EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 2, 2023, 1068-1083
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Forcing 2-Metric Dimension in the Join and Corona of Graphs

Dennis B. Managbanag ${ }^{1, *}$, Helen M. Rara ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra, and Analysis-Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

This study deals with the forcing subsets of 2-metric basis in graphs. Some main results generated in this study include the characterization of a 2-metric basis in graphs and the characterization of the forcing subsets of these 2-metric bases. These characterizations are used to determine values for the forcing 2 -metric dimension of graphs resulting from some binary operations such as the join and corona of graphs.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: 2-resolving set, 2-metric basis, 2-metric dimension, forcing subsets, forcing number, join, corona

1. Introduction

Metric dimension and resolving sets, concepts initially drafted for the metric spaces introduced by Blumenthal [3] in 1953. Since then, the notion of metric dimension has been broadened to encompass both metric and geometric spaces [2, 7]. Nearly 20 years after in 1976, Harary, Melter [5] and Slater [11, 12] each separatedly discovered the idea of resolving set.

In 2019, Bailey and Yero [1] demonstrated the construction of error-correcting codes out of graphs using k-resolving sets and provided a decoding algorithm that used covering designs. A study on the idea of the k-resolving set, also known as "On 2-resolving sets in the join and corona of graphs" was published by J. Cabaro and H. Rara [4] in 2021.

The concept of forcing numbers, which was established in 1987 as a result of Klein and Randic's introduction of the study of molecular resonance structure, is another intriguing topic that has drawn the interest of several researchers [8]. Consequently, in 1991,

[^0]Harary et. al [6] coined the term "forcing number" and presented the idea of forcing as a perfect match. In 1999, Chartrand et. al [13] initiated the investigation on the relation between forcing and dimension of a graph. The notions of a 2-resolving set and the forcing dimension of a graph serve as the inspiration for this work. We believe that this study will be tremendously beneficial to someone who is familiar with the theory of the metric dimension. The findings of this work amplified previously-revealed notions to obtain new applications in graph-to-code theory, much like the idea of a 2-resolving set, by developing a novel method for producing error-correcting codes out of graphs.

2. Terminology and Notation

In this study, we only consider graphs that are finite, simple, undirected and connected. Readers are referred to $[1,4,9,10]$ for elementary Graph Theoretic concepts.

Let G be a connected graph of order n. For an ordered set of vertices $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\} \subseteq V(G)$ and a vertex v in G, we refer to the k-vector (ordered k-tuple) $r_{G}(v / W)=\left(d_{G}\left(v, w_{1}\right), d_{G}\left(v, w_{2}\right), \ldots, d_{G}\left(v, w_{k}\right)\right)$ as the (metric) representation of v with respect to W.

An ordered set of vertices $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ is a k-resolving set for G if, for any distinct vertices $u, v \in V(G)$, the (metric) representations $r_{G}(u / W)$ and $r_{G}(v / W)$ of u and v, respectively differ in at least k positions. If $k=1$, then the k-resolving set is called a resolving set for G. If $k=2$, then the k-resolving set is called a 2-resolving set for G.

The least size of a 2-resolving set is called a 2 -metric dimension of G and we denote it by $\operatorname{dim}_{2}(G)$. A resolving set of size $\operatorname{dim}_{2}(G)$ is called a 2-metric basis for G.

Let G be any nontrivial connected graph and $S \subseteq V(G)$. A set $S \subseteq V(G)$ is 2-locating set of G if it satisfies the following conditions: (i) |[($\left.\left.N_{G}(x) \backslash N_{G}(y)\right) \cap S\right]$ $\cup\left[\left(N_{G}(y) \backslash N_{G}(x)\right) \cap S\right] \mid \geq 2$, for all $x, y \in V(G) \backslash S$ with $x \neq y$ and (ii) $\left(N_{G}(v) \backslash N_{G}(w)\right)$ $\cap S \neq \varnothing$ or $\left(N_{G}(w) \backslash N_{G}[v]\right) \cap S \neq \varnothing$ for all $v \in S$ and for all $w \in V(G) \backslash S$. The 2-locating number of G, denoted by $n_{2}(G)$, is the smallest cardinality of a 2-locating set of G. A 2-locating set of G of cardinality $\ln _{2}(G)$ is referred to as an $l n_{2}$-set of G.

Let G be any nontrivial connected graph and $S \subseteq V(G)$. S is a (2,2)-locating (respectively (2,1)-locating) set in G if S is a 2-locating and $\left|N_{G}(y) \cap S\right|$ $\leq|S|-2\left(\left|N_{G}(y) \cap S\right| \leq|S|-1\right.$, respectively), for all $y \in V(G)$. The (2,2)-locating (respectively (2,1)-locating) number of G, denoted by $\ln _{(2,2)}(G)$ (respectively $\ln _{(2,1)}(G)$), is the smallest cardinality of a (2,2)-locating (respectively (2,1)-locating) set in G. A $(2,2)$-locating (respectively (2,1)-locating) set in G of cardinality $\ln _{(2,2)}(G)$ (respectively $\ln (2,1)(G))$ is referred to as an $\ln (2,2)$-set (respectively $\ln _{(2,1)}$-set) in G.

Let W be a 2-metric basis of a graph G. A subset S of W is said to be a forcing subset for W if W is the unique 2-metric basis containing S. The forcing 2-metric dimension of W is given by $f \operatorname{dim}_{2}(W)=\min \{|S|: S$ is a forcing subset for $W\}$. The forcing 2-metric dimension of G is given by
$f \operatorname{dim}_{2}(G)=\min \left\{\operatorname{fdim}_{2}(W): W\right.$ is a 2-metric basis for $\left.G\right\}$.
Let W be an $l n_{2}$-set of a graph G. A subset S of W is said to be a forcing subset for
W if W is the unique $l n_{2}$-set containing S. The forcing 2-locating number of W is given by $f \ln _{2}(W)=\min \{|S|: S$ is a forcing subset for $W\}$. The forcing 2-locating number of G is given by

$$
f \ln _{2}(G)=\min \left\{f \ln _{2}(W): W \text { is a } \ln _{2} \text {-set of } G\right\}
$$

Let W be an $\ln _{(2,2)}$-set of a graph G. A subset S of W is said to be a forcing subset for W if W is the unique $\ln _{(2,2)}$-set containing S. The forcing $(2,2)$-locating number of W is given by $f \ln _{(2,2)}(W)=\min \{|S|: S$ is a forcing subset for $W\}$. The forcing $(2,2)$-locating number of G is given by

$$
\ln _{(2,2)}(G)=\min \left\{\ln _{(2,2)}(W): W \text { is a } \ln _{(2,2)^{-}} \text {-set of } G\right\} .
$$

3. Known Results

The following known results are taken from [4].
Remark 1. For any connected nontrivial graph G of order $n \geq 2,2 \leq \ln _{2}(G) \leq n$. Moreover, $\ln _{2}\left(K_{n}\right)=n$, for $n \geq 2$.

Theorem 1. Let G be a connected nontrivial graph. Then $\ln _{2}(G)=2$ if and only if $G \cong P_{2}$ or $G \cong P_{3}$.

Proposition 1. $\operatorname{dim}_{2}(G)=2$ if and only if $G \cong P_{n}, n \geq 2$.
Example 1. Let n be a positive integer. Then P_{n} and C_{n}

$$
\begin{aligned}
& \ln _{2}\left(P_{n}\right)= \begin{cases}\frac{n}{2}+1, & \text { if } n \geq 2 \text { and } n \text { is even }, \\
\frac{n+1}{2}, & \text { if } n \geq 3 \text { and } n \text { is odd, and }\end{cases} \\
& \ln _{2}\left(C_{n}\right)= \begin{cases}\frac{n}{2}, & \text { if } n \geq 6 \text { and } n \text { is even } \\
\frac{n+1}{2}, & \text { if } n \geq 5 \text { and } n \text { is odd. }\end{cases}
\end{aligned}
$$

Example 2. The formulas below give the (2,2)-locating number of the path P_{n} and cycle C_{n}.

$$
\begin{aligned}
\ln _{(2,2)}\left(P_{n}\right)= & \begin{cases}4, & \text { if } n=5, \\
\frac{n}{2}+1, & \text { if } n \geq 6 \text { and } n \text { is even, } \\
\frac{n+1}{2}, & \text { if } n \geq 7 \text { and } n \text { is odd, and }\end{cases} \\
\ln _{(2,2)}\left(C_{n}\right) & = \begin{cases}\frac{n}{2}, & \text { if } n \geq 8 \text { and } n \text { is even, } \\
\frac{n+1}{2}, & \text { if } n \geq 7 \text { and } n \text { is odd. }\end{cases}
\end{aligned}
$$

Theorem 2. Let G be a connected graph of order greater than 3 and let $K_{1}=\langle v\rangle$. Then $S \subseteq V\left(K_{1}+G\right)$ is a 2-resolving set of $K_{1}+G$ if and only if either $v \notin S$ and S is a (2,2)-locating set in G or $S=\{v\} \cup T$ is (2,1)-locating set in G.

Theorem 3. Let G and H be nontrivial connected graphs. A proper subset S of $V(G+H)$ is a 2-resolving set in $G+H$ if and only if $S_{G}=V(G) \cap S$ and $S_{H}=V(H) \cap S$ are 2-locating sets in G and H, respectively, where S_{G} or S_{H} is (2,2)-locating set or S_{G} and S_{H} are (2,1)-locating sets.

Theorem 4. Let G and H be nontrivial connected graphs. A set $S \subseteq V(G \circ H)$ is a 2-resolving set of $G \circ H$ if and only if $S=A \cup B$, where $A \subseteq V(G)$ and $B=\bigcup\left\{S_{v}: S_{v}\right.$ is a 2-resolving set of H^{v}, for all $\left.v \in V(G)\right\}$.

Remark 2. Let G and H be non-trivial connected graphs, $C \subseteq V(G \circ H)$ and $S_{v}=V\left(H^{v}\right) \cap C$ where $v \in V(G)$. For each $x \in V\left(H^{v}\right) \backslash S_{v}$ and $z \in S_{v}$,

$$
d_{G \circ H}(x, z)= \begin{cases}1, & \text { if } z \in N_{H^{v}}(x), \\ 2, & \text { otherwise } .\end{cases}
$$

4. Forcing 2-Metric Dimension of Some Special Graphs

Remark 3. Let G be a nontrivial connected graph. Then

$$
0 \leq f \operatorname{dim}_{2}(G) \leq \operatorname{dim}_{2}(G) .
$$

Remark 4. Let G be a connected graph. Then
(i) $f \operatorname{dim}_{2}(G)=0$ if and only if G has a unique 2-metric basis, and
(ii) $\operatorname{fim}_{2}(G)=1$ if and only if G has at least two 2-metric bases, one of which, say B, that contains an element not in any 2 -metric basis for G.

Theorem 5. Let G be a connected graph. Then $f \operatorname{dim}_{2}(G)=\operatorname{dim}_{2}(G)$ if and only if for all 2-metric basis D for G and for each $u \in D$, there exists $v_{u} \in V(G) \backslash D$ such that $[D \backslash\{u\}] \cup\left\{v_{u}\right\}$ is a 2 -metric basis for G.

Proof: Suppose that $\operatorname{fdim}_{2}(G)=\operatorname{dim}_{2}(G)$. Let D be a 2 -metric basis for G such that $\operatorname{dim}_{2}(G)=|D|=\operatorname{dim}_{2}(G)$, that is, D is the only forcing subset for itself. Let $u \in D$. Since $D \backslash\{u\}$ is not a forcing subset for D, there exists a $v_{u} \in V(G) \backslash D$ such that $[D \backslash\{u\}] \cup\left\{v_{u}\right\}$ is a 2 -metric basis for G.

Conversely, suppose that every 2-metric basis for G satisfies the given condition. Let D be a 2 -metric basis for G such that $\operatorname{fim}_{2}(G)=f \operatorname{dim}_{2}(D)$. Suppose further that D has a forcing subset J with $|J|<|D|$, that is, $D=J \cup K$ where $K=\{w \in B: w \notin J\}$. Pick $w \in K$. By assumption, there exists $v_{w} \in V(G) \backslash D$ such that $[D \backslash\{w\}] \cup\left\{v_{w}\right\}=T$ is a 2-metric basis for G. Hence, $T=J \cup M$, where $M=[K \backslash\{w\}] \cup\left\{v_{w}\right\}$, is a 2-metric basis containing J, a contradiction. Hence, D is the only forcing subset for D. Therefore, $f \operatorname{dim}_{2}(G)=\operatorname{dim}_{2}(G)$.

Proposition 2. For any complete graph K_{n} with $n \geq 1$ vertices,

$$
\operatorname{fdim}_{2}\left(K_{n}\right)=0 .
$$

Proof: By definition of $K_{n}, V\left(K_{n}\right)$ is the only minimum 2-resolving set for K_{n}. By Remark 4 (i), $\operatorname{fdim}_{2}\left(K_{n}\right)=0$.

Proposition 3. For any path P_{n} with $n \geq 2$ vertices,

$$
\operatorname{fdim}_{2}\left(P_{n}\right)=0 .
$$

Proof: Suppose that $P_{n}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$. By Proposition 1, $\operatorname{dim}_{2}\left(P_{n}\right)=2$ for all $n \geq 2$. We claim that $S=\left\{v_{1}, v_{n}\right\}$ is the unique 2 -metric basis of P_{n}. Suppose $S^{\prime}=\left\{v_{i}, v_{j}\right\}$ where $1 \leq i<j \leq n$ and $S^{\prime} \neq S$. Consider the following cases:
Case 1. Suppose $i=1$.
If $j=2$, then $r_{P_{n}}\left(v_{1} / S^{\prime}\right)=(0,1)$ and $r_{P_{n}}\left(v_{3} / S^{\prime}\right)=(2,1)$. If $2<j<n$, then $r_{P_{n}}\left(v_{j-1} / S^{\prime}\right)=(j-2,1)$ and $r_{P_{n}}\left(v_{j+1} / S^{\prime}\right)=(j, 1)$.
Case 2. Suppose $1<i<j<n$.
If $j=i+1$, then $r_{P_{n}}\left(v_{i} / S^{\prime}\right)=(0,1), r_{P_{n}}\left(v_{j+1} / S^{\prime}\right)=(2,1), r_{P_{n}}\left(v_{i-1} / S^{\prime}\right)=(1,2)$, and $r_{P_{n}}\left(v_{j} / S^{\prime}\right)=(1,0)$. If $j>i+1$, then $r_{P_{n}}\left(v_{i-1} / S^{\prime}\right)=(1, j-i+1)$ and $r_{P_{n}}\left(v_{i+1} / S^{\prime}\right)=(1, j-i-1)$.

By Cases 1 and 2, S^{\prime} is not a 2-resolving set for P_{n}. Thus, S is unique. Hence, by Remark 4 (i), $\operatorname{fdim}_{2}\left(P_{n}\right)=0$ for all $n \geq 4$. Therefore, $\operatorname{fdim}_{2}\left(P_{n}\right)=0$ for all $n \geq 2$ vertices.

Proposition 4. For any cycle C_{n} with $n \geq 3$ vertices,

$$
\operatorname{fdim}_{2}\left(C_{n}\right)= \begin{cases}0, & \text { if } n=3,4 \\ 3, & \text { if } n \geq 5\end{cases}
$$

Proof: Suppose that $C_{n}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$. If $n=3$ or 4, then $V\left(C_{n}\right)$ is the only 2 -resolving set for C_{n}. By Remark 4 (i), $f \operatorname{dim}_{2}\left(C_{n}\right)=0$. Let $n \geq 5$. By Proposition $1, \operatorname{dim}_{2}\left(C_{n}\right)>2$. Since $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a 2 -resolving set for $C_{n}, \operatorname{dim}_{2}\left(C_{n}\right)=3$. Let $S=\left\{u_{a}, u_{b}, u_{c}\right\}$ be a 2 -metric basis for C_{n}. Hence, for all 2-metric basis S for C_{n} and for each $u_{k} \in S$, there exists $u_{l} \in V\left(C_{n}\right) \backslash S$ such that $\left(S \backslash\left\{u_{k}\right\}\right) \cup\left\{u_{l}\right\}$ is a 2-metric basis for C_{n}. By Theorem 5, $\operatorname{fdim}_{2}\left(C_{n}\right)=\operatorname{dim}_{2}\left(C_{n}\right)=3$.

5. Forcing 2-Locating and (2,2)-Locating Numbers of Some Special Graphs

Remark 5. Let G be a connected graph. Then
(i) $f \ln _{2}(G)=0$ if and only if G has a unique $l n_{2}$-set, and
(ii) $f \ln _{2}(G)=1$ if and only if G has at least two $l n_{2}$-sets, one of which, say B, that contains an element not in any $l n_{2}$-sets of G.

Theorem 6. Let G be a connected graph. Then $f \ln _{2}(G)=\ln _{2}(G)$ if and only if for all $l n_{2}$-set S of G and for each $u \in S$, there exists $v_{u} \in V(G) \backslash S$ such that $[S \backslash\{u\}] \cup\left\{v_{u}\right\}$ is a 2-locating set of G.

Proof: Suppose that $f \ln _{2}(G)=\ln _{2}(G)$. Let S be an $\ln _{2}$-set of G such that $f l n_{2}(G)=|S|=\ln (G)$, that is, S is the only forcing subset for itself. Let $u \in S$. Since $S \backslash\{u\}$ is not a forcing subset for S, there exists a $v_{u} \in V(G) \backslash S$ such that $[S \backslash\{u\}] \cup\left\{v_{u}\right\}$ is an $l n_{2}$-set of G.

Conversely, suppose that every $l n_{2}$-set of G satisfies the given condition. Let S be a 2-locating set of G such that $f \ln _{2}(G)=f \ln _{2}(S)$. Suppose further that S has a forcing subset H with $|H|<|S|$, that is, $S=H \cup I$ where $I=\{w \in S: w \notin H\}$. Pick $w \in I$. By assumption, there exists $v_{w} \in V(G) \backslash S$ such that $[S \backslash\{w\}] \cup\left\{v_{w}\right\}=J$ is an $l n_{2}$-set of G. Hence, $J=H \cup T$, where $T=[I \backslash\{w\}] \cup\left\{v_{w}\right\}$, is an $l n_{2}$-set containing H, a contradiction. Hence, S is the only forcing subset for S. Therefore, $f \ln _{2}(G)=\ln _{2}(G)$.

Proposition 5. For any complete graph K_{n} with $n>1$ vertices,

$$
f \ln _{2}\left(K_{n}\right)=0 .
$$

Proof: By Remark 1, $V\left(K_{n}\right)$ is the only $\ln _{2}$-set of K_{n}. By Remark 5 (i), $f \ln _{2}\left(K_{n}\right)=0$.

Remark 6. Let S be a 2 -locating set of $P_{n}=\left[u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}\right]$ where $n \geq 2$. Then
(i) $\left\{u_{1}, u_{2}\right\} \cap S \neq \varnothing$.
(ii) $\left\{u_{n-1}, u_{n}\right\} \cap S \neq \varnothing$.
(iii) $\left\{u_{i}, u_{i+1}, u_{i+2}\right\} \cap S \neq \varnothing$ where $1 \leq i<n$.

Proposition 6. For any path P_{n} with $n \geq 2$ vertices,

$$
f \ln _{2}\left(P_{n}\right)= \begin{cases}0, & \text { if } n=2,3 \text { and } n \geq 7 \text { is odd, } \\ 1, & \text { if } n=5 \\ 2, & \text { if } n \geq 6 \text { is even } \\ 3, & \text { if } n=4\end{cases}
$$

Proof: Suppose that $P_{n}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$. By Theorem 1, if $n=2$, then $V\left(P_{2}\right)$ is the only $l n_{2}$-set of P_{2} and if $n=3$, then $M=\left\{u_{1}, u_{3}\right\}$ is the only $l n_{2}$-set of P_{3}. Thus, by Remark 5 (i), $f \ln _{2}\left(P_{2}\right)=f l n_{2}\left(P_{3}\right)=0$. Suppose that $n=5$. By Example $1, \ln _{2}\left(P_{5}\right)=3$. Then by Remark 6, the $\ln _{2}$-sets of P_{5} are $N_{1}=\left\{u_{1}, u_{3}, u_{5}\right\}$ and $N_{2}=\left\{u_{2}, u_{3}, u_{4}\right\}$ with $u_{1} \in N_{1}$ and $u_{1} \notin N_{2}$. Thus, by Remark 5 (ii), $f \ln _{2}\left(N_{1}\right)=1=f l n_{2}\left(P_{5}\right)$. If $n=4$, then by Remark $6, R_{1}=\left\{u_{1}, u_{2}, u_{4}\right\}, R_{2}=\left\{u_{1}, u_{3}, u_{4}\right\}, R_{3}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $R_{4}=\left\{u_{2}, u_{3}, u_{4}\right\}$ are the $l n_{2}$-sets of P_{4}. Clearly, none of the singletons and doubletons is a forcing subset for an $l n_{2}$-set. Thus, $f l n_{2}\left(P_{4}\right)=3$. Suppose that $n=6$. By Remark 6, the $l n_{2}$-sets of P_{6} are

$$
S_{1}=\left\{u_{1}, u_{2}, u_{4}, u_{6}\right\},
$$

$$
\begin{aligned}
S_{2} & =\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\}, \\
S_{3} & =\left\{u_{1}, u_{3}, u_{4}, u_{6}\right\}, \\
S_{4} & =\left\{u_{1}, u_{3}, u_{5}, u_{6}\right\}, \\
S_{5} & =\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\} \text { and } \\
S_{6} & =\left\{u_{2}, u_{3}, u_{4}, u_{6}\right\} .
\end{aligned}
$$

It can be verified that $\left\{u_{1}, u_{2}\right\}$ is the forcing subset of S_{1} and the minimum forcing subset of P_{6}. Thus, $f \ln _{2}\left(P_{6}\right)=2$. Next, suppose that $n \geq 7$ and n is odd. By Remark $6, T=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{n-2}, u_{n}\right\}$ is the only $\ln _{2}$-set of P_{n}. Thus, $f \ln _{2}(T)=f \ln _{2}\left(P_{n}\right)=0$, by Remark 5 (i).

Now, suppose that $n \geq 8$ and n is even. Then the n_{2}-sets of P_{n} are

$$
\begin{aligned}
& M_{1}=\left\{u_{1}, u_{2}, u_{4}, \ldots, u_{n-2}, u_{n}\right\}, \\
& M_{2}=\left\{u_{1}, u_{3}, u_{4}, \ldots, u_{n-2}, u_{n}\right\}, \\
& M_{3}=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{n-2}, u_{n-1}\right\}, \\
& M_{4}=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{n-2}, u_{n}\right\}, \\
& M_{5}=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}, u_{n}\right\} \text { and } \\
& M_{6}=\left\{u_{2}, u_{3}, u_{4}, \ldots, u_{n-2}, u_{n}\right\}
\end{aligned}
$$

by Remark 6 . Since $\left\{u_{2}, u_{3}\right\} \subseteq M_{6}$ and not contained in any other $\ln _{2}$-sets of $P_{n},\left\{u_{2}, u_{3}\right\}$ is the forcing subset of M_{6} and the minimum forcing subset of P_{n}. Hence, $f \ln _{2}\left(P_{n}\right)=2$.

Remark 7. Let W be a 2-locating set of $C_{n}=\left[v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right]$ where $n \geq 3$. Then
(i) $S \cap W \neq \varnothing$ for all $S \subseteq V\left(C_{n}\right)$ with $\langle S\rangle=P_{3}$.
(ii) If $v_{j}, v_{j+1} \in W$, then $v_{j+3}, v_{j+5}, \ldots, v_{j-2} \in W$ where $1 \leq j \leq n$ and $n+k \equiv k$ $(\bmod n)$ for any positive integer k.

Proposition 7. For any cycle C_{n} with $n \geq 3$ vertices,

$$
f l n_{2}\left(C_{n}\right)= \begin{cases}0, & \text { if } n=3,4 \\ 1, & \text { if } n \geq 6 \text { is even, } \\ 2, & \text { if } n \geq 7 \text { is odd, } \\ 3, & \text { if } n=5\end{cases}
$$

Proof: Suppose that $C_{n}=\left[u_{1}, u_{2}, \ldots, u_{n}, u_{1}\right]$. Note that $C_{3}=K_{3}$ and by Proposition $5, f \ln _{2}\left(C_{3}\right)=0$. If $n=4$, then $V\left(C_{4}\right)$ is the only 2 -locating set of C_{4}. Thus, by Remark $5(\mathrm{i}), f \ln _{2}\left(C_{4}\right)=0$. Suppose that $n=5$. By Example 1, $\ln _{2}\left(C_{5}\right)=3$. Then $B_{i, j}=V\left(C_{5}\right) \backslash\left\{v_{i}, v_{j}\right\}$ for all $i, j \in\{1,2, \ldots, 5\}$ and $i \neq j$ are the $\ln _{2}$-sets of C_{5}. Thus, for every $v_{k} \in B_{i, j}$ where $k \neq i, j$ there exists $v_{i} \in B_{j, k}$ such that $\left[B_{i, j} \backslash\left\{v_{k}\right\}\right] \cup\left\{v_{i}\right\}=B_{j, k}$ is an $\ln _{2}$-set of C_{5}. Hence, by Theorem 6, $f \ln _{2}\left(C_{5}\right)=3$.

Next, suppose $n \geq 6$ and n is even. Then by Example $1, \ln _{2}\left(C_{n}\right)=\frac{n}{2}$. Thus, C_{n} has $\ln _{2}$-sets $D_{1}=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}\right\}$ and $D_{2}=\left\{u_{2}, u_{4}, u_{6}, \ldots, u_{n}\right\}$. It can be seen that D_{1}
is the only $l n_{2}$-set containing the vertex u_{1}. Thus, by Remark 5 (ii), $f \ln _{2}\left(C_{n}\right)=1$. Now, suppose that $n \geq 7$ and n is odd. By Example 1, $\ln _{2}\left(C_{n}\right)=\frac{n+1}{2}$. Hence, by Remark 7 , the l_{2}-sets of C_{n} is of the form

$$
S_{i}=\left\{u_{i}, u_{i+1}, u_{i+3}, u_{i+5}, \ldots, u_{i-4}, u_{i-2}\right\}
$$

where $1 \leq i \leq n$ and $n+k \equiv k(\bmod n)$ for any positive integer k. Observe that no single vertex is contained in a unique $l n_{2}$-set of C_{n}. Thus, $f \ln _{2}\left(C_{n}\right)>1$. It can be verified that $\left\{u_{i}, u_{i+1}\right\}$ is uniquely contained in S_{i}. Hence, $f \ln _{2}\left(S_{i}\right)=2=f \ln _{2}\left(C_{n}\right)$.

Remark 8. Let G be a connected graph. Then
(i) $f \ln _{(2,2)}(G)=0$ if and only if G has a unique $\ln _{(2,2)}$-set, and
(ii) $f \ln _{(2,2)}(G)=1$ if and only if G has at least two $\ln _{(2,2)}$-sets, one of which, say B, that contains an element not in any $\ln _{(2,2)}$-sets of G.

Theorem 7. Let G be a connected graph. Then $f \ln _{(2,2)}(G)=\ln _{(2,2)}(G)$ if and only if for all (2,2)-locating set S of G and for each $u \in S$, there exists $v_{u} \in V(G) \backslash S$ such that $[S \backslash\{u\}] \cup\left\{v_{u}\right\}$ is an $\ln _{(2,2)}$-set of G.

Proof: Suppose that $f \ln _{(2,2)}(G)=\ln _{(2,2)}(G)$. Let S be an $\ln _{(2,2)}$-set of G such that $f \ln _{(2,2)}(G)=|S|=\ln _{(2,2)}(G)$ that is, S is the only forcing subset for itself. Let $u \in S$. Since $S \backslash\{u\}$ is not a forcing subset for S, there exists a $v_{u} \in V(G) \backslash S$ such that $[S \backslash\{u\}] \cup\left\{v_{u}\right\}$ is an $\ln _{(2,2)}$-set of G.

Conversely, suppose that every $\ln _{(2,2)}$-set of G satisfies the given condition. Let S be an $\ln _{(2,2)}$-set of G such that $f \ln _{(2,2)}(G)=f \ln _{(2,2)}(S)$. Suppose further that S has a forcing subset D with $|D|<|S|$, that is, $S=D \cup I$ where $I=\{w \in S: w \notin$ $D\}$. Pick $w \in I$. By assumption, there exists $v_{w} \in V(G) \backslash S$ such that $[S \backslash\{w\}] \cup$ $\left\{v_{w}\right\}=J$ is an $\ln _{(2,2)}$-set of G. Hence, $J=D \cup T$, where $T=[I \backslash\{w\}] \cup\left\{v_{w}\right\}$, is an $\ln _{(2,2)}$-set containing D, a contradiction. Hence, S is the only forcing subset for S. Therefore, $f \ln _{(2,2)}(G)=\ln _{(2,2)}(G)$.

Remark 9. A (2,2)-locating set in G does not exist for some graph G. In particular, if $\gamma(G)=1$, then G has no (2,2)-locating set.

Proposition 8. For any path P_{n} with $n \geq 4$ vertices,

$$
\operatorname{fln}_{(2,2)}\left(P_{n}\right)= \begin{cases}0, & \text { if } n=4 \text { and } n \geq 7 \text { is odd, } \\ 2, & \text { if } n \geq 8 \text { is even, } \\ 3, & \text { if } n=6 \\ 4, & \text { if } n=5\end{cases}
$$

Proof: Suppose that $P_{n}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$. If $n=4$, then $V\left(P_{4}\right)$ is the only $l n_{(2,2)}$-set of P_{4}. Thus, by Remark 8 (i), $\operatorname{fln}_{(2,2)}\left(P_{4}\right)=0$. Suppose that $n=5$. By Example 2, $\ln _{(2,2)}\left(P_{5}\right)=4$. Then $Q_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, Q_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}, Q_{3}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$,
$Q_{4}=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ and $Q_{5}=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ are the $\ln _{(2,2)}$-sets of P_{5}. Clearly, for every $v_{i} \in Q_{j}$ there exists $v_{k} \in V\left(P_{5}\right) \backslash Q_{j}$ such that $\left[Q_{j} \backslash\left\{v_{i}\right\}\right] \cup\left\{v_{k}\right\}$ where $i, j, k \in\{1,2,3,4,5\}$ is an $\ln (2,2)$-set of P_{5}. Thus, by Theorem $7, f \ln _{(2,2)}\left(P_{5}\right)=4$. Suppose that $n=6$. By Example 2, $\ln _{(2,2)}\left(P_{6}\right)=4$. Then the $\ln _{(2,2)}$-sets of P_{6} are $R_{1}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}, R_{2}=\left\{v_{1}, v_{2}, v_{4}, v_{6}\right\}, R_{3}=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}, R_{4}=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$, $R_{5}=\left\{v_{1}, v_{3}, v_{5}, v_{6}\right\}, R_{6}=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $R_{7}=\left\{v_{2}, v_{3}, v_{4}, v_{6}\right\}$. Note that $\left\{v_{3}, v_{5}, v_{6}\right\}$ is the forcing subset of R_{5} and the minimum forcing subset of P_{6}. Thus, $f \ln _{(2,2)}\left(P_{6}\right)=3$. Now, suppose that $n \geq 7$ and n is odd. By Example 2, $\ln _{(2,2)}\left(P_{n}\right)=\frac{n+1}{2}$. Then $S=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-2}, v_{n}\right\}$ is the only $\ln (2,2)$-set of P_{n}. Thus, by Remark 8 (i), $f \ln _{(2,2)}(S)=0=f \ln _{(2,2)}\left(P_{n}\right)$.

Next, suppose that $n \geq 8$ and n is even. Then

$$
\begin{aligned}
& T_{1}=\left\{v_{1}, v_{2}, v_{4}, \ldots, v_{n-2}, v_{n}\right\}, \\
& T_{2}=\left\{v_{1}, v_{3}, v_{4}, \ldots, v_{n-2}, v_{n}\right\}, \\
& T_{3}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-3}, v_{n-2}, v_{n-1}\right\}, \\
& T_{4}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-3}, v_{n-2}, v_{n}\right\}, \\
& T_{5}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-1}, v_{n}\right\} \text { and } \\
& T_{6}=\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{n-2}, v_{n}\right\}
\end{aligned}
$$

are the $\ln (2,2)$-sets of P_{n}. Hence, no vertex of P_{n} is contained in a unique $\ln (2,2)$-set. Thus, $f \ln _{(2,2)}\left(P_{n}\right) \geq 2$. It can be seen that $\left\{v_{1}, v_{2}\right\},\left\{v_{n-2}, v_{n-1}\right\},\left\{v_{n-1}, v_{n}\right\}$ and $\left\{v_{2}, v_{3}\right\}$ are uniquely contained in T_{1}, T_{3}, T_{4} and T_{5}, respectively. Therefore,

$$
f \ln _{(2,2)}\left(T_{1}\right)=f \ln _{(2,2)}\left(T_{3}\right)=f \ln _{(2,2)}\left(T_{4}\right)=f \ln _{(2,2)}\left(T_{5}\right)=2=f \ln _{(2,2)}\left(P_{n}\right) .
$$

Proposition 9. For any cycle C_{n} with $n \geq 4$ vertices,

$$
\ln _{(2,2)}\left(C_{n}\right)= \begin{cases}0, & \text { if } n=4 \\ 1, & \text { if } n \geq 8 \text { is even, } \\ 2, & \text { if } n \geq 7 \text { is odd } \\ 4, & \text { if } n=5 \text { and } 6\end{cases}
$$

Proof: Suppose that $C_{n}=\left[v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right]$. If $n=4$, then $V\left(C_{4}\right)$ is the only $\ln (2,2)$-set of C_{4}. Thus, by Remark 8 (i), $f \ln _{(2,2)}\left(C_{4}\right)=0$. If $n=5$, then the $\ln (2,2)$-sets are $B_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, B_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}, B_{3}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}, B_{4}=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ and $B_{5}=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Clearly, for each $v_{i} \in B_{j}$ there exists $v_{k} \in V\left(C_{5}\right) \backslash B_{j}$ such that $\left[B_{j} \backslash\left\{v_{i}\right\}\right] \cup\left\{v_{k}\right\}$ where $i, j, k \in\{1,2,3,4,5\}$ is an $\ln (2,2)$-set of C_{5}. Thus, by Theorem 7, $f \ln _{(2,2)}\left(C_{5}\right)=4$. Suppose that $n=6$. Then $E_{i, j}=V\left(C_{6}\right) \backslash\left\{v_{i}, v_{j}\right\}$ for all $i, j \in\{1,2, \ldots, 6\}$ are the $\ln _{(2,2)}$-sets of C_{6}. Thus, for every $v_{k} \in E_{i, j}$ where $k \neq i, j$ there exists $v_{i} \in V\left(C_{6}\right) \backslash E_{i, j}$ such that $\left[E_{i, j} \backslash\left\{v_{k}\right\}\right] \cup\left\{v_{i}\right\}=E_{j, k}$ is an $\ln _{(2,2)}$-set of C_{6}. Hence,
by Theorem $7, f \ln _{(2,2)}\left(C_{6}\right)=4$.
Next, suppose that $n \geq 7$ and n is odd. By Examples 1 and $2, \ln _{2}\left(C_{n}\right)=\frac{n+1}{2}$ $=\ln _{(2,2)}\left(C_{n}\right)$. By similar argument as in the proof of Proposition 7, $f \ln _{(2,2)}\left(C_{n}\right)=2$. Now, suppose that $n \geq 8$ and n is even. By Example 2, $\ln _{(2,2)}\left(C_{n}\right)=\frac{n}{2}$. Then $F_{1}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-3}, v_{n-1}\right\}$ and $F_{2}=\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{n-2}, v_{n}\right\}$ are the only $\ln (2,2)$-sets of C_{n} with $v_{1} \in F_{1}$ and $v_{1} \notin F_{2}$. Thus, by Remark 8(ii), $f \ln _{(2,2)}\left(F_{1}\right)$ $=1=f \ln _{(2,2)}\left(C_{n}\right)$.

6. Forcing 2-Metric Dimension in the Join of Graphs

The join of two graphs G and H, denoted by $G+H$, is the graph with vertex-set $V(G+H)=V(G) \cup ் V(H)$ and edge-set $E(G+H)=E(G) \dot{\cup} E(H) \cup\{u v: u \in V(G)$, $v \in V(H)\}$.

In view of Theorem 2, we have the following theorem.
Theorem 8. Let G be a connected graph with $|V(G)| \geq 3$ and let $K_{1}=\langle v\rangle$. Then a proper subset S of $V\left(K_{1}+G\right)$ is a 2-metric basis of $K_{1}+G$ if and only if one of the following holds:
(i) S is an $\ln _{(2,2)}$-set of G,
(ii) $S=\{v\} \cup T$, where T is an $\ln _{(2,1)}$-set of G.

Theorem 9. Let $K_{1}=\langle v\rangle$ and G a connected graph with $|V(G)| \geq 3$ and $\ln _{(2,2)}(G)=\ln _{(2,1)}(G)$. Then

$$
\operatorname{fdim}_{2}\left(K_{1}+G\right)= \begin{cases}0, & \text { if } G \text { has a unique } \ln _{(2,2)} \text {-set } \\ \operatorname{fln}_{(2,2)}(G), & \text { if } G \text { has no unique } \ln _{(2,2)} \text {-set. }\end{cases}
$$

Proof: Suppose that G has a unique $\ln _{(2,2)}$-set, say T. Since $\ln _{(2,2)}(G)=\ln _{(2,1)}(G)$, by Theorem $8, T$ is a unique 2 -metric basis for $K_{1}+G$. By Remark $4(\mathrm{i}), \operatorname{fdim}_{2}\left(K_{1}+G\right)=0$. Now, suppose that G has at least two $\ln _{(2,2)}$-sets. Let A be an $\ln _{(2,2)}$-set of G and let F be a forcing subset for A such that

$$
f \ln _{(2,2)}(G)=f \ln _{(2,2)}(A)=|F| .
$$

By Theorem $8, A$ is a 2 -metric basis of $K_{1}+G$. Thus,

$$
\operatorname{fdim}_{2}\left(K_{1}+G\right) \leq f \ln _{(2,2)}(A)=f \ln _{(2,2)}(G) .
$$

Let S_{0} be a 2 -metric basis for $K_{1}+G$ such that $\operatorname{fdim}_{2}\left(K_{1}+G\right)=f \operatorname{dim}_{2}\left(S_{0}\right)$. By Theorem 8, S_{0} is an $\ln _{(2,2)}$-set of G. Let F_{0} be a forcing subset for S_{0} with $\left|F_{0}\right|=f \operatorname{dim}_{2}\left(S_{0}\right)$. Hence,

$$
\operatorname{fdim}_{2}\left(K_{1}+G\right)=\operatorname{fdim}_{2}\left(S_{0}\right)=\left|F_{0}\right| \geq f \ln _{(2,2)}\left(S_{0}\right) \geq f \ln _{(2,2)}(G) .
$$

Therefore, $f \operatorname{dim}_{2}\left(K_{1}+G\right)=f \ln _{(2,2)}(G)$.

Example 3. (1.) For the fan $F_{n}=K_{1}+P_{n}$, where $n \geq 2$,

$$
\operatorname{fim}_{2}\left(F_{n}\right)= \begin{cases}0, & \text { if } n=2,3 \text { and } n \geq 7 \text { is odd } \\ 1, & \text { if } n=5 \\ 2, & \text { if } n \geq 8 \text { is even } \\ 3, & \text { if } n=4,6\end{cases}
$$

(2.) For the wheel $W_{n}=K_{1}+C_{n}$, where $n \geq 3$,

$$
\operatorname{fdim}_{2}\left(W_{n}\right)= \begin{cases}0, & \text { if } n=3,4 \\ 1, & \text { if } n \geq 8 \text { is even, } \\ 2, & \text { if } n \geq 7 \text { is odd } \\ 3, & \text { if } n=5,6\end{cases}
$$

(3.) For the star $S_{n}=K_{1}+\overline{K_{n}}$ of order $n+1$,

$$
\operatorname{fdim}_{2}\left(S_{n}\right)=0 .
$$

As a consequence of Theorem 3, we have the following results.
Theorem 10. Let G and H be nontrivial connected graphs such that $\ln _{(2,2)}(G)=\ln _{(2,1)}(G)$ and $\ln _{(2,2)}(H)=\ln _{(2,1)}(H)$. A proper subset S of $V(G+H)$ is a 2-metric basis for $G+H$ if and only if $S=S_{G} \cup S_{H}$ where $S_{G}=V(G) \cap S$ and $S_{H}=V(H) \cap S$ are $\ln _{2}$-sets of G and H, respectively such that S_{G} or S_{H} is an $\ln _{(2,2)}$-set. In particular,

$$
\operatorname{dim}_{2}(G+H)=\min \left\{\ln _{(2,2)}(G)+\ln _{2}(H), \ln _{2}(G)+\ln _{(2,2)}(H)\right\} .
$$

Theorem 11. Let G and H be nontrivial graphs such that (2,2)-locating set of G and H do not exist. Then $S \subseteq V(G+H)$ is a 2-metric basis for $G+H$ if and only if $S=S_{G} \cup S_{H}$ where S_{G} and S_{H} are $\ln _{(2,1)}$-sets of G and H, respectively. In particular, $\operatorname{dim}_{2}(G+H)=\ln _{(2,1)}(G)+\ln _{(2,1)}(H)$.
Theorem 12. Let G and H be nontrivial graphs such that $\ln _{(2,2)}(G)=\ln _{(2,1)}(G)$ and $\ln _{(2,2)}(H)=\ln _{(2,1)}(H)$. Then

$$
\operatorname{fim}_{2}(G+H)=\min \left\{f \ln _{(2,2)}(G)+f \ln _{2}(H), f \ln _{2}(G)+f \ln _{(2,2)}(H)\right\} .
$$

Proof: Suppose that $\ln _{(2,2)}(G)+\ln _{2}(H)<\ln _{2}(G)+\ln _{(2,2)}(H)$. By Theorem 10, $\operatorname{dim}_{2}(G+H)=\ln _{(2,2)}(G)+\ln _{2}(H)$. Let S_{G} be an $\ln _{(2,2)}$-set of G with $f \ln _{(2,2)}(G)=f \ln _{(2,2)}\left(S_{G}\right)$ and F_{G} be a forcing subset of S_{G} with $f \ln _{(2,2)}\left(S_{G}\right)=\left|F_{G}\right|$. Let S_{H} be an $\ln _{2}$-set of H such that $f \ln _{2}(H)=f \ln _{2}\left(S_{H}\right)$ and F_{H} be a forcing subset of S_{H} with $f \ln _{2}\left(S_{H}\right)=\left|F_{H}\right|$. By Theorem $10, S=S_{G} \cup S_{H}$ is a 2-metric basis of $G+H$. We claim that $F_{G} \cup F_{H}$ is a forcing subset of S. Suppose there exists a 2-metric basis $S^{\prime} \neq S$ of $G+H$ with $F_{G} \cup F_{H} \subseteq S^{\prime}$. By Theorem 10, $S^{\prime}=S_{G}^{\prime} \cup S_{H}^{\prime}$
where S_{G}^{\prime} is an $\ln _{(2,2)}$-set of G and S_{H}^{\prime} is an $\ln _{2}$-set of H. Since $F_{G} \cup F_{H} \subseteq S^{\prime}, F_{G} \cap F_{H}=\varnothing$ and $S_{G}^{\prime} \cap S_{H}^{\prime}=\varnothing$, hence, F_{G} is not a forcing subset of S_{G} or F_{H} is not a forcing subset of S_{H}, a contradiction. Thus, $F_{G} \cup F_{H}$ is a forcing subset of S. This implies that

$$
\begin{aligned}
\operatorname{fim}_{2}(G+H) & \leq f \operatorname{dim}_{2}(S) \\
& \leq\left|F_{G} \cup F_{H}\right| \\
& =\left|F_{G}\right|+\left|F_{H}\right| \\
& =\operatorname{fln}_{(2,2)}\left(S_{G}\right)+f \ln _{2}\left(S_{H}\right) \\
& =\operatorname{fln}_{(2,2)}(G)+\operatorname{fln}_{2}(H) .
\end{aligned}
$$

Now, let W be a 2-metric basis for $G+H$ with $f \operatorname{dim}_{2}(G+H)=f \operatorname{dim}_{2}(W)$ and let F be a forcing subset of W such that $f \operatorname{dim}_{2}(W)=|F|$. Then by Theorem $10, W=W_{G} \cup W_{H}$ where W_{G} is an $\ln _{(2,2)}$-set of G and W_{H} is an $\ln _{2}$-set of H or W_{G} is an $l n_{2}$-set of G and W_{H} is an $\ln _{(2,2)}$-set of H. Since $F \subseteq W=W_{G} \cup W_{H}$, consider the following cases:
Case 1. $F \subseteq W_{G}$
Then W_{H} is a unique $l n_{2}$-set of H and F is a forcing subset of W_{G}. For if there exists $\ln _{(2,2)}$-set $W_{G}^{\prime} \neq W_{G}$ of G and $F \subseteq W_{G}^{\prime}$, then $F \subseteq W^{\prime}=W_{G}^{\prime} \cup W_{H}$. By Theorem 10, $W^{\prime} \neq W$ is a 2 -metric basis for $G+H$, a contradiction.
Case 2. $F \subseteq W_{H}$
Then W_{G} is a unique $\ln _{(2,2)}$-set of G. By similar argument as in Case $1, F$ is a forcing subset of W_{H}.
Case 3. $F=A \cup B$ where $A \subseteq W_{G}$ and $B \subseteq W_{H}$.
Then A is a forcing subset of W_{G} since if there exists an $\ln _{(2,2)}$-set $W_{G}^{\prime} \neq W_{G}$ of G and $A \subseteq W_{G}^{\prime}$, then $W^{\prime}=W_{G}^{\prime} \cup W_{H}$ is a 2-metric basis of $G+H$ with $F \subseteq W^{\prime} \neq W$, a contradiction. Similary, B is a forcing subset of W_{H}. Therefore in any case $F=F_{W_{G}} \cup F_{W_{H}}$ where $F_{W_{G}}$ and $F_{W_{H}}$ are forcing subsets of W_{G} and W_{H}, respectively where it may happen that $F_{W_{G}}$ or $F_{W_{H}}$ is empty. Hence,

$$
\begin{aligned}
\operatorname{dim}_{2}(G+H) & =f \operatorname{dim}_{2}(W) \\
& =|F| \\
& =\left|F_{W_{G}} \cup F_{W_{H}}\right| \\
& =\left|F_{W_{G}}\right|+\left|F_{W_{H}}\right| \\
& \geq f \ln _{(2,2)}\left(W_{G}\right)+f \ln _{2}\left(W_{H}\right) \\
& \geq f \ln _{(2,2)}(G)+f \ln _{2}(H) .
\end{aligned}
$$

Consequently, $\operatorname{fdim}_{2}(G+H)=f \ln _{(2,2)}(G)+f \ln _{2}(H)$. Similarly, if $\ln _{2}(G)+\ln _{(2,2)}(H)<\ln _{(2,2)}(G)+\ln _{2}(H)$, then,

$$
f \operatorname{dim}_{2}(G+H)=f \ln _{2}(G)+f \ln _{(2,2)}(H) .
$$

Example 4. Consider the join of two graphs C_{4} and P_{7}. Note that $\ln _{(2,2)}\left(C_{4}\right)=4$ $=\ln _{(2,1)}\left(C_{4}\right)$ and $\ln _{(2,2)}\left(P_{7}\right)=4=\ln _{(2,1)}\left(P_{7}\right)$. Since C_{4} and P_{7} both having unique $\ln _{(2,2)}$-sets, $\operatorname{fdim}_{2}\left(C_{4}+P_{7}\right)=f \ln _{(2,2)}\left(C_{4}\right)=f \ln _{(2,2)}\left(P_{7}\right)=0$.

Example 5. Consider the join of two graphs C_{7} and P_{6}. Then $\ln _{(2,2)}\left(C_{7}\right)=4$ $=\ln _{(2,1)}\left(C_{7}\right)$ and $\ln _{(2,2)}\left(P_{6}\right)=3=\ln _{(2,1)}\left(P_{6}\right)$. Since C_{7} and P_{6} have no unique $\ln _{(2,2)}$-sets, $f \operatorname{dim}_{2}\left(C_{7}+P_{6}\right)=\min \left\{f \ln _{(2,2)}\left(C_{7}\right)+f \ln _{2}\left(P_{6}\right), f \ln _{2}\left(C_{7}\right)+f \ln _{(2,2)}\left(P_{6}\right)\right\}$ $=\min \{2+2,2+3\}=\min \{4,5\}=4$.
Theorem 13. Let G and H be nontrivial connected graphs where both G and H have no (2,2)-locating sets. Then

$$
f \operatorname{dim}_{2}(G+H)= \begin{cases}0, & \text { if both } G \text { and } H \text { have } \\ \operatorname{fln}_{(2,1)}(G)+f \ln _{(2,1)}(H), & \text { unique } \ln _{(2,1)} \text {-sets }\end{cases}
$$

Proof: Suppose that both G and H have unique $\ln _{(2,1)}$-sets. Let S_{G} and S_{H} be the unique $\ln _{(2,1)}$-sets of G and H, respectively. By Theorem $11, S=S_{G} \cup S_{H}$ is the unique 2 -metric basis for $G+H$. By Remark 4 (i), $\operatorname{fdim}_{2}(G+H)=0$. Next, suppose that G has no unique $\ln _{(2,1)}$-set. Let S_{G} and S_{H} be $\ln _{(2,1)}$-sets of G and H, respectively. Thus, by Theorem 11, $S=S_{G} \cup S_{H}$ is a 2-metric basis for $G+H$. Let F_{G} and F_{H} be forcing subsets of S_{G} and S_{H}, respectively such that $f \ln _{(2,1)}(G)=f \ln _{(2,1)}\left(S_{G}\right)=\left|F_{G}\right|$ and $f \ln _{(2,1)}(H)=f \ln _{(2,1)}\left(S_{H}\right)=\left|F_{H}\right|$. We claim that $F_{G} \cup F_{H}$ is a forcing subset of $S=S_{G} \cup S_{H}$. Clearly, $F_{G} \cup F_{H} \subseteq S_{G} \cup S_{H}=S$. Suppose there exists 2-metric basis $S^{\prime} \neq S$ with $F_{G} \cup F_{H} \subseteq S^{\prime}$ for $G+H$. By Theorem 11, $S^{\prime}=S_{G}^{\prime} \cup S_{H}^{\prime}$ where S_{G}^{\prime} and S_{H}^{\prime} are $n_{(2,1)}$-sets of G and H, respectively. Since $S^{\prime} \neq S, S_{G} \neq S_{G}^{\prime}$ or $S_{H} \neq S_{H}^{\prime}$. Also, since $F_{G} \cup F_{H} \subseteq S^{\prime}, F_{H} \subseteq S_{H}^{\prime}$ and $F_{G} \subseteq S_{G}^{\prime}$. This is a contradiction since F_{G} and F_{H} are forcing subsets of S_{G} and S_{H}, respectively. Hence, $F_{G} \cup F_{H}$ is a forcing subset of S. Thus,

$$
\begin{aligned}
\operatorname{dim}_{2}(G+H) & \leq f \operatorname{dim}_{2}(S) \\
& \leq\left|F_{G} \cup F_{H}\right| \\
& =\left|F_{G}\right|+\left|F_{H}\right| \\
& =\operatorname{fln}_{(2,1)}(G)+\operatorname{fln}_{(2,1)}(H) .
\end{aligned}
$$

Next, suppose that S_{0} is a 2-metric basis for $G+H$ such that $\operatorname{fdim}_{2}(G+H)=\operatorname{fdim}_{2}\left(S_{0}\right)$. By Theorem 11, $S_{0}=S_{G}^{0} \cup S_{H}^{0}$ where S_{G}^{0} and S_{H}^{0} are $\ln _{(2,1)}$-sets of G and H, respectively. Let $F_{0}=F_{G}^{0} \cup F_{H}^{0}$, where $F_{G}^{0} \subseteq S_{G}^{0}$ and $F_{H}^{0} \subseteq S_{H}^{0}$, be a forcing subset of S_{0} such that $\operatorname{fdim}_{2}\left(S_{0}\right)=\left|F_{0}\right|$. Suppose $F_{G}^{0} \subseteq D_{G}^{0}$ for some $\ln _{(2,1)}$-set D_{G}^{0} of G with $D_{G}^{0} \neq S_{G}^{0}$. Then $S_{0}^{\prime}=D_{G}^{0} \cup S_{H}^{0}$ is a 2 -metric basis for $G+H, S_{0}^{\prime} \neq S_{0}$, and $F_{0} \subseteq S_{0}^{\prime}$. This contradicts the assumption that F_{0} is a forcing subset of S_{0}. Thus, F_{G}^{0} is a forcing subset of S_{G}^{0}. Similarly, F_{H}^{0} is a forcing subset of S_{H}^{0}. Hence,

$$
\begin{aligned}
\operatorname{fim}_{2}(G+H)=f \operatorname{dim}_{2}\left(S_{0}\right)=\left|F_{0}\right| & =\left|F_{G}^{0} \cup F_{H}^{0}\right| \\
& =\left|F_{G}^{0}\right|+\left|F_{H}^{0}\right| \\
& \geq \operatorname{fln}_{(2,1)}\left(S_{G}^{0}\right)+\operatorname{fln}_{(2,1)}\left(S_{H}^{0}\right) \\
& \geq \operatorname{fln}_{(2,1)}(G)+\operatorname{fln}_{(2,1)}(H) .
\end{aligned}
$$

Therefore, $f \operatorname{dim}_{2}(G+H)=f \ln _{(2,1)}(G)+f \ln _{(2,1)}(H)$.

Example 6. Consider the join of two graphs G and H, where (2,2)-locating sets do not exist for both graphs.

The join $G+H$
Note that G has $\ln _{(2,1)}$-sets $W_{1}=\left\{a, c, d, u_{f}\right\}, W_{2}=\{b, c, d, e\}, W_{3}=\{b, c, d, f\}$, $W_{4}=\{b, d, e, f\}$ and $W_{5}=\{c, d, e, f\}$. On the other hand, H have $\ln _{(2,1)}$-sets $Z_{1}=\{g, h, j, k\}, Z_{2}=\{g, h, i, k\}$ and $Z_{3}=\{g, i, j, k\}$. Clearly, $a \in W_{1}$ and $a \notin W_{2}$, W_{3}, W_{4}, W_{5}. Also, $\{h, j\} \subseteq Z_{1}$ and $\{h, j\} \nsubseteq Z_{2}, Z_{3}$. Thus, $\operatorname{fln}_{(2,1)}(G)=1$ and $f \ln _{(2,1)}(H)=2$. Hence,

$$
\operatorname{fdim}_{2}(G+H)=f \ln _{(2,1)}(G)+f \ln _{(2,1)}(H)=1+2=3 .
$$

7. Forcing 2-Metric Dimension in the Corona of Graphs

The corona of two graphs G and H, denoted by $G \circ H$, is the graph obtained by taking one copy of G of order n and n copies of H, and then joining every vertex of the i th copy of H to the i th vertex of G. For $v \in V(G)$, denote by H^{v} the copy of H whose vertices are attached one by one to the vertex v. Subsequently, denote by $v+H^{v}$ the subgraph of the corona $G \circ H$ corresponding to the join $\langle\{v\}\rangle+H^{v}, v \in V(G)$.

Let $S=\bigcup_{v \in V(G)} S_{v} \subseteq V(G \circ H)$ be a 2-resolving set of $G \circ H$ and $p, q \in V\left(H^{v}\right)$ where $p \neq q$ for $v \in V(G)$. Then $r_{G \circ H}(p / S)$ and $r_{G \circ H}(q / S)$ differ in at least 2-positions. By Remark 2, $r_{H^{v}}\left(p / S_{v}\right)$ and $r_{H^{v}}\left(q / S_{v}\right)$ must differ in at least two distinct positions. By definition of $G \circ H$, if $p, q \in V\left(H^{v}\right) \backslash S_{v}$, then there exist at least two distinct vertices $r, s \in V\left(H^{v}\right) \cap S_{v}$ such that either $r, s \in N_{H^{v}}(p) \backslash N_{H^{v}}(q)$ or $r, s \in N_{H^{v}}(q) \backslash N_{H^{v}}(p)$ or $r \in N_{H^{v}}(p) \backslash N_{H^{v}}(q)$ and $s \in N_{H^{v}}(q) \backslash N_{H^{v}}(p)$. Similarly, if $p \in V\left(H^{v}\right) \backslash S_{v}$ and $q \in S_{v}$, there exists a vertex $w \in V\left(H^{v}\right) \cap S_{v}$ such that $w \in N_{H^{v}}(p) \backslash N_{H^{v}}(q)$ or $w \in N_{H^{v}}(q) \backslash N_{H^{v}}(p)$. Hence, S_{v} is a 2-locating set of H^{v}. Thus, Theorem 4 is modified in the next result.

Theorem 14. Let G and H be nontrivial connected graphs. Then $S \subseteq V(G \circ H)$ is a 2-metric basis for $G \circ H$ if and only if $S=\bigcup_{v \in V(G)} S_{v}$ where S_{v} is an $l n_{2}$-set of H^{v} for all $v \in V(G)$. In particular,

$$
\operatorname{dim}_{2}(G \circ H)=|V(G)| \mid n_{2}(H) .
$$

Theorem 15. Let G and H be nontrivial connected graphs. Then

$$
\operatorname{fdim}_{2}(G \circ H)= \begin{cases}0, & \text { if } H \text { has a unique } \ln _{2} \text {-set }, \\ |V(G)| f \ln _{2}(H), & \text { if } H \text { has no unique } \ln _{2} \text {-set. }\end{cases}
$$

Proof: Suppose H has a unique $\ln _{2}$-set. For each $v \in V(G)$, let $M_{v} \subseteq V\left(H^{v}\right)$ be the unique $\ln _{2}$-set of H^{v}. By Theorem 15, $S=\underset{v \in V(G)}{\bigcup} M_{v}$ is the unique 2-metric basis for $G \circ H$. Thus, by Remark $4(\mathrm{i}), f \operatorname{dim}_{2}(G \circ H)=0$. Suppose H does not have unique $\ln _{2}$-set. For each $v \in V(G)$, let $Q_{v} \subseteq V\left(H^{v}\right)$ be an $\ln _{2}$-set of H^{v} such that $f \ln _{2}\left(H^{v}\right)=f \ln _{2}\left(Q_{v}\right)$. Let $M_{\left(Q_{v}\right)} \subseteq Q_{v}$ be a forcing subset for Q_{v} with $f \ln _{2}\left(Q_{v}\right)=\left|M_{\left(Q_{v}\right)}\right|$. Then by Theorem $15, S_{Q}=\bigcup_{v \in V(G)} Q_{v}$ is a 2-metric basis of $G \circ H$. Let $C=\bigcup_{v \in V(G)} M_{\left(Q_{v}\right)}$. Then C is a forcing subset for S_{Q}. Thus,

$$
\begin{aligned}
\operatorname{fdim}_{2}(G \circ H) & \leq f \operatorname{dim}_{2}\left(S_{Q}\right) \\
& \leq|C| \\
& =|V(G)|\left|M_{\left(Q_{v}\right)}\right| \\
& =|V(G)| f \ln _{2}\left(Q_{v}\right) \\
& =|V(G)| f \ln _{2}(H) .
\end{aligned}
$$

Next, let S^{\prime} be a 2-metric basis for $G \circ H$ such that $\operatorname{fdim}_{2}(G \circ H)=\operatorname{fdim}\left(S^{\prime}\right)$. Then by Theorem $15, S^{\prime}=\bigcup_{v \in V(G)} R_{v}$ where R_{v} is an $l n_{2}$-set of H^{v} for each $v \in V(G)$. Let C^{\prime} be a forcing subset of S^{\prime} such that $f d i m_{2}\left(S^{\prime}\right)=\left|C^{\prime}\right|$. We claim that $C^{\prime} \cap R_{v}=C_{v}$ is a forcing subset for R_{v} for all $v \in V(G)$. Suppose there exists $w \in V(G)$ such that $C^{\prime} \cap R_{w}=C_{w}$ is not a forcing subset for R_{w}. Let R_{w}^{\prime} be an $l n_{2}$-set of H^{w} with $C_{w} \subseteq R_{w}^{\prime}$ and $R_{w}^{\prime} \neq R_{w}$. Then

$$
S^{\prime \prime}=\left(\bigcup_{v \in V(G) \backslash\{w\}} R_{v}\right) \cup R_{w}^{\prime}
$$

is a 2-metric basis for $G \circ H$ with $S^{\prime} \neq S^{\prime \prime}$ and $C^{\prime} \subseteq S^{\prime \prime}$, a contradiction. Thus, C_{v} is a forcing subset for R_{v} for each $v \in V(G)$. Let $C^{\prime}=\bigcup_{v \in V(G)} C_{v}$. Then

$$
\operatorname{fdim}_{2}(G \circ H)=\left|C^{\prime}\right|=\sum_{v \in V(G)}\left|C_{v}\right| \geq \sum_{v \in V(G)} f \ln _{2}\left(H^{v}\right)=|V(G)| f l n_{2}(H) .
$$

Therefore, $f \operatorname{dim}_{2}(G \circ H)=|V(G)| f \ln _{2}(H)$.
Example 7. Consider the corona of two graphs P_{3} and C_{4}. Since C_{4} has a unique $\ln _{2}$-set, $\operatorname{fdim}_{2}\left(P_{3} \circ C_{4}\right)=\left|V\left(P_{3}\right)\right| f \ln _{2}\left(C_{4}\right)=3 \cdot 0=0$.

Example 8. Consider the corona of two graphs K_{3} and C_{5}. Since C_{5} has no unique $\ln _{2}$-set, $f \operatorname{dim}_{2}\left(K_{3} \circ C_{5}\right)=\left|V\left(K_{3}\right)\right| f \ln _{2}\left(C_{5}\right)=3 \cdot 3=9$.

Acknowledgements

This research is funded by the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP), Philippines.

References

[1] R.F. Bailey and I. Yero. Error-Correcting Codes from k- Resolving Sets. Discussiones Mathematicae, Graph Theory, 39:341-355, 2019.
[2] S. Bau and A.F. Beardon. The Metric Dimension of Metric Spaces. Comput. Methods Funct. Theory, 13:295-305, 2013.
[3] L.M. Blumenthal. Theory and Applications of Distance Geometry. Clarendon Press, Oxford, 1953.
[4] J. Cabaro and H. Rara. On 2- Resolving Sets in Join and Corona of Graphs. European Journal of Pure and Applied Mathematics, 14(3):773-782, 2021.
[5] F. Harary and R.A. Melter. On the Metric Dimension of a Graph. Ars Combin., 2:191-195, 1976.
[6] T.P. Zivkovic, F. Harary and D.J. Klein. Graphical Properties of Polyhexes: Perfect Matching Vector and Forcing. J. Math. Chem., 6:295-306, 1991.
[7] M. Heydarpour and S. Maghsoudi. The Metric Dimension of Geometric Spaces. Topology Appl., 178:230-235, 2014.
[8] D.J. Klein and M. Randic. Innate Degree of Freedom of a Graph. J. Comput. Chem., 8:516-521, 1987.
[9] A. Estrada-Moreno, J. Rodrıguez-Velazquez and I. Yero. The k- Metric Dimension of aGraph. Applied Mathematics and Information Sciences, 9:2829-2840, 2015.
[10] V. Saenpholphat and P. Zhang. On Connected Resolvability of Graphs. Australian Journal of Combinatorics, 28:25-37, 2003.
[11] P.J. Slater. Leaves of Trees. Congress. Numer., 14:549-559, 1975.
[12] P.J. Slater. Dominating and Reference Sets in Graphs. J. Math. Phys. Sci., 22:445-455, 1988.
[13] G. Chartrand, P. Zhang and Kalamazoo. The Forcing Dimension of a Graph. Mathematica Bohemica, 126(4):711-720, 2001.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4750
 Email addresses: dennis.managbanag@g.msuiit.edu.ph (D. Managbanag), helen.rara@g.msuiit.edu.ph (H. Rara)
 https://www.ejpam.com 1068 (C) 2023 EJPAM All rights reserved.

