. 
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Figure 7. Measured drag coefficients, Cf, against the inverse of the Strouhal 
number, umT/D = ird0/D, where um is the maximum horizontal particle 
velocity in the undisturbed wave; T is the wave period and d0 is the 
orbital diameter. 

The measured inertia coefficients, cm, Figure 8, defy explanation in 
terms of the results of the scattering problem. To find the values all less 
than unity is particularly surprising, and, since the sphere is so small in 
relation to the incident wave length, the pressure of the undisturbed wave 
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alone should result in an inertia coefficient of unity. Any scattering of the 
incident wave would add to this. The circulation, which could not be generated 
in the absence of viscosity for simple harmonic motions appears to be the only 
physical explanation for these values. 
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Figure 8. Measured inertia coefficients, cm, against kD/2. 

Circulation Streaming 

Nonlinear free-surface effects as considered in Kim (1969) for a sub- 
merged sphere do not appear a likely mechanism for generating the circulation 
observed in this study due to the remoteness of the sphere from the free sur- 
face (3.8 D < b < 7.7 D) and the small size of the sphere with respect to the 
incident wave length. Furthermore, the streaming appears most intense near 
the surface of the sphere. Therefore, the boundary layer does seem a likely 
mechanism. 

Schlichting (1966) has treated the problem of steady streaming as 
developed by a circular cylinder executing small amplitude oscillations in 
still water. Photographic evidence of similar streaming near a cylinder due 
to acoustic waves in air may be found in a paper by Holtsmark, et al (1954). 
However, the streaming developed by these in-line oscillatory flows does not 
result in a net circulation because the streaming flows away from the cylinder 
along the axis in line with the oscillations, and towards it at locations 
transverse to these oscillations. 

Streaming over a flat bottom under the orbital motion of progressive 
waves, "bottom wind", has been treated in Longuet-Higgins (1953) and shown to 
be a consequence of the retarding influence of the boundary layer being greater 
for that portion of the orbit in closest proximity to the wall. Consider, 
then, in Figure 9, the solid path lines of deformed, closed orbits in the 
vicinity of a submerged sphere under linear inviscid, irrotational waves when 
kD/2 « 1. There is negligible decay in the amplitude of the motion vertically 
over one sphere diameter, and no net time independent motions result. But 
if viscosity and the formation of boundary layers is allowed in the model, 
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then the orbits can no longer remain closed and a "bottom wind" results around 
the sphere to give rise to a time independent circulation in the sense of 
rotation of the orbital motion. Considerably more vigorous streaming may be 
realized around a sphere than over a flat bottom, because in diffracting around 
the sphere the local velocities and orbital diameters are increased relative 
to those in the undisturbed field, with diffraction velocities approaching 
3/2 Uoo for kD/2 « 1. 

Figure 9. "Bottom wind" around a sphere as a mechanism for circulation 
streaming. 

The streaming velocities around the vertical equator were estimated 
for each wave condition in the force experiments by measuring the progress of 
the leading edge of a dye streak for an integral number of wave cycles. The 
dye was released from the rear port from where it proceeded around the bottom 
of the sphere and was thus not perturbed by the small diameter sting used to 
support the sphere from the surface. The circumferential streaming velocity 
<ue>, was found to be almost linear with (doW^/itD) as shown in Figure 10. At 
large values of (doW^/TrD) the streaming was more difficult to measure due to 
turbulence, but tended to decay and then quickly degenerate with the onset of 
separation. These results demonstrate that for a given wave height the cir- 
culation will be most intense for a deep water wave and diminishes as the wave 
becomes shallow water in character, and cease altogether once the motion is 
merely back-and-forth, assuming separation has not yet set in. 

With such a circulation added to the diffracting velocity field, the 
action of fluid inertia must result in a force historically termed as lift, 
F4, which acts normally to the instantaneous far field velocity and will 
therefore rotate through 2w in a wave cycle. Because the circulation is in 
the sense of rotation of the orbital motion, and because the phase of the 
inertia force lags the wave profile in space by a constant IT/2 when 
kD/2 << 1, the lift opposes the inertia force at any given wave phase as 
illustrated schematically in Figure 11. Because the streaming is generated at 
the top of the ac boundary layer, 0(v/a)i, it is assumed that the Kutta- 
Joukowski theorem is appropriate to estimate rms values of the horizontal 
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component of lift. This presuposes that the streaming velocity <ue>, decays 
as (1/r) and this has not yet been verified. In addition, the circulation 
distribution from the vertical equator to the sides transverse to the waves 
must be specified. The expanding spiral shaped dye streak issued from the 
side port in Figure 5 show that the streaming diminishes towards the sides 
of the sphere. If an assumption of solid body rotation is applied to the 
region within the vortex tube which results from the circulation around the 
vertical equator, then the streaming velocity <u9>, decays from the vertical 
equator to zero at the sides as cosu. The rms value of the horizontal com- 
ponent of lift can then be estimated from only knowing the streaming around 
the vertical equator, <u9> and from w„ by 

rms 3 P1,D2  <ue <wJrms 

where the vertical motion gives rise to the horizontal component of lift. 
Because the horizontal component of FA opposes the horizontal component of 
the inertia force, its rms values can be normalized by pv0(u„)rms and then 
added to the measured values of, cm in Figure 6, thereby subtracting the 
viscous effects due to circulation to give apparent inviscid values for the 
inertia coefficient plotted in Figure 12. Many of these values are comparable 
in size with the expectations of the scattering solution. However, due to the 
approximations in computing F»   these are presented here only to illustrate 
that the circulation can augment the inertia force at least to an extent that 
can account for the very small values of cm measured in this study. 
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Figure 10. Streaming velocities <ue>, measured around the vertical equator of 
the sphere against (d0 w^/irD) where wro is the amplitude of the vertical 
particle velocity in the undisturbed wave. Velocities are expressed in units 
of cm/sec. 
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Figure 11. Phase relationships between drag, Ff , the inertia force, Fm, and 
lift, Fj,, relative to the wave profile when a circulation, r, in the sense 
of the orbital motion is present. 
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Figure 12. Apparent inviscid inertia coefficients, cm, obtained by correcting 
measured values of cm for the horizontal component of lift. 
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Conclusions 

Even when the gross viscous effects associated with separation are 
avoided, the smaller viscous effects which prevail in unseparated orbital 
motion and give rise to circulation streaming are sufficiently important to 
render potential theory as a rather poor description of the problem of forces 
induced by linear progressive waves. Because the circulation phenomena can- 
not be accounted for by in-line oscillatory flow, such studies are inappropriate 
to the design of circular members which exceed the amplitudes of the motions 
under deep and intermediate water waves. 

Symbols 
c 

A        solid harmonic coefficient n 

A        frontal area of a sphere = ?rD2/4 

b        depth of submergence 

c        added mass coefficient a 

cf drag coefficient = constant in the time domain 

c inertia coefficient = constant in the time domain 

C cospectral estimate 

D sphere diameter 

d orbital diameter in the undisturbed wave 

Ff drag force 

F lift force 

F„       inertia force m 
F Froude number = uj/gb 

F Mori son estimator 

g acceleration of gravity 

H wave height 

h water depth 

J  ,/?   Bessel function of the first kind and half odd integral order 
n  '    with argument = kD/2 

k        wave number 

n.       direction cosine 
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pS Legendre function of order < n = cos 6 

r radial coordinate 

R Reynolds number 

s order 

S spherical surface area 

Sx spectral estimate 

t time variable 

Vo volume of the sphere = TTD
3
/6 

um horizontal particle velocity in the undisturbed wave = a^/ax 
at the depth of submergence of the sphere 

u        horizontal particle acceleration in the undisturbed wave at the 
depth of submergence of the sphere 

u.        circumferential velocity component 

V        volume of the sphere = irD3/6 

w^       vertical particle velocity in the undisturbed wave, = a^/^z 
at the depth of submergence of the sphere 

x, y, z    Cartesian coordinates with the x-axis in the direction of wave 
advance, the y-axis transversely, and the z-axis positive upwards 

r        circulation 

e        wave steepness = kH/2 

$        local velocity potential = ^ + <t> 

<j>        velocity potential of the undisturbed incident deep water waves 
= (Ha/2k) exp(kz) sin(kx - at) 

rs 
velocity potential of the scattered wave 

p fluid density 

a radian frequency = 2ir/wave period 

e angular coordinate in the xz plane 

u angular coordinate in the xy plane 

| | absolute value 

< > time average 
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