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Abstract
Westudy the influenceof strong forcing axiomson the complexity of the non-stationary
ideal on ω2 and its restrictions to certain cofinalities. Our main result shows that the
strengtheningMM++ ofMartin’sMaximum does not decide whether the restriction of
the non-stationary ideal onω2 to sets of ordinals of countable cofinality is�1-definable
by formulas with parameters in H(ω3). The techniques developed in the proof of this
result also allow us to prove analogous results for the full non-stationary ideal on ω2
and strong forcing axioms that are compatible with CH. Finally, we answer a question
of S. Friedman, Wu and Zdomskyy by showing that the �1-definability of the non-
stationary ideal on ω2 is compatible with arbitrary large values of the continuum
function at ω2.
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1 Introduction

The fact that closed unbounded subsets generate a proper normal filter, the club filter
on κ

Clubκ = {A ⊆ κ | ∃C ⊆ A closed and unbounded in κ},

is one of the most important combinatorial properties of uncountable regular cardinals
κ . The study of the structural properties of these filters and their dual ideals, the
non-stationary ideal on κ

NSκ = {A ⊆ κ | ∃Cclosed and unbounded in κ wi th A ∩ C = ∅}

plays a central role in modern set theory.
In [23] and [24], Mekler, Shelah and Väänänen initiated the study of the complexity

of club filters and non-stationary ideals, leading to various results establishing interest-
ing connections between the complexity of these objects and their structural properties.
Given an uncountable regular cardinal κ , it is easy to see that bothClubκ and NSκ are
definable by a �1-formula with parameter κ , i.e. there exist �1-formulas ϕ0(v0, v1)

and ϕ1(v0, v1) such that Clubκ = {A | ϕ0(A, κ)} and NSκ = {A | ϕ1(A, κ)}. The
results of [24] show that under CH, the �1(H(ω2))-definability of NSω1 (i.e. the
assumption that NSω1 = {A | ψ1(A, z)} holds for some �1-formula ψ(v0, v1) and
some z ∈ H(ω2)) is equivalent to several interesting combinatorial andmodel-theoretic
assumptions about objects of size ω1. In particular, it is shown that this definability
assumption is equivalent to the existence of a so-called canary tree, a tree of height
and cardinality ω1 without cofinal branches that has specific properties with respect
to the ordering of such trees under order-preserving embeddings. Since the results of
[23] show that the existence of a canary tree is independent of ZFC + CH, it follows
that this theory is not able to determine the exact complexity of NSω1 .

The above results were later generalized to higher cardinals. If S is a stationary
subset of an uncountable regular cardinal κ , then we let NS � S = NSδ ∩ ℘(S)

denote the restriction of the non-stationary ideal on δ to S. Given infinite regular car-
dinals λ < κ , we set Sκ

λ = {α < κ | cof(α) = λ}. In addition, if m < n < ω, then
we write Snm instead of Sωn

ωm . Results of Hyttinen and Rautila in [13] showed that if κ

is an infinite regular cardinal in a model of the GCH, then, in a cofinality-preserving
forcing extension, the set NS � Sκ+

κ is �1(H(κ++))-definable. Furthermore, in [10],
S. Friedman, Wu and Zdomskyy showed that for every successor cardinal in Gödel’s
constructible universe L, there is a cardinality-preserving forcing extension of L in
which NSκ is �1(H(κ+))-definable. These results can be easily used to show that
the complexity of the non-stationary ideal and its restriction is not determined by
ZFC (see Lemma 1.1 and the subsequent discussion below). Finally, recent work also
unveiled several interesting consequences of the�1(H(κ+))-definability of restriction
of NSκ at higher cardinals κ . In particular, this set-theoretic assumption was shown
to be closely connected to model-theoretic questions dealing with Shelah’s Classifi-
cation Theory and the complexity of certain mathematical theories (see, for example,
[8, Theorem 64]).
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Forcing axioms and the complexity of non-stationary ideals 47

The above results strongly motivate the question whether canonical extensions of
ZFC decide more about the complexity of non-stationary ideals, and this question
turns out to be closely connected to important recent developments in set theory. In
[8], S. Friedman, Hyttinnen and Kulikov showed that, in the constructible universe L,
the sets of the form NS � S for some stationary subset S of an uncountable regular
cardinal κ are not �1(H(κ+))-definable. Using the notion of local club condensation
(see [7]), it is possible to extend this conclusion to larger canonical inner models. In
another direction, S. Friedman andWu observed in [9] that strong saturation properties
of the non-stationary ideal onω1, i.e. the assumption that the poset℘(ω1)/NSω1 has a
dense subset of cardinality ω1, imply the �1(H(ω2))-definability of NSω1 . Results of
Woodin in [26,Chapter 6] show that NSω1 possesses these properties in certain forcing
extensions of determinacy models. Finally, Schindler and his collaborators recently
studied the question whether forcing axioms determine the complexity of NSω1 . In
[19], Larson, Schindler and Wu showed that Woodin’s Axiom (∗) (see [26, Defini-
tion 5.1]) implies that NSω1 is not �1(H(ω2))-definable. In combination with recent
results of Asperó and Schindler in [1], this shows that MM++, a natural strengthening
of Martin’s Maximum, implies that NSω1 is not �1(H(ω2))-definable.

Thework presented in this paper ismotivated by the questionwhether strong forcing
axioms determine the complexity of the non-stationary ideal onω2 and its restrictions.
The following result from [21] shows that all extensions of ZFC that are preserved by
forcing with <ω2-directed posets are compatible with the assumption that for every
stationary subset S of ω2, the set NS � S is not �1(H(ω3))-definable. In particular,
the results of [4, 17, 18] show that this statement is compatible with all standard
forcing axioms, like MM++. The lemma follows directly from a combination of [21,
Theorem 2.1], showing that no �1

1-definable set (see [20, Definition 1.2]) separates
Clubκ from NSκ in the given model of set theory, and [20, Lemma 2.4], showing
that �1

1-definability coincides with �1(H(κ+))-definability at all uncountable regular
cardinals κ .

Lemma 1.1 Let κ be an uncountable cardinal with κ<κ = κ and let G beAdd(κ, κ+)-
generic over V. In V[G], no �1(H(κ+))-definable subset of ℘(κ) separates Clubκ

from NSκ , i.e. no set X definable in this way satisfies Clubκ ⊆ X ⊆ ℘(κ) \ NSκ .

Note that, if S is a stationary subset of an uncountable regular cardinal κ , then NS �
S separatesClubκ from NSκ . This shows that, in Add(κ, κ+)-generic extensions, sets
of the form NS � S for stationary subsets S are not �1(H(κ+))-definable.

In contrast, we will prove the following theorem that shows that strong forcing
axioms like MM++ are also compatible with the existence of a �1(H(ω3))-definable
set that separates the club filter onω2 from the corresponding non-stationary ideal. The
proof of this result is based on a detailed analysis of the preservation properties of a
variation of a forcing iteration constructed by Hyttinen and Rautila in the consistency
proofs of [13]. Our construction will also allow us to produce such models with
arbitrary large 2ω2 . See Sect. 2 for the meaning of the “+μ” versions of forcing
axioms.1

1 In keeping with the prevailing convention in the literature: MM+ refers to MM+1, but MM++ refers to
MM+ω1 , not to MM+2 (and similarly for PFA and other forcing axioms).
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48 S. Cox, P. Lücke

Theorem 1.2 Let FA denote any one of the following forcing axioms:

• MM+μ, where μ is a cardinal and 0 ≤ μ ≤ ω1; or
• PFA+μ, where μ is a cardinal and 1 ≤ μ ≤ ω1.

Assume that FA holds, and let θ be a cardinal with θω2 = θ . Then there exists a
<ω2-directed closed, cardinal-preserving poset P with the property that whenever G
is P-generic over V, then, in V[G], the axiom FA still holds, 2ω2 = θ and the set
N S � S20 is �1(H(ω3))-definable.

We will also apply the techniques developed in the proof of the above result to
forcing axioms that are compatible with the continuum hypothesis, focusing on the
axiom FA+(σ -closed) and the subcomplete forcing axiom SCFA introduced by Jensen
in [16]. Note that both axioms are preserved by <ω2-directed closed forcings (see [4]
and [18]) and hence Lemma 1.1 above already shows that they are compatible with
the assumption that no �1(H(ω3))-definable set separates Clubω2 from NSω2 .

Theorem 1.3 Let FA denote either the axiom SCFA or the axiom FA+(σ -closed).
Assume that 2ω = ω1, 2ω1 = ω2 and FA holds. Let θ be a cardinal satisfying θω2 = θ .
Then there exists a<ω2-directed closed, cardinal-preserving posetPwith the property
that whenever G is P-generic overV, then, inV[G], the axiom FA still holds, 2ω2 = θ

and the set N Sω2 is �1(H(ω3))-definable.

This theorem also provides an affirmative answer to [10, Problem 3.3] posed by
S. Friedman, Wu and Zdomskyy, by showing that the �1-definability of NSω2 is
compatible with 2ω2 ≥ ω5.

2 Preliminaries

This section covers well-known results, mostly related to the notions of internal
approachability and Shelah’s Approachability Ideal.

First we recall the “plus” versions of forcing axioms, which were first introduced by
Baumgartner [2] (though the prevailing notation has changed somewhat since then).
If � is a class of posets and μ is a cardinal, FA+μ

(
�

)
states that for every poset

P ∈ �, for every collectionD of size ω1 of dense subsets of P and for every sequence
〈σξ | ξ < μ〉 of P-names for stationary subsets of ω1, there is aD-generic filter g on P

with the property that the set {α < ω1 | ∃p ∈ g p �P “ α̌ ∈ σξ ”} is stationary inω1 for
every ξ < μ. If � is the class of posets that preserve stationary subsets of ω1, we write
MM+μ instead of FA+μ(�); and, as mentioned earlier, MM++ refers to MM+ω1 , not
to MM+2. Similar comments apply to the class of proper posets and PFA.

Definition 2.1 Let P be a poset and let W ≺ (H(θ),∈, P) for some sufficiently large
regular cardinal θ .

(1) A condition p ∈ P is a (W, P)-master condition if

W [G] ∩ V = W

holds whenever G is P-generic over V with p ∈ G.
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Forcing axioms and the complexity of non-stationary ideals 49

(2) A set g is (W, P)-generic if g ⊆ P ∩ W , g is a filter on P ∩ W , and D ∩ g 
= ∅
for every D ∈ W that is a dense subset of P.2

(3) A condition p ∈ P is a (W, P)-total master condition if the set

{r ∈ P ∩ W | p ≤P r}

is a (W , P)-generic filter.

The following result is well-known:

Lemma 2.2 Let P be a poset, let W ≺ (H(θ),∈, P), let μ be an ordinal with μ ⊆ W,
and let ḟ ∈ W be a P-name for a function from μ to the ground model V. If p is a
(W , P)-total master condition and G is P-generic over V with p ∈ G, then ḟ G ∈ V.

Proof Fix a (W , P)-total master condition p and a filter G on P that is generic over
V and contains the condition p. Let g = {r ∈ P ∩ W | p ≤P r} denote the (W , P)-
generic filter induced by p. Then G ∩ W is a (W , P)-generic filter extending g and
therefore standard arguments show that G ∩ W = g. By elementarity, there is a
sequence 〈Aξ | ξ < μ〉 ∈ W of maximal antichains in P with the property that for
every ξ < μ, each condition in Aξ decides the value of ḟ at ξ . Since μ ⊆ W , this
shows that for all ξ < μ, the unique condition in Aξ ∩ g decides the value of ḟ at ξ .
But the sequence 〈Aξ | ξ < μ〉 and the filter g are both elements of V and hence the
function ḟ G is also in the ground model. ��

We state a definition that will be used extensively in the following arguments:

Definition 2.3 Given an infinite regular cardinal κ , we let IAκ denote the class of all
sets W with the property that there exists a sequence �N = 〈Nα | α < κ〉 that satisfies
the following statements:

(1) The sequence �N is ⊆-increasing and ⊆-continuous.
(2) W = ⋃{Nα | α < κ}.
(3) |Nα| < κ for all α < κ .
(4) Every proper initial segment of �N is an element of W .

Remark 2.4 If �N witnesses that W is an element of IAκ and W ≺ H(θ) for some
θ > κ , then κ ⊆ W . This is because we have �N � α ∈ W for every α < κ , and the
domain of �N � α, namely α, is definable from the parameter �N � α.

In what follows, if τ is a regular uncountable cardinal, ℘τ (H) refers to the set of
all W ⊆ H with |W | < τ , and ℘∗

τ (H) denotes the set

{W ∈ ℘τ (H) | W ∩ τ ∈ τ }.

The set ℘∗
τ (H(θ)) contains a club in the sense of Jech (see [14]), but not necessarily

in the sense of Shelah (see [6]).

2 Sometimes the requirement that g ⊆ W is dropped, but then one has the demand that D ∩ g ∩ W 
= ∅
holds for each dense D ∈ W .
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50 S. Cox, P. Lücke

Remark 2.5 In the above situation, if W ∈ ℘∗
τ (H(θ)), W ≺ H(θ), and x ∈ W with

|x | < τ , then x ⊆ W .3

Lemma 2.6 If κ is a regular and uncountable cardinal, then IAκ is stationary in
℘κ+(H(θ)) for all sufficiently large regular θ .

Proof Given a first-order structure A = (H(θ),∈, κ, . . .) in a countable language,
recursively construct a ⊆-continuous and ⊆-increasing sequence �N = 〈Nα | α < κ〉
of elementary substructures of A of cardinality less than κ such that �N � α ∈ Nα+1
for all α < κ . Then �N witnesses that its union is contained in IAκ . ��
Lemma 2.7 Let P be a poset, let κ < θ be infinite regular cardinals with P ∈ H(θ),
let � be a well-ordering of H(θ), let W ≺ (H(θ),∈, P,�) with W ∈ IAκ , and let
p ∈ P ∩ W.

(1) If P is <κ-closed, then there exists a (W , P)-generic filter that contains p.
(2) If P is <κ+-closed, then there exists a (W , P)-total master condition below p.

Proof Let �N = 〈Nα | α < κ〉 witness that W is an element of IAκ .
(1) Assuming that P is <κ-closed. Using the closure of P and the fact that each

Nα has cardinality less than κ , we can recursively construct a descending sequence
�p = 〈pα | α < κ〉 of conditions below p in P such that the following statements hold
for all α < κ:

(a) The condition pα+1 is the �-least element of P below pα that is an element of
every open dense set that belongs to Nα .4

(b) If α is a limit ordinal, then pα is the �-least lower bound of the sequence
〈p� | � < α〉.

Then every proper initial segment of �p is definable from a proper initial segment
of �N , and hence every proper initial segment of �p is in W . In particular, we know
that pα+1 ∈ W for all α < κ . It follows that the filter in P generated by the subset
{pα | α < κ} is (W , P)-generic.

(2) Now, assume that P is <κ+-closed and repeat the above construction of the
sequence �p. Then �p has a lower bound in P, and this lower bound is clearly a (W , P)-
total master condition. ��

Next we discuss one variant of proper forcing.

Definition 2.8 Let κ be an infinite regular cardinal.

(1) A poset P is I Aκ -proper if for all sufficiently large regular cardinals θ , all W ≺
(H(θ),∈, P)withW ∈ IAκ and all p ∈ P∩W , there is a (W , P)-master condition
below p.

(2) A poset P is I Aκ -totally proper if for all sufficiently large regular cardinals θ ,
all W ≺ (H(θ),∈, P) with W ∈ IAκ and all p ∈ P ∩ W , there is a (W , P)-total
master condition below p.

3 Note that this could fail if W were allowed to have non-transitive intersection with τ .
4 We do not require here that pα+1 is a total master condition for Nα . That is, if D ∈ Nα is dense, the
upward closure of pα+1 is only required to meet D, not necessarily D ∩ Nα .
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Forcing axioms and the complexity of non-stationary ideals 51

It is well-known that IAκ -proper posets preserve all stationary subsets of Sκ+
κ that

lie in the approachability ideal I [κ+] defined below. Since we could not find a refer-
ence for exactly what is needed in our arguments, we sketch the proof below. Note
that it is possible for IAκ -proper (even IAκ -totally proper) posets to destroy the sta-
tionarity of some subsets of Sκ+

κ (see [5]). So IAκ -total properness is, in general,
strictly weaker than κ+-Jensen completeness (defined in the next section), because
<κ+-closed forcings preserve all stationary subsets of κ+.

Definition 2.9 (Shelah) Let κ be an infinite regular cardinal.

(1) Given a sequence �z = 〈zα | α < κ+〉 a sequence of elements of [κ+]<κ , an ordinal
γ < κ+ is called approachable with respect to �z if there exists a sequence

�α = 〈αξ | ξ < cof(γ )〉

cofinal in γ such that every proper initial segment of �α is equal to zα for some
α < γ .

(2) The Approachability ideal I[κ+] on κ+ is the (possibly non-proper) normal
ideal generated by sets of the form

A�z = {γ < κ+ | γ is approachablewi th respect to �z}

for some sequence �z ∈ κ+
([κ+]<κ).

Note that a subset X of κ+ is an element of I [κ+] if and only if there exists some
club D ⊆ κ+ and some sequence �z ∈ κ+

([κ+]<κ) such that every γ ∈ D ∩ X is
approachable with respect to �z. In the following, we will make use of several facts
about I [κ+]. Throughout this section, κ denotes a regular cardinal.

Lemma 2.10 ([5]) Suppose κ<κ ≤ κ+, and let 〈zα | α < κ+〉 be an enumeration of
[κ+]<κ .5 Define

M�z = {γ ∈ Sκ+
κ | γ is approachablewi th respect to �z}.

Then the following statements hold:

(1) M�z is a stationary subset of Sκ+
κ .

(2) M�z ∈ I [κ+].
(3) M�z is a maximum element of I [κ+] ∩ ℘(Sκ+

κ ) mod NS, i.e. whenever S is a
stationary subset of Sκ+

κ such that S ∈ I [κ+], then S \ M�z is non-stationary.
(4) If κ<κ = κ , then Sκ+

κ \ M�z is non-stationary. In particular, κ<κ = κ implies that
Sκ+
κ ∈ I [κ+].

Proof (1) Fix a sufficiently large regular cardinal θ and a well-ordering� of H(θ). Fix
W ∈ IAκ with W ≺ (H(θ),∈,�, �z) and let 〈Nα | α < κ〉 be a sequence witnessing
5 Note that such an enumeration exists by our cardinal arithmetic assumption.
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that W ∈ IAκ . Given α < κ , set γα = sup(Nα ∩ κ+) < κ+. Then �γ = 〈γα | α < κ〉
enumerates a cofinal subset ofW ∩κ+ of order-type κ and every proper initial segment
of this sequence is an element of W .

Moreover, each proper initial segment of �γ is an element of [κ+]<κ , and hence an
element of

W ∩ {zα | α < κ+} = {zα | α < W ∩ κ+}.

This shows thatW ∩κ+ is approachable with respect to �z. Since Lemma 2.6 shows that
there are stationarily-many W ∈ IAκ with W ≺ (H(θ),∈,�, �z), these computations
allow us to conclude that M�z is a stationary subset of Sκ+

κ .
(2) Since M�z ⊆ A�z ∈ I [κ+], the statement M�z ∈ I [κ+] holds trivially.
(3) Now, suppose that S ∈ I [κ+] is a stationary subset of Sκ+

κ . By earlier remarks,
there is a sequence �u = 〈uα | α < κ+〉 of elements of [κ+]<κ and club subset D of
κ+ with the property that every γ ∈ D ∩ S is approachable with respect to �u. Define

E = {γ ∈ S | Hull(H(θ),∈,�u,�z,D)(γ ) ∩ κ+ = γ }.

Then S \ E is non-stationary. Fix γ ∈ E and set M(γ ) = Hull(H(θ),∈,�u,�z,D)(γ ). Since
γ ∈ S ∈ I [κ+], there is a cofinal sequence �β = 〈β� | � < κ〉 in γ such that every
proper initial segment of �β appears in �u � γ . But since �z enumerates all of [κ+]<κ , the
fact that �u, �z ∈ M(γ ) ≺ (H(θ),∈) implies that for every α < γ there is a k(α) < γ

with uα = zk(α), i.e.

{uα | α < γ } ⊆ {zα | α < γ }.

In particular, every proper initial segment of �β appears in �z before γ and therefore γ

is approachable with respect to �z. These computations show that S \ M�z ⊆ S \ E is
non-stationary in κ+.

(4) Now, assume that κ<κ = κ . Then |η<κ | = κ for every η < κ+ and hence there
is a function f : κ+ −→ κ+ with the property that for all η < κ+, every element of
[η]<κ is enumerated by �z � f (η). Let D denote the club of all κ < γ < κ+ such that

Hull(H(θ),∈,�z, f )(γ ) ∩ κ+ = γ.

Pick γ ∈ D∩ Sκ+
κ , and setW (γ ) = Hull(H(θ),∈,�z, f )(γ ). Fix a cofinal sequence �α in γ

of order-type κ in γ , and some ξ < κ . Since cof(γ ) = κ , there is η < γ with α� < η

for all � < ξ and �α � ξ = zζ for some ζ < f (η). Moreover, since η ∈ W (γ ) and
| f (η)| ≤ κ ⊆ W (γ ), elementarity implies that f (η) ∈ W (γ ) and f (η) ⊆ W (γ ).
Since �z and ζ are both elements of W (γ ), we can conclude that zζ ∈ W (γ ). Hence γ

is approachable with respect to �z. ��
The next few lemmas address stationary set preservation when GCH may fail to

hold.
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Lemma 2.11 The class IAκ is projective stationary over

S = {T ⊆ Sκ+
κ | T is stationary and T ∈ I [κ+]},

i.e. if T ∈ S, then for every sufficiently large regular cardinal θ and every function
F : [H(θ)]<ω −→ H(θ), there exists W ∈ IAκ such that W ∩κ+ ∈ T and W is closed
under F.

Proof Fix T ∈ S. Then there is a club D in κ+ and a sequence �z ∈ κ+[κ+]<κ such
that every element of D ∩ T is approachable with respect to �z.

Fix a regular ϑ with F ∈ H(ϑ), let � be a well-ordering of H(ϑ) and set

A = (H(ϑ),∈,�, �z, D, F, T ).

Pick γ ∈ D ∩ T and W ≺ A with γ = W ∩ κ+, which is possible because T is
stationary. Since γ ∈ T ∩ D, there is an increasing sequence �β = 〈βα | α < κ〉 that is
cofinal in γ and has the property that every proper initial segment of �β is equal to zα
for some α < γ . Since �z ∈ W and W ∩ κ+ = γ , it follows that every proper initial
segment of �β is an element of W . Recursively define a sequence �N = 〈Nα | α < κ〉
as follows:

• Given α < κ , let Nα+1 be the �-least element of [H(θ)]<κ such that Nα+1 is
closed under F , 〈N� | � ≤ α〉 ∈ Nα+1, α ⊆ Nα+1, and sup(Nα+1 ∩ κ+) ≥ βα .

• If α < κ is a limit ordinal, then Nα = ⋃{N� | � < α}.
Set N = ⋃{Nα | α < κ}. Then N ∈ IAκ , N is closed under F , and

sup(N ∩ κ+) ≥ sup
α<κ

βα = γ. (1)

On the other hand, for each α < κ , the sequence 〈N� | � ≤ α〉 is definable inA from
the parameter 〈β� | � ≤ α〉, which is an element of W by the above remarks. Hence
every proper initial segment of �N is an element ofW and, in particular, we know that

sup(Nα ∩ κ+) < γ = W ∩ κ+

for all α < κ .
It follows that sup(N∩κ+) ≤ γ . Combinedwith (1), this shows that sup(N∩κ+) =

γ . Finally, since α ⊆ Nα+1 for all α < κ , it follows that κ ⊆ N and hence we know
that N ∩ κ+ is transitive. This allows us to conclude that

N ∩ κ+ = sup(N ∩ κ+) = γ,

completing the proof of the lemma. ��
The following lemma is one way to salvage stationary set preservation in the non-

GCH context.
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Lemma 2.12 Let P be a IAκ -proper poset and let T ⊆ Sκ+
κ be stationary with T ∈

I [κ+]. Then forcing with P preserves the stationarity of T .

Proof Set τ = κ+. Let Ċ be aP-name for a club in τ , let p ∈ P and let θ be a sufficiently
large regular cardinal. Using Lemma 2.11, we find γ ∈ T andW ≺ (H(θ),∈, p, Ċ, P)

withW ∈ IAκ andW∩τ = γ . By our assumptions, there is a (W , P)-master condition
q below p in P. LetG be P-generic over V with q ∈ G. ThenW [G]∩τ = W ∩τ = γ .
Moreover, since Ċ ∈ W , we now know that ĊG ∩W [G] is unbounded in γ and hence
γ ∈ ĊG ∩ T .

These computations show that, in the ground model V, we have

q �P “ Ċ ∩ Ť 
= ∅ ”

for densely-many conditions q in P. ��

3 Generalizing a lemma of Jensen

The notion of IAκ -properness, defined in Sect. 2, is a non-GCH analogue of the notion
of κ-properness introduced in [13, Definition 3.4] . This notion will be important to
proving that tails of the iteration described in Sect. 4 do not add cofinal branches to
a certain tree, and that argument will closely follow the corresponding arguments of
[13].

However, IAκ -properness (in the case κ = ω1) is not sufficient for ensuring the
preservation of forcing axioms that we need for the proofs of our main results. There
are examples of IAω1 -proper forcings that destroy, for example, the Proper Forcing
Axiom.6 On the other hand, <ω2-directed closed posets preserve all standard forcing
axioms (see [17] and [18]). In this section, we generalize a result of Jensen, yielding a
property that is forcing equivalent to <ω2-directed closure, but often easier to verify
than <ω2-directed closure.

In [16], Jensen defines a poset P to be complete if for every sufficiently large θ ,
there are club-manyW ∈ ℘ω1(H(θ)) such that every (W , P)-generic filter has a lower
bound in P.7 He then proves:

Lemma 3.1 (Jensen) The following statements are equivalent for every poset P:

(1) The poset P is complete.
(2) The poset P is forcing equivalent to a σ -closed poset.

We will generalize a version of this lemma to larger cardinals, and, in fact, charac-
terize directed closure (see Lemma 3.6 below).8 However there are a few technicalities

6 E.g. if 2ω1 = ω2 then there is a natural IAω1 -proper poset that forces the Approachability Property to
hold atω2, hence destroys the Proper Forcing Axiom. This poset is just the natural poset to shoot anω1-club
through the set M described in Lemma 2.10.
7 Jensen’s notes say this is equivalent to a definition of Shelah in [25, Chapter 10].
8 Note that σ -closure is equivalent to σ -directed closure, so the distinction is only important at larger
cardinals.
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to address. Note that for any W ∈ ℘ω1(H(θ)), the fact that W is countable ensures
that there always exist (W , P)-generic filters, regardless of what P is. In particular, the
phrase “ . . . every (W , P)-generic filter …” is never vacuous, if W is countable. Of
course, for uncountable W , it may happen that (depending on the poset P) there do
not exist any (W , P)-generic filters at all; e.g. if W ≺ H(θ) and ω1 ⊆ W , then there
does not exist a (W ,Col(ω, ω1))-generic filter.

Definition 3.2 Given a regular uncountable cardinal τ , a posetP is τ -Jensen-complete
if the following statements hold for all sufficiently large regular cardinals θ :

(1) For every p ∈ P, there are stationarily-many W ∈ ℘∗
τ (H(θ)) with the property

that there exists a (W , P)-generic filter including p.
(2) For all but non-stationarily manyW ∈ ℘∗

τ (H(θ)), every (W , P)-generic filter has
a lower bound in P.9

Remark 3.3 Note that clause (1) of Definition 3.2 always holds true for τ = ω1, and
is hence redundant in that case. In particular, for τ = ω1, Definition 3.2 is equivalent
to Jensen’s definition of completeness.

Remark 3.4 In combination, the clauses (1) and (2) of Definition 3.2 imply that the
poset P is totally proper on a stationary subset of ℘∗

τ (H(θ)); i.e. that there are
stationarily-manyW ∈ ℘∗

τ (H(θ)) such that every condition in P∩W can be extended
to a (W , P)-total master condition in the sense of Definition 2.1. This conclusion, how-
ever, is strictly weaker than τ -Jensen-completeness, since (for example with τ = ω1)
shooting a club through a bistationary subset of ω1 has the latter property but is not
<ω1-closed. In the case τ = ω2, if 2ω1 = ω2, then shooting an ω1-club through the
set M described in Lemma 2.10 is IAω1 -totally proper, but forces the approachability
property to hold at ω2. In particular, this forcing destroys the Proper Forcing Axiom,
and PFA is preserved byω2-Jensen-complete forcings (by [17] and Lemma 3.6 below).

Lemma 3.5 If κ is an infinite cardinal and P is a <κ-closed poset, then clause (1) of
Definition 3.2 holds for τ = κ+ and P.

Proof This follows immediately from Lemmas 2.6 and 2.7. ��
Next, we state our generalization of Jensen’s lemma. Its Corollary 2 will be used

in the proof of Theorem 4.2 below.

Lemma 3.6 Given a poset P and a successor cardinal τ , the following statements are
equivalent:

(1) The poset P is forcing equivalent to a <τ -directed closed poset.
(2) The poset P is forcing equivalent to a τ -Jensen-complete poset.

Proof First, assume that P is <τ -directed closed. Then, in particular, P is <τ -closed,
and hence Lemma 3.5 ensures that clause (1) of Definition 3.2 holds for P. But then
the directed closure of P ensures that any (W , P)-generic filter for any W ∈ ℘∗

τ (H(θ))

9 Note that this clause is allowed to be vacuously true for some elements W of ℘∗
τ (H(θ)), even for

stationarily-many such sets W .
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has a lower bound in P, and hence clause (2) of Definition 3.2 holds for P as well.
This shows that P is τ -Jensen-complete.

Now, suppose that P is τ -Jensen-complete. Let F : [H(θ)]<ω −→ H(θ) generate
a club witnessing clause (2) of Definition 3.2, i.e. whenever W ∈ ℘∗

τ (H(θ)) and
W is closed under F , then any (W , P)-generic filter has a lower bound. We may
assume that F also codes a well-ordering � of H(θ), i.e. if W is closed under F , then
W ≺ (H(θ),∈,�)) holds.

Define a poset Q, whose conditions are pairs (M, g) satisfying the following state-
ments:

• M ∈ ℘∗
τ (H(θ)).

• M is closed under F .
• g ⊆ M ∩ P is an (M, P)-generic filter.

and whose ordering is given by:

(N , h) ≤Q (M, g) ⇐⇒ N ⊇ M ∧ h ∩ M = g.

Note that ≤Q is transitive and clause (1) of Definition 3.2 ensures that Q is nonempty.

Claim 3.7 Q is <τ -directed closed.

Proof of Claim 3.7 Let {(Mi , gi ) | i ∈ I } be a directed set of conditions in Q with
|I | < τ . Set M = ⋃

i∈I Mi and g = ⋃
i∈I gi . We will show that (M, g) is a condition

in Q below all (Mi , gi ).
The regularity of τ ensures that M ∈ ℘∗

τ (H(θ)), and M is closed under F , because
each Mi is closed under F and the collection 〈Mi | i ∈ I 〉 is ⊆-directed. In addition,
we have g ⊆ M ∩ P and g clearly has the property that D ∩ g 
= ∅ for every dense
D ∈ M , because each such D lies in some Mi and gi ⊆ g is an (Mi , P)-generic filter.
Finally, the fact that g is a filter follows easily from the fact that the given collection
is directed and each gi is a filter. This shows that (M, g) is a condition in Q.

Now, fix i ∈ I . ThenM ⊇ Mi , g∩Mi is a filter onMi∩P, and g∩Mi ⊇ gi . But since
gi is (Mi , P)-generic, we know that gi is a⊆-maximal filter onMi∩P. In particular, we
can conclude that g ∩ Mi = gi . This computation shows that (M, g) ≤Q (Mi , gi ). ��
Claim 3.8 The poset Q is forcing equivalent to P.

Proof of Claim 3.8 It is easy to see that the boolean completions of τ -Jensen-complete
posets are themselves τ -Jensen-complete. Therefore, we may assume that P is a com-
plete boolean algebra. For each condition (M, g) in Q, let pM,g be the P-greatest
lower bound of g. This conditions exists and is non-zero, because M is closed under
F , g is (M, P)-generic, P is a complete boolean algebra, and because of clause (2) of
Definition 3.2. In the following, we will show that the map

e : Q −→ P; (M, g) �−→ pM,g

is a dense embedding, which will finish the proof of the claim.
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First, we show that e is order-preserving. Suppose that (N , h) ≤Q (M, g). Then
N ⊇ M and g = h ∩ M . Since g ⊆ h and pN ,h is a lower bound of h, it follows that
pN ,h is also a lower bound of g. But pM,g is the greatest lower bound of g, and hence

e(N , h) = pN ,h ≤P pM,g = e(M, g).

Next, we show that e preserves incompatibility. Suppose (M0, g0) and (M1, g1) are
conditions in Q with the property that there is a condition p in P that extends both
e(M0, g0) and e(M1, g1). By clause (1) of Definition 3.2, there we can find W ∈
℘∗

τ (H(θ)) such that p, g0, g1, M0, M1 ∈ W , W is closed under F , and there exists a
(W , P)-generic filter G with p ∈ G. Since W ∩ τ is transitive and |Mi | < τ for all
i < 2, it follows that M0 ∪ M1 ⊆ W . Furthermore, since p is below both pM0,g0 and
pM1,g1 and Mi ∩ P ⊆ W ∩ P for all i < 2, the fact that g0 and g1 are maximal filters
in M0 ∩ P and M1 ∩ P, respectively, implies that G ∩ M0 = g0 and G ∩ M1 = g1.
Hence (W ,G) is a condition in Q that lies below both (M0, g0) and (M1, g1).

Finally, we show that the range of e is dense in P. Fix a condition p in P. By clause
(1) of Definition 3.2, there is a W ∈ ℘∗

τ (H(θ)) such that W is closed under F , and
there exists a (W , P)-generic filter G with p ∈ G. Then (W ,G) is a condition in Q,
and e(W , g) = pW ,G is stronger than p. ��

This completes the proof of the lemma. ��
Corollary 1 Given a successor cardinal τ , all τ -Jensen-complete posets are <τ -
distributive. ��
Remark 3.9 Another common way to verify the <τ -distributivity of a given poset P is
the following weaker version of τ -Jensen completeness: if for every p ∈ P, there are
stationarily-many W ∈ ℘∗

τ (H(θ)) such that there is a (W , P)-total master condition
below p (see Definition 2.1), then P is <τ -distributive. Note that this weaker version
would not suffice for our purposes, however, because we seem to need <τ -directed
closure (or a close approximation of it) to prove Theorem 4.2.

Corollary 2 Let κ be an infinite regular cardinal and set τ = κ+. If P is <κ-closed
poset with the property that for all but non-stationarily many W ∈ ℘∗

τ (H(θ)), every
(W , P)-generic filter has a lower bound in P, then the poset P is forcing equivalent to
a <τ -directed closed poset.

Proof By Lemma 3.5, the <κ-closure of P ensures that clause (1) of Definition 3.2
holds. Since clause (2) of Definition 3.2 holds by assumption, this implies P is τ -
Jensen-complete and Lemma 3.6 yields the desired conclusion. ��

In particular, if a posetP satisfies the assumptions of the above corollary for κ = ω1,
then forcing with P preserves all standard forcing axioms.

4 Themain technical result

In this section, we will prove the main technical result of our paper. It directly extends
the main results of [13] and [23]. In the next section, we will use it to prove the two
theorems stated in the introduction.
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Definition 4.1 If κ be an infinite regular cardinal and let S ⊆ Sκ+
κ . Then we let T (S)

denote the tree that consists of all t ∈ <κ+
κ+ such that dom(t) is a successor ordinal,

ran(t) ⊆ S, t is strictly increasing, and t is continuous at all points of cofinality κ in
its domain and is ordered by end-extension.

Note that, in the situation of the above definition, the tree T (S) has height κ+ and
contains a cofinal branch if and only if the set S contains a κ-club.

We are now ready to state the aspired result.

Theorem 4.2 Given an infinite regular cardinal κ , there is a partial order P with the
following properties:

(1) P is κ+-Jensen complete.10

(2) P satisfies the (2κ)+-chain condition.
(3) If G is P-generic over V, then, in V [G], there is a subtree T of <κ+

κ+ of height
κ+ without cofinal branches such that the following statements hold:

(a) If S is bistationary in Sκ+
κ and Sκ+

κ \ S contains a stationary set in I [κ+], then
there is an order-preserving function from T (S) to T .

(b) Assume that κ<κ ≤ κ+ holds in V. If M ∈ V is a maximum element of
I [κ+]∩℘(Sκ+

κ )mod N S inV,11 then the following statements hold inV[G]:
(i) M is a maximum element of I [κ+] ∩ ℘(Sκ+

κ ) mod N S.
(ii) If S is a bistationary in Sκ+

κ and M \ S is stationary, then there is an
order-preserving function from T (S) to T .

Note that the above theorem directly generalizes the main result of [13]: if κ<κ = κ

holds, then part (4) of Lemma 2.10 shows that Sκ+
κ is an element of I [κ+], and hence

Sκ+
κ is a maximum element of I [κ+] ∩ ℘(Sκ+

κ ) mod NS .
Now, if G is P-generic over V and T ∈ V[G] is the tree given by the theorem,

then there is an order-preserving function from the tree T (S) to T in V[G] for every
bistationary subset S of Sκ+

κ in V[G].
In particular, this shows that T is a κ-canary tree (see [13, Definition 3.1]) in V[G],

i.e. if S is a stationary subset of Sκ+
κ andP is a<κ+-distributive poset that forces κ+\S

to contain a club subset, then forcing with P adds a cofinal branch to T .
For the remainder of this section, fix an infinite regular cardinal κ . Until further

notice, we do not make any cardinal arithmetic assumptions.
In the following, we closely follow the arguments on pages 1684–1692 of Hyttinen-

Rautila in [13], which assumed GCH (in particular, their arguments heavily rely on
the assumption κ<κ = κ). We also follow their notation as closely as possible.

Definition 4.3 ( [13]) We let Q0 denote the poset that consists of functions f such that
dom( f ) ⊆ Sκ+

κ , |dom( f )| ≤ κ , f (δ) is a function from δ to δ for all δ ∈ dom( f ),
and whenever δ < η are both in the domain of f , then f (δ) � f (η),12 and whose
ordering is given by reversed inclusion.

10 In particular, Lemma 3.6 shows that the poset P is forcing equivalent to a <κ+-directed closed poset.
11 Such a subset M exists by Lemma 2.10.
12 Since f (δ) : δ −→ δ and f (η) : η −→ η, this just means that f (δ) and f (η) disagree at some ξ < δ.
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Proposition 4.4 The poset Q0 is <κ+-directed closed.

Proof This statement follows directly from the fact that the union f of a coherent
collection of conditions in Q0 still has the required property that f (η) � f (β) for all
η < β in the domain of f , and, if the union is of size less than κ+, then the domain
of f has size less than κ+ too. ��
Definition 4.5 ( [13]) If G0 is Q0-generic over V, then, in V[G0], we define the fol-
lowing subtree of <κ+

κ+:

T (G0) = {h ∈ <κ+
κ+ | ∀δ ∈ Sκ+

κ h � δ 
= (
⋃

G0)(δ)}.

In the following, we let Ṫ (Ġ0) denote the canonical Q0-name for T (G0).

Remark 4.6 In the situation of the above definition, the tree T (G0) has height κ+,
since for any β ∈ Sκ+

κ , the function f with domain β and constant value β +1 has the
property that for all δ ∈ Sκ+

κ with δ ≤ dom( f ), the restriction f � δ is not a function
from δ to δ and hence cannot be the same as the function (

⋃
G0)(δ).

Lemma 4.7 If G0 is Q0-generic over V, then the tree T (G0) has no cofinal branches
in V[G0].
Proof Work inV and assume, towards a contradiction, that a condition f inQ0 forces a
Q0-name ḃ to be a cofinal branch through Ṫ (Ġ0). Using Proposition 4.4, easy closure
arguments allow us to find λ ∈ Sκ+

κ , a function h : λ −→ λ and a condition g below f
in Q0 such that λ = sup(dom(g)) and g forces h to be the restriction of ḃ to λ. By the
definition of T (G0), this implies that h � δ 
= g(δ) holds for all δ ∈ dom(g) and we
can conclude that g ∪ {(λ, h)} is a condition in Q0 below g. But this condition forces
that h is not contained in Ṫ (Ġ0), a contradiction. ��

The following poset, again taken from [13], adds an order preserving function from
T (S) to T (G0). The role of clause 3(a)i is to add such a function with initial segments.
However, the role of clauses 3(a)ii through 3(a)vi is not obvious; roughly, with the
exception of clause 3(a)iv, these properties allow us to verify κ+-Jensen completeness
by ensuring the existence of lower bounds for any generic filter over any κ-sized
elementary submodel. The role of clause 3(a)iv is to ensure that no cofinal branch is
added to T (G0).

Definition 4.8 ([13]) Let G0 be Q0-generic over V and work in an outer model of
V[G0]13 with the same bounded subsets of κ+ as V. Let S be a subset of Sκ+

κ .

(1) An element t of T (G0) is an S-node if t[δ] � δ holds for all δ ∈ Sκ+
κ \ S.

(2) Given a partial function h : T (S)
part−−→ T (G0), we define

o(h) = sup{dom(t) | t ∈ ran(h)}.
13 I.e. a model of ZFC in which V[G] is a transitive class.
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(3) We let P(S,G0) denote the unique poset defined by the following clauses:

(a) A condition in P(S,G0) is a pair (h, X) satisfying the following statements:
(i) h is an order-preserving partial function of cardinality at most κ from the

tree T (S) to the tree T (G0)with the property that dom(h) is closed under
initial segments.

(ii) X is a partial function from κ+ to
⋃{β+1κ+ | β < κ+} of cardinality at

most κ such that

o(h) ∩ Sκ+
κ ⊆ dom(X)

and

X(α) ⊆ (
⋃

G0)(α)

for all α ∈ dom(X) ∩ Sκ+
κ .

(iii) dom(h(t)) = sup(ran(t)) for all t ∈ dom(h).
(iv) h(t) is an S-node for all t ∈ dom(h).
(v) X(α) � h(t) for all t ∈ dom(h) and α ∈ dom(X).
(vi) If 〈tζ | ζ < κ〉 is a strictly increasing sequence of elements of dom(h),

then
⋃

ζ<κ h(tζ ) ∈ T (G0).
(b) A condition (h, X) is stronger than a condition (k,Y ) if and only if k ⊆ h and

Y ⊆ X hold.

(4) The order of a condition p = (h, X) in P(S,G0), denoted by o(p), is defined to
be the ordinal

max{⋃ dom(X),
⋃{dom(h(t)) | t ∈ dom(h)}}.

Remark 4.9 In the above definition, the requirements on X(α) differ depending on
whether or not cof(α) = κ . If α ∈ Sκ+

κ ∩ dom(X), then X(α) is a proper initial
segment of the function (

⋃
G0)(α).14 In combination with requirement (3(a)v) in the

above definition, this shows that for all α ∈ dom(X)∩ Sκ+
κ , there is an ordinal ηα < α

such that no node in the range of h can extend (
⋃

G0)(α) � ηα . On the other hand, if
α ∈ dom(X) with cof(α) < κ , then the only requirement on X(α) is that nothing in
the range of h is allowed to extend X(α).

As pointed out near the bottom of page 1684 of [13], the poset P(S,G0) is <κ-
closed. Requirements (3(a)iii) and (3(a)vi) of Definition 4.8 are mainly needed for the
proof of Lemma 4.10 below.

Lemma 4.10 Let G0 be Q0-generic over V, let V1 be an outer model of V[G0] with
the same bounded subsets of κ+ as V, and let K be P(S,G0)

V1 -generic over V1 for
some set S that is bistationary in Sκ+

κ in V1. In V1[K ], define

hK =
⋃

{h | (h, X) ∈ K }
14 The domain of X(α) is required to be a successor ordinal, so X(α) cannot be the entire function
(
⋃

G0)(α).
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and

XK =
⋃

{X | (g, X) ∈ K }.

Let δ = (κ+)V. Then the following statements hold:

(1) hK is a total, order-preserving function from (T (S))V1 to (T (G0))
V[G0] whose

range consists entirely of S-nodes.
(2) XK is a total function from δ to (<δδ)V.
(3) No element of ran(hK ) extends an element of ran(XK ).
(4) Suppose M is an outer model of V1[K ] and �y = 〈yζ | ζ < λ〉 is an increasing

sequence of nodes in ran(hK ) in M. If we set f �y = ⋃
ζ<λ yζ , then

f �y � γ 
= (
⋃

G0)(γ )

for all γ ∈ (Sδ
κ )V.

Proof Statement (1) is [13, Claim 3.11].15

Statement (2) is an easy density argument, and statement (3) follows directly from
requirement 3(a)v of Definition 4.8.

For Statement (4), let M and �y ∈ M be as stated, and suppose for a contradiction
there exists γ < δ with cof(γ )V = κ and f �y � γ = (

⋃
G0)(γ ).

Work in M . The statements (1), (2), and (3) are obviously upward absolute from
V1[K ] to M . By Statement (2), we know that γ is in the domain of XK , and, by
applying Remark 4.9 to some condition in K whose second coordinate has γ in its
domain, we can find ργ < γ with XK (γ ) = (

⋃
G0)(γ ) � ργ . Note that, by the

definition of Q0, we know that (
⋃

G0)(γ ) is a total function on γ , and therefore our
assumption implies that γ ≤ dom( f �y). Then ργ ∈ dom( f �y), and there is some ζ∗ < λ

with ργ ∈ dom(yζ∗). In particular, we know that

yζ∗ � ργ = f �y � ργ = (
⋃

G0)(γ ) � ργ = XK (γ ).

But this implies that yζ∗ ∈ ran(hK ) extends XK (γ ) ∈ ran(XK ), contradicting State-
ment (3). ��

We now describe the iteration that will witness the poset from Theorem 4.2. This
is a slight variant of the iteration described at the bottom of page 1684 of [13].

The main differences are:

• The length of our iteration is at least 22
κ
. This is to allow for the case when, in the

ground model, the cardinal 2κ+
is very large.

• More significantly, at a given stage α of our iteration, when considering the set Ṡα

given to us by the bookkeeping device, we only force with the poset P(Ṡα,G0) if
the statement

“ Sκ+
κ \ Ṡα contains a stationary set in I [κ+] ” (2)

15 This was the only place in the argument where requirement (3(a)iii) from Definition 4.8 played a role.
This requirement was used to fix the error from [23]. It ensures that the function hK is total.
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holds in the corresponding generic extension of the groundmodel. This will ensure
(via an application of Lemma 2.12) that the complements of the Ṡα’s remain
stationary throughout the iteration, which in turn will be the key to showing that
the tree T (G0) has no cofinal branch in the final model.

Remark 4.11 In the GCH setting of [13], requiring (2) to hold is no restriction at all,
since in that scenario, this statement holds for every set bistationary in Sκ+

κ .
But, if κ<κ > κ holds, then the requirement (2) seems to be needed in order to

prove that the iteration adds no cofinal branch to the tree T (G0).

In the following, we fix a cardinal ε satisfying ε2
κ = ε.

Let C denote the set of all partial functions from ε to H(κ+) of cardinality at most κ .

Then our assumptions on ε imply that |C| = ε.
Next, let N denote the set of all partial functions from Sκ+

κ × 2κ to C. Again, our
assumptions imply that |N | = ε and we can pick an ε-to-one surjection b : ε −→ N .

Definition 4.12 We define

〈Pα, Q̇ξ | α ≤ ε, ξ < ε〉

to be a <κ+-support iteration satisfying the following clauses:

(1) Q̇0 is chosen in a canonical way that ensures that the map

i : Q0 −→ P1; q �−→ 〈q̌〉

is an isomorphism.
(2) Assume that α ∈ [1, ε) has the property that the poset Pα is <κ+-distributive and

there exists a sequence 〈qγ,ξ | (γ, ξ) ∈ dom(b(α))〉 of conditions in Pα such that
the following statements hold:

• If (γ, ξ) ∈ dom(b(α)), then sprt(qγ,ξ ) = dom(b(α)(γ, ξ)).
• If (γ, ξ) ∈ dom(b(α)), � ∈ sprt(qγ,ξ ) and b(α)(γ, ξ)(�) = x , then qγ,ξ (�) =

x̌ .

If we define

Ḃα = {(γ̌ , qγ,ξ ) | (γ, ξ) ∈ dom(b(α))},

then there exists a Pα-name Ṡα for a subset of Sκ+
κ such that the following state-

ments hold in V[G] whenever G is Pα-generic over V and G0 is the induced
Q0-generic filter over V:

(a) Q̇
G
α = P(ṠGα ,G0)

V[G].
(b) If the set Sκ+

κ \ ḂG
α contains a stationary set in I [κ+], then ṠGα = ḂG

α .
(c) If the set Sκ+

κ \ ḂG
α does not contain a stationary set in I [κ+], then ṠGα = ∅.
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(3) Assume that α ∈ [1, ε) has the property that the poset Pα is <κ+-distributive and
there exists no sequence of conditions in Pα with the properties listed in (2). Then
Ṡα = ∅ and Q̇

G
α = P(ṠGα ,G0)

V[G] whenever G is Pα-generic over V and G0 is
the induced Q0-generic filter over V.

(4) If α ∈ [1, ε) has the property that the poset Pα is not <κ+-distributive, then Q̇α

is a Pα-name for a trivial poset.

Remark 4.13 We include the cases (2c) and (3) in the above definition of the name Ṡα to
simplify notation later on. Note that, since we have T (∅) = ∅, conditions in P(∅,G0)

always have trivial first coordinate, and the poset P(∅,G0) is forcing equivalent to
Add(κ+, 1).

Throughout the rest of this paper, P refers to the poset Pε. Moreover, in order to
conform to the notation from [13], if G is Pα-generic over V for some α ≤ ε, then we
let G0 denote the induced Q0-generic filter over V.

Definition 4.14 A condition p in P is called flat if there exists a sequence
〈xα | i ∈ sprt(p)〉 with the property that xα ∈ H(κ+) and

p � α �Pα
“ p(α) = x̌α ”

hold for all α ∈ sprt(p) with the property that Pα is <κ+-distributive.

Just as in [13], the flat conditions turn out to be dense in P, as we will see in Lemma
4.20 below.

Although the density of the flat conditions is not needed to prove the κ+-Jensen-
completeness of P in Lemma 4.20, it will be crucial for the proofs of the following
statements:

• The “ tails ” of the above iteration are proper with respect to IAκ (see Lemma 4.27),
which in turn is important for the proof that the tree T (G0) has no cofinal branches
in P-generic extensions of V (see Lemma 4.28).

• If 2κ = κ+, then P satisfies the κ++-chain condition.

The function p( f0, g) defined in Definition 4.15 below is a natural attempt to form
a flat condition out of a (W , P)-generic filter for some elementary substructure W of
size κ .

Definition 4.15 Suppose W ≺ (H(θ),∈, P) with |W | = κ ⊆ W , and g ⊆ P ∩ W is a
(W , P)-generic filter in V.

(1) Set g0 = {q ∈ Q0 | ∃p ∈ g p(0) = q̌}.16
(2) Given 0 < α ≤ ε, we define

gα = {p � α | p ∈ g}.
16 This notation is chosen to keep in line with the notational convention from [13] of identifying P1 with
Q0 and referring to the induced Q0-generic filter by G0. Notice that

⋃
g0 is easily a condition in Q0.
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(3) Given 0 < α < ε with the property that the poset Pα is<κ+-distributive, let ċg,α ,
ḣg,α and Ẋg,α denote the canonical Pα-names with the property that,17 whenever
G is Pα-generic over V, then

• ċGg,α = {p(α)G | p ∈ g},
• ḣGg,α = ⋃{h | ∃X (h, X) ∈ ċGg,α}, and
• ẊG

g,α = ⋃{X | ∃h (h, X) ∈ ċGg,α}.
(4) If f0 is a condition inQ0 extending

⋃
g0, then we define a function p( f0, g)with

domain W ∩ ε by setting

p( f0, g) = 〈 f0〉�〈pairPα
(ḣg,α, Ẋg,α) | α〉 ∈ W

∩ [1, ε)wi th Pα<κ+ − distributive,

where pairPα
(ḣg,α, Ẋg,α) denotes the canonical Pα-name for the ordered pair of

ḣg,α and Ẋg,α .

Note that, in the last part of the above definition, the function p( f0, g) may or may
not be a condition in P. The following lemma shows how we can ensure that p( f0, g)
is a flat condition below every condition in g.

Lemma 4.16 Suppose W, g, and f0 are as in Definition 4.15. Then one of the following
statements holds:

(1) p( f0, g) is a flat condition in P that extends every element of g.
(2) There is an α ∈ W ∩ [1, ε) such that the following statements hold:

(a) p( f0, g) � α is a condition in Pα that extends every element of gα .
(b) If τ ∈ W is a Pα-name for a function from κ to the ordinals, then

p( f0, g) � α �Pα
“ τ ∈ W̌ ”.

(c) There is a condition q in Pα below p( f0, g) � α with the property that the
following statements hold true in V[G], whenever G is Pα-generic over V
with q ∈ G:
(i) cof(W ∩ κ+)

V = κ . In particular, we have W ∩ κ+ ∈ dom(
⋃

G0).
(ii) Every proper initial segment of (

⋃
G0)(W ∩ κ+) is an element of W ,

and is an ṠGα -node.
(iii) No proper initial segment of (

⋃
G0)(W ∩κ+) is an element of ran(ẊG

g,α).

Proof Set gε = g and, given β ≤ ε, let �β denote the statement asserting that
p( f0, g) � β is a flat condition in Pβ that lies below every element of gβ .

Suppose that�ε fails, i.e. that part (1) of the disjunctive conclusion of the statement
of the lemma fails. Let β ≤ ε be the least ordinal such that �β fails.

17 The idea behind this definition is that ċg,α names the evaluation of the α-th component of g after forcing
with Pα over V, and ḣg,α and Ẋg,α name the unions of the left and right components (respectively) of that
α-th component of g.
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Claim 4.17 β is a successor ordinal and an element of W .

Proof of Claim 4.17 First, we have β > 0, because the 0th component of p( f0, g) is f0,
which is assumed to be a condition stronger than

⋃
g0, and g0 is a (W , Q0)-generic

filter.
Now, assume, towards a contradiction, that β is a limit ordinal.
Since �α holds for all α < β and since the support of p( f0, g) is contained in the

κ-sized setW ∩ ε, it follows easily that p( f0, g) � β is a condition and is below every
element of gβ .

Furthermore, for each α ∈ W ∩ β, let

�xα = 〈xα
ξ | ξ ∈ W ∩ α〉

witness flatness of p( f0, g) � α. Then for all α0 < α1 < β, it follows easily that
xα0
ξ = xα1

ξ holds for all ξ ∈ W ∩ α0. So the �xα’s are coherent, and their union
witnesses flatness of p( f0, g) � β. This shows that �β holds, a contradiction.

The above computations yield an ordinal α with β = α + 1. Assume, towards a
contradiction, that α /∈ W .

Note that, if r ∈ g, then r ∈ W and, since sprt(r) is a κ-sized element of W and
κ ⊆ W , it follows that sprt(r) ⊆ W .

Since α is not an element of W , this shows that gα = gβ and p( f0, g) � β =
p
(
f0, g) � α. But, since �α holds, this immediately implies that �β holds too, a

contradiction. ��
The above claim shows that there is an α ∈ W ∩ [1, ε) with β = α + 1. We

claim that this α witnesses part (2) of the conclusion of the lemma holds true. By the
minimality of β, we know that (2a) holds and Pα is<κ+-distributive. Moreover, since
p( f0, g) � α is a condition that extends the (W , Pα)-generic filter gα , part (2b) holds
by Lemma 2.2.

Claim 4.18 There is an x ∈ H(κ+) with

p( f0, g) � α �Pα
“ p( f0, g)(α) = x̌ ”. (3)

Furthermore, if G is Pα-generic over V with p( f0, g) � α ∈ G, then the following
statements hold in V[G]:
(1) The pair (ḣGg,α, ẊG

g,α) satisfies all requirements to be a condition in the poset

P(ṠGα ,G0), with the possible exception of requirement (3(a)vi) of Definition 4.8.
In particular, the following statements hold:

(a) Every element of ran(ḣGg,α) is an ṠGα -node (i.e. requirement (3(a)iv) of Defini-
tion 4.8 is satisfied).

(b) No element of ran(ḣGg,α) extends an element of ran(ẊG
g,α) (i.e. requirement

(3(a)v) of Definition 4.8 is satisfied).

(2) If the pair (ḣGg,α, ẊG
g,α) is not a condition in P(ṠGα ,G0), then the following state-

ments hold:
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(a) cof(W ∩ κ+)
V = κ . In particular, we have W ∩ κ+ ∈ dom(

⋃
G0)).

(b) Every proper initial segment of (
⋃

G0)(W ∩ κ+) is an element of W , and is
an ṠGα -node.

(c) No proper initial segment of (
⋃

G0)(W ∩ κ+) is an element of ran(ẊG
g,α).

Proof of Claim 4.18 In order to make use of Lemma 4.10, it will be more convenient
to work with the transitive collapse of W instead of W itself. Let HW be the transitive
collapse of W , and let σ : HW −→ W ≺ H(θ) be the inverse of the collapsing map.

In the following, if b is a set, then we will write

b̄ = σ−1[b] ⊆ HW .

Note that b̄ = σ−1(b) holds for all b ∈ W and we will frequently use this abbreviation
in the following arguments.

Since g is a (W , P)-generic filter, we know that ḡ is a P̄-generic over HW , and, in
particular, it follows that ḡγ is P̄γ -generic over HW for all γ ∈ W ∩ ε.

If we define

k = {q(ᾱ)ḡα | q ∈ ḡα+1} ⊆ HW [ḡα],

then k is σ−1(Q̇α)ḡα -generic over HW [ḡα] with HW [ḡα+1] = HW [ḡα][k].
Set δ = (κ+)HW , and note that δ = crit (σ ), because |W | = κ ⊆ W .
Since �α holds, we know that p( f0, g) � α is a condition in Pα that extends every

element of the (W , Pα)-generic filter gα . In particular, p( f0, g) � α it is a total master
condition for W . By Lemma 2.2, every Pα-name for a function from κ to the ordinals
in W is forced by p( f0, g) � α to be evaluated to an element of W . It follows that

HW ∩ κOrd = HW [ḡα] ∩ κOrd. (4)

Let hk be the union of the left coordinates of k and let Xk be the union of the right
coordinates of k.

By (4), we can apply Lemma 4.10 with the ground model HW and the outer model
HW [ḡα] and derive the following statements:

• The function

hk : T (σ−1(Ṡα)ḡα )HW [ḡα] −→ σ−1(Ṫ (Ġ0))
ḡ0

is order preserving and every element of its range is a σ−1(Ṡα)ḡα -node in HW [ḡα].
• No element of ran(hk) extends an element of the range of the function

Xk : δ −→ (<δδ)HW .

Set x = (hk, Xk). In the following, we will show that p( f0, g) � α and x satisfy
(3), and p( f0, g) � α forces the other statements of the claim to hold true.

Let G be Pα-generic over V with p( f0, g) � α ∈ G. Work in V [G]. Since α ∈ W
and p( f0, g) � α is aW -totalmaster condition that, in particular, extends every element
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of gα , it follows that W [G] ∩ V = W , G ∩ W = gα , and σ can be canonically lifted
to an elementary embedding

σ̂ : HW [ḡα] −→ W [G] ≺ H(θ)[G].

satisfying

σ̂ (τ ḡα ) = σ(τ)G

for every P̄α-name τ in HW . Note that ran(σ̂ ) = W [G] holds.
Now, pick an element q of ḡα+1 ⊆ HW . By the definition of σ̂ , we then have

σ̂ (q(ᾱ)ḡα ) = σ(q(ᾱ))G = (σ (q)(σ (ᾱ)))G = (σ (q)(α))G .

Since q ∈ ḡα+1 implies that σ(q) ∈ gα+1, we can now conclude that σ̂ (q(ᾱ)ḡα ) ∈
ċGg,α . These computations show that σ̂ [k] ⊆ ċGg,α .

Next, fix a condition p in g. Since g ∪ {α} ⊆ W = ran(σ ), we then have p̄ �
(ᾱ + 1) ∈ ḡα+1 and p̄(ᾱ)ḡα ∈ k.

By the definition of σ̂ , we now know that

p(α)G = σ( p̄(ᾱ))G = σ̂ ( p̄(ᾱ)ḡα ) ∈ σ̂ [k].

This shows that ċGg,α ⊆ σ̂ [k] and, together with the above computations, we can
conclude that

σ̂ [k] = ċGg,α. (5)

By (5) and the elementarity of σ̂ , we also have σ̂ [hk] = ḣGg,α and σ̂ [Xk] = ẊG
g,α .

Note that conditions in σ−1(Q̇α)ḡα are elements of H(δ)HW [ḡα] and hence k is a
subset of H(δ)HW [ḡα].

Since the critical point of σ̂ is δ, it follows that k, hk and Xk are all pointwise fixed
by σ̂ . In particular, we have

x = (hk, Xk) = (ḣGg,α, ẊG
g,α). (6)

Since p( f0, g)(α) is, by definition, the Pα-name pairPα
(ḣg,α, Ẋg,α), this completes

the proof of (3).
Part (1) of the claim follows by the properties of (hk, Xk) over HW [ḡα] discussed

above, together with the equality (6), elementarity of σ̂ , and the fact that σ̂ fixes
bounded subsets of δ that lie in HW [ḡα]. For example, to verify requirement (4.8(a)iv)
of Definition 4.8, suppose t is in the range of hk . Then t is in the range of the left
coordinate of some condition in k ⊆ σ̂−1(P(ṠGα ,G0)

V[G]), and hence t is an σ̂−1(ṠGα )-
node in HW [ḡα]. By elementarity of σ̂ and the fact that σ̂ fixes y, it follows that t is
an ṠGα -node in V[G].
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The remaining requirements of Definition 4.8, except for requirement (3(a)vi), are
easily verified for the pair displayed in (6) in a similar manner.

Now, we prove that p( f0, g) � α forces the statements in part (2) of the claim.
Recall G is an arbitrary Pα-generic filter over V with p( f0, g) � α ∈ G. Assume
that the ordered pair (6) is not a condition in P(ṠGα ,G0) in V[Gi ]. In the following,
we show that the statements (2a), (2b), and (2c) of the claim hold true in V[G]. By
part (1) of the claim, it must be requirement (3(a)vi) of Definition 4.8 that fails. In
particular, there is an increasing sequence �y = 〈yζ | ζ < κ〉 of nodes in the range of
hk in V[G] such that the function f ȳ = ⋃

ζ<κ yζ is not an element of T (G0). Since
the elements of the range of hk are κ-sized objects in HW [ḡα] and hence in HW by
(4), this implies that the domain of f �y is at most δ = (κ+)HW . In summary, there is

some ordinal γ ∈ (Sκ+
κ )V such that

V [G] |� “γ ≤ δ = (κ+)HW and f �y � γ = (
⋃

G0)(γ ) ”. (7)

By part (4) of Lemma 4.10 – viewing HW as the ground model V, HW [ḡα] as
the outer model V1, k as the generic filter K , and V [G] as the outer model M from
the statement of that lemma – the ordinal γ cannot be strictly smaller than δ, and
hence we can conclude that γ = δ. But this implies that cof(W ∩ κ+)

V = cof(δ)V =
cof(γ )V = κ , proving part (2a) of the claim.

In summary, we have shown that W ∩ κ+ = dom( f �y) and

f �y = (
⋃

G0)(W ∩ κ+). (8)

Since f �y is a union of functions in the range of hk , and (4) together with the fact that
the critical point of σ is δ imply that hk ⊆ W , every proper initial segment of f �y is an
element of W . Furthermore, every proper initial segment of f �y is extended by some
y ∈ ran(hk), which is an ṠGα -node in V[G] by part (1) of the claim. Hence, every
proper initial segment of f �y is an ṠGα -node in V[G], and is an element ofW . Together
with (8), this proves part (2b) of the claim. Finally, to prove part (2c) of the claim,
suppose γ ∈ dom(Xk), define η = dom(Xk(γ )) and assume, towards a contradiction,
that f �y � η = X̄(α). Note that η < δ, because Xk ⊆ HW [ḡα]. In particular, we have
yζ � η = Xk(α) for some ζ < κ . But this contradicts the fact from part (1) that
nothing in the range of hk extends any function from the range of Xk . ��

It remains to prove part (2c) of the lemma, which will essentially follow from part
(2) of Claim 4.18, though we first must dispense with a technicality. Recall that �α+1
fails, but �α holds. Next, we observe that the failure of �α+1 is due to the function
p( f0, g) � (α+1) not being a condition at all (rather than being a condition but failing
to extend gα+1, or being a condition but failing to be flat):

Claim 4.19 Some condition in Pα below p( f0, g) � α forces that

p( f0, g)(α) = pairPα
(ḣg,α, Ẋg,α) (9)

is not a condition in Q̇α .

123



Forcing axioms and the complexity of non-stationary ideals 69

Proof of Claim 4.19 Assume not, i.e. suppose that p( f0, g) � α forces that the pair in
(9) to be a condition in Q̇α . Since the components of the pair in (9) are given by the
union of the left and right coordinates of ċg,α , the fact that the ordering of Q̇α is given
reversed inclusion now implies that the condition p( f0, g) � α forces p( f0, g)(α)

to be stronger than every condition in ċg,α . Since the validity of �α implies that
p( f0, g) � α is stronger than every condition in gα , it follows that

p( f0, g) � (α + 1) = (p( f0, g) � α)�(α,pairPα
(ḣg,α, Ẋg,α))

is stronger than every condition in gα+1.
Furthermore, by Claim 4.18, there is an xα ∈ V such that

p( f0, g) � α �Pα
“ x̌α = p( f0, g)(α) ”.

Since �α holds, we know that p( f0, g) � α is flat. Let 〈x� | � ∈ W ∩ α〉 witness its
flatness. Then the sequence 〈x� | � ∈ W ∩ (α + 1)〉witnesses the flatness of p( f0, g) �
(α + 1). In summary, p( f0, g) � (α + 1) is a flat condition below every member of
gα+1, contradicting the fact that �α+1 fails. ��

Part (2c) of the lemma now follows immediately from Claim 4.19, and part (2) of
Claim 4.18. ��

The above results now allow us to prove the following key lemma.

Lemma 4.20 The poset P is κ+-Jensen complete, and the flat conditions are dense in
P.

Before we prove this result, we make a couple of remarks.

Remark 4.21 In [13, Claim 3.13], a weaker version of Lemma 4.20, stating that P

is κ-proper, was proven. This concept was defined in [13, Definition 3.4] and only
makes sense under the assumption that κ<κ = κ . It, in particular, implies that the
given poset is <κ+-distributive.

In the non-GCH setting, in particular, whenwe do not assume κ<κ = κ , perhaps the
most natural analogue of κ-properness is our notion of IAκ -proper (Defininition 2.8).
In fact, changing just a few words in the proof of [13, Claim 3.13] would suffice to
prove that (even without GCH) the poset P is proper for IAκ and is <κ+-distributive.
However, that conclusion does not suffice for applications in our main theorems,
since, for example, IAω1 -properness, even together with <ω2-strategic closure, does
not guarantee preservation of the Proper Forcing Axiom.18

We seem to need the stronger property of κ+-Jensen completeness (i.e. <κ+-
directed closure), which we prove in Lemma 4.20. This requires some reorganization
and strengthening of the argument of [13, Claim 3.13], but the main ideas of the proof
of Lemma 4.20 are very similar to the proof of [13, Claim 3.13].

18 E.g. if 2ω1 = ω2, one can code IAω1 ∩ ℘ω2 (H(ω2)) as a stationary subset S of S21 . Then, shooting an
ω1-club through S with initial segments is IAω1 -totally proper, but kills PFA.
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Remark 4.22 Iterations using <κ+-support, where each iterand is <κ+-directed
closed, are themselves <κ+-directed closed. However, this fact seems to not be appli-
cable to the iteration Pε constructed in Definition 4.12. That is, it is not clear if, say,
the first non-trivial poset used of the form P(S,G0) is equivalent to a <κ+-directed
closed from the point of view of V [G0] (and we suspect it is not, in general). The key
to Lemma 4.20 (and to the analogous, but weaker [13, Claim 3.13]) is the flexibility
in having G0 not be decided yet.

Proof of Lemma 4.20 First, we check κ+-Jensen completeness. Since each iterand is
<κ-closed and the iteration uses κ-sized supports, the entire iteration is<κ-closed. So
by Corollary 2, to show thatP is κ+-Jensen complete, it suffices to show that whenever

• W ≺ (H(θ),∈, P) with |W | = κ and W ∩ κ+ ∈ κ+, and
• g ⊆ W ∩ P is a (W , P)-generic filter,

then g has a lower bound in P. So fix such a filter g for the remainder of the proof.
Given α ∈ W ∩ [0, ε], define gα as in Definition 4.15. Set δ = W ∩ κ+. We consider
two cases:

Case 1: cof(δ) < κ . Set f0 = ⋃
g0, and consider the function p( f0, g) from Def-

inition 4.15. We claim that p( f0, g) is flat condition and lies below all members of
g.

Assume not. Then, byLemma4.16, there is anα ∈ W∩[1, ε) such that p( f0, g) � α

is a condition below all conditions in gα , and there is some qα ≤Pα
p( f0, g) � α in

Pα that forces all the statements in part (2c) of Lemma 4.16 to hold. In particular, by
part (2(c)i), we know that cof(δ) = cof(W ∩ κ+) = κ , contrary to our case.

Case 2: cof(δ) = κ . Since |W | = κ < δ, we can fix t : δ −→ δ such that t � κ is not
an element of W . Define

f0 = (
⋃

g0) ∪ {(δ, t)}.

Given γ ∈ δ ∩ Sκ+
κ , we have t � γ /∈ W and (

⋃
g0)(γ ) ∈ W . In particular, we

have t � γ 
= (
⋃

g0)(γ ) for all γ ∈ δ ∩ Sκ+
κ . Since cof(δ) = κ , this shows that f0 is

a condition in Q0 that extends
⋃

g0.
Let p( f0, g) be the function defined in Definition 4.15. We claim that p( f0, g) is a

flat condition that lies below every element of g. Assume not. Then, by Lemma 4.16,
there is an α ∈ W ∩ [1, ε) such that p( f0, g) � α is a condition in Pα , and that, by
part (2(c)ii) of that lemma, there is some condition q ≤Pα

p( f0, g) � α such that q
forces that every proper initial segment of (

⋃
Ġ0)(δ̌) is an element of W . But the 0th

component of p( f0, g) � α, and hence of q, extends the function f0, and therefore

q(0) �P0 “ (
⋃

Ġ0)(δ̌) = ť ”.

In particular, every proper initial segment of t is an element of W , contrary to our
choice of t .

This completes the proof of κ+-Jensen completeness. To see that the flat conditions
are dense inP, let p0 be any condition in P. FixW ≺ (H(θ),∈, P, p0) such that |W | =
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κ ⊆ W and W ∈ IAκ . By Lemma 2.7 and the <κ-closure of P, there exists a (W , P)-
generic filter g such that p0 ∈ g. Note that W ∈ IAκ implies that cof(W ∩ κ+) = κ .
This shows that we can repeat the argument from the above Case 2, define f0 as above
and conclude that the function p( f0, g) is a flat condition that is below every member
of g and therefore also below p0. ��

Lemma 4.20 and Corollary 2 now immediately yield the following corollary:

Corollary 3 The poset P is forcing equivalent to a <κ+-directed closed forcing. In
particular, it adds no new sets of size κ , and, in the case κ = ω1, it preserves all
standard forcing axioms, such as MM++. ��

Remember that the order o(p) of a condition in a poset of the form P(S,G0) was
defined in part (4) of Definition 4.8.

Lemma 4.23 If p is a flat condition in P, then there exists β < κ+ with the property
that

p � α �Pα
“o(p(α)) ≤ β̌ ”

holds for all 1 ≤ α ∈ sprt(p).

Proof Let 〈xα | α ∈ sprt(p)〉 be a sequence witnessing the flatness of p. For each
α ∈ sprt(p), pick βα < κ+ such that βα is not in the transitive closure of xα . Since
|sprt(p)| ≤ κ , we know that

β = sup{βα | α ∈ sprt(p)} < κ+

has the desired properties. ��
Our next task is to prove that tails of the iteration behave nicely. But first we need

tail versions of Definition 4.15 and Lemma 4.16. Note that in Definition 4.24 below,
since α0 ≥ 1, the entire filter G0 has already been determined. So unlike Definition
4.15, the candidate for a condition below g will not involve any f0.

Definition 4.24 Suppose that α0 ∈ [1, ε) and Gα0 is Pα0 -generic over V. Working in
V[Gα0 ], suppose that W ≺ (H(θ)[Gα0 ],∈, P/Gα0) with |W | = κ ⊆ W , and g ⊆
W ∩P/Gα0 is a (W , P/Gα0)-generic filter. For each α ∈ W ∩[α0, ε), define Pα/Gα0 -
names ċg,α , ḣg,α and Ẋg,α analogously to Definition 4.15, and define a function p(g)
with domain W ∩ [α0, ε) by setting

p(g) = 〈pairPα/Gα0
(ḣg,α, Ẋg,α) | i ∈ W ∩ [α0, ε)〉.

We now also have a tail variant of Lemma 4.16:

Lemma 4.25 Suppose α0 ∈ [1, ε) and Gα0 is Pα0 -generic overV. Work in V [Gi0 ] and
suppose W and g are as in Definition 4.24. Given α ∈ [α0, ε], set

gα = {p � α | p ∈ g}.

Then one of the following statements holds:
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(1) p(g) is a flat condition in P/Gα0 that extends every element of g.
(2) There is an α ∈ W ∩ [α0, ε) such that the following statements hold:

(a) p(g) � α is a flat condition in Pα/Gα0 that is stronger than every element of
gα .

(b) If τ ∈ W is a Pα/Gα0 -name for a function from κ to the ordinals, then

p(g) � α �Pα/Gα0
“ τ ∈ W̌ ”.

(c) There is a condition q in Pα/Gα0 below p(g) � α with the property that the
following statements hold true in V[Gα0 ,G], whenever G is Pα/Gα0 -generic
over V[Gα0 ] with q ∈ G:
(i) cof(W ∩ κ+) = κ .
(ii) Every proper initial segment of (

⋃
G0)(W ∩κ+) is an element of W , and

is an ṠGα -node.
(iii) No proper initial segment of (

⋃
G0)(W ∩κ+) is an element of ran(ẊG

g,α).

Proof The proof is almost identical to the proof of Lemma 4.16, except we work in
V[Gα0 ] instead of V. We leave the details to the reader. ��
Lemma 4.26 If α < ε and G is Pα-generic over V, then the tail of the iteration P/G
is <κ-closed in V[G].
Proof Let 〈qξ | ξ < μ〉 be a descending sequence with μ < κ in P/G in V[G]. Since
P/G ⊆ P and Lemma 4.20 shows that Pα is <κ-closed in V, this sequence is an
element of V. Let Ġ denote the canonical Pα-name for the generic filter in V. Fix a
condition p in G such that

p �Pα
“ Every condition in Ġ is compatiblewi th q̌ξ in P̌ ”

holds in V for all ξ < μ. Work in V. Given ξ < μ, a standard density argument now
shows that

p �Pα
“ q̌ξ � α̌ ∈ Ġ ”

and the separativity of Pα allows us to conclude that p ≤Pα
q � α holds.

Fix a condition r below p in Pα and set

rξ = r�(qξ � [α, ε))

for all ξ < μ. Then 〈rξ | ξ < μ〉 is a descending sequence of conditions in P, and, by
the proof of Lemma 4.20, this sequence has a lower bound rμ in P. Then rμ � α ≤Pα

r
and rμ ≤P qξ for all ξ < μ.

By genericity, we can now find a condition q in P with the property that q � α ∈ G
and q ≤P qξ for all ξ < μ. But then we can conclude that q is a condition in P/G in
V[G] with q ≤P/G qξ for all ξ < μ. ��
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The proof of the following lemma is similar to the proof of [13, Claim 3.14], but
there are some subtle differences since we do not assume that κ<κ = κ . Roughly, we
replace their use of κ-properness with IAκ -properness (Definition 2.8) and verify that
the argument still goes through.

Lemma 4.27 If α0 < ε and G is Pα0 -generic overV, then the tail of the iteration P/G
is IAκ -totally proper in V[G].

Proof For α0 = 0, the statement of the lemma follows immediately from Lemmas 2.7
and 4.20. Therefore, we from now on assume that 1 ≤ α0 < ε.

Let Gα0 be Pα0 -generic over V and work in V[Gα0 ]. Let θ be a sufficiently large
regular cardinal, let � be a well-ordering of H(θ) = H(θ)V[Gα0 ], let

W ≺ (H(θ),∈, α0, P/Gα0 ,�)

with W ∈ IAκ , and let p0 be a condition in W ∩ (P/Gα0). In the following, we will
find a (W , P/Gα0)-total master condition below p0. Define

t = (
⋃

G0)(W ∩ κ+),

which is well-defined because W ∈ IAκ implies that cof(W ∩ κ+) = κ .

Case 1: There exists ζ ∈ W ∩ κ+ with t � ζ /∈ W . Since Lemma 4.26 implies that
P/Gα0 is <κ-closed, we can apply Lemma 2.7 to find a (W , P/Gα0)-generic filter
g that includes p0. Let p(g) be the function defined in Definition 4.24 and assume,
towards a contradiction, that p(g) is not a condition inP/Gα0 that is stronger than every
element of g. Then, by part (2(c)ii) of Lemma 4.25, there is an α ∈ W ∩ [α0, ε) and
some condition in Pα/Gα0 below p(g) � α forcing that every proper initial segment
of (

⋃
G0)(W ∩ κ+) is an element of W . But this implies that every proper initial

segment of t is an element of W , contrary to our case. This allows us to conclude that
p(g) is a (W , P/Gα0)-total master condition below p0.

Case 2: If ζ ∈ W ∩ κ+, then t � ζ ∈ W . Since W ∈ IAκ , there is a sequence

�D = 〈Dξ | ξ < κ〉

listing all open dense subsets of P/Gα0 that are elements of W , and such that every
proper initial segment of �D is an element of W . Recursively define a descending
sequence �p = 〈pξ | ξ < κ〉 of conditions in P/Gα0 as follows:

• Given ξ < κ , let p∗
ξ be the �-least flat condition in P/Gα0 below pξ that is an

element of Dξ . Such a condition exists by Lemma 4.20 and the open density of
Dξ . By Lemma 4.23, there exists β < κ+ with

p∗
ξ � α �Pα

“o(p∗
ξ (α)) ≤ β̌ ”
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for all 1 ≤ α ∈ sprt(p∗
ξ ). Given α ∈ [α0, ε), let ḟα and Ẏα denote the canonical

Pα/Gα0 -names with the property that

p∗
ξ (α)G = ( ḟ Gα , Ẏ G

α )

holds whenever G is (Pα/Gα0)-generic over V[Gα0 ] with p∗
ξ � α ∈ G. Note that,

by the choice of β, for each α ∈ sprt(p∗
ξ ), the condition p∗

ξ � α forces that β is

larger than all domains of elements of the range of ḟα , and larger than all elements
in the domain of Ẏα . In particular, if α0 ≤ α ∈ sprt(p∗

ξ ) andG is (Pα/Gα0)-generic
over V[Gα0 ] with p∗

ξ � α ∈ G, then

( ḟ Gα , Ẏ G
α ∪ {(β + 1, t � (β + 1))}) (10)

is a condition in Q̇
G
α below p∗

ξ (α)G .19 This shows that there is a condition pξ+1
below p∗

ξ in P with sprt(pξ+1) = sprt(p∗
ξ ) and the property that whenever

α0 ≤ α ∈ sprt(pξ+1) and G is (Pα/Gα0)-generic over V[Gα0 ] with p∗
ξ � α ∈ G,

then pξ+1(α)G is equal to the condition in (10).
Now, assume that pξ is an element of W . Then p∗

ξ is obviously definable in
(H(θ)[Gα0 ],∈, P,Gα0 ,�) using the parameters pξ and Dξ , which are both con-
tained in W . Since p∗

ξ ∈ W , then β can also be taken to be an element of W .
Finally, the condition pξ+1 is definable from p∗

ξ , β, and t � (β + 1), all of which
are elements of W because of the case we are in. These arguments show that
pξ ∈ W implies that pξ+1 ∈ W .

• If ξ < κ is a limit ordinal, then we define pξ be the �-least lower bound of the
sequence 〈pζ | ζ < ξ〉 in P.20

Note that every proper initial segment of �p is an element ofW , becauseW contains
all proper initial segments of t and each proper initial segment of �p is definable in the
structure (H(θ)[Gα0 ],∈,�, P) using the parameter p0 and some sufficiently long21

proper initial segment of t . Hence, not only is each pξ+1 an element of Dξ , but is in
fact an element of Dξ ∩W . In particular, the set {pξ | ξ < κ} generates a (W , P/Gα0)-
generic filter. Let g denote this filter, and let p(g) be the function defined in Definition
4.24.

Now, assume, towards a contradiction, that p(g) is not a condition below every
member of g. Then by part (2(c)iii) of Lemma 4.25, there is an α ∈ W ∩ [α0, ε)

and a condition q in Pα/Gα0 below p(g) � α with the property that whenever G
is (Pα/Gα0)-generic over V[Gα0 ] with q ∈ G, then no proper initial segment of
t = (

⋃
G0)(W∩κ+) is an element of ran(ẊG

g,α). Sinceα ∈ W and the set {pξ | ξ < κ}
generates the (W , P/Gα0)-generic filter g, we can find ξα < κ with the property that
α ∈ sprt(pξα+1). Then q ≤ pξα+1 � α. Let G be (Pα/Gα0)-generic over V [Gα0 ] with
q ∈ G. Work in V [Gα0 ,G]. Since pξα+1 ∈ g, we know that pξα+1(α)G ∈ ċGg,α and

19 Recall Remark 4.9 showing that, for successor ordinals, the right coordinate of a condition does not have
to agree with G0).
20 Such a lower bound exists by Lemma 4.26.
21 The length of this initial segment of t might depend on the given initial segment of �p.
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hence ẊG
g,α extends the right coordinate of pξα+1(α)G . By construction, the range of

the right coordinate of pξα+1(α)G contains a proper initial segment of t , contradicting
the properties of α and q.

Again, we can conclude that p(g) is a (W , P/Gα0)-total master condition below
the condition p0. ��
Corollary 4 Let G be P-generic over V, let α ∈ (0, ε), let Gα be the filter on Pα

induced by G, and let S = ṠGα
α . Then (Sκ+

κ \ S)V[Gα] is stationary in V [G].
Proof First, if S = ∅, then the conclusion of the lemma holds trivially, because Corol-
lary 3 implies that (Sκ+

κ )V[Gα] = (Sκ+
κ )V[G]. In the other case, we know that Sκ+

κ \ S
contains a stationary set in I [κ+] in V[Gα], and hence a combination of Lemma 2.12,
Corollary 3 and Lemma 4.27 ensures that Sκ+

κ \ S remains stationary in V[G]. ��
Lemma 4.28 If G is P-generic over V, then the tree T (G0) has no cofinal branches
in V[G].

Our proof of this lemma is similar to the proof of [13, Claim 3.15], but we must
make the following changes:

• Whereas the proof of [13, Claim 3.15] makes use of <κ-closed elementary sub-
models of size κ (whose existence requires the assumption κ<κ = κ), we instead
use elementary submodels in IAκ .

• We use Corollary 4 to ensure that the complement of each Ṡα is stationary in the
final model (this is used to get the right analogue of statement (8) on page 1691 of
[13]).

Proof of Lemma 4.28 Let ḃ be aP-name for a function from κ+ to κ+. Assume, towards
a contradiction, that there is a condition p in P that forces ḃ to be a cofinal branch
through T (Ġ).

Fix W ≺ (H(θ),∈, P, ḃ, p) with W ∈ IAκ . Set δW = W ∩ κ+. By the <κ-closure
of P and Lemma 2.7, there exists a (W , P)-generic filter g containing p.

By the (W , P)-genericity of g, the<κ+-distributivity of P, and the fact that ḃ ∈ W ,
it follows that for every γ < δW , some condition pγ in g decides the value of ḃ � γ .
Define

t =
⋃

{s ∈ <κ+
κ+ | ∃γ < δW pγ �P “ š = ḃ � γ̌ ”}. (11)

Then t is a function from δW to δW . Moreover, by the (W , P)-genericity of g and the
fact that ḃ is forced to be a branch through Ṫ (Ġ0), we know that

∀γ ∈ δW ∩ Sκ+
κ ∃p ∈ g p �P “ ḃ � γ 
= (

⋃
Ġ0)(γ ) ”. (12)

Hence, if we let g0 denote the 0-th component of the (W , P)-generic filter g, then we
have t � γ 
= (

⋃
g0)(γ ) for all γ < δW . It follows that

f0 = (
⋃

g0) ∪ {(δW , t)}
is a condition in Q0.
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Let p( f0, g) be the function defined in Definition 4.15. Then p( f0, g) is not a
condition in P that extends every element of g, because otherwise it would force that
ḃ � δW = t = (

⋃
Ġ0)(δW ) and hence it would also force that ḃ � δW /∈ Ṫ (Ġ0),

contradicting our assumptions on p.
In this situation, Lemma 4.16 yields an α ∈ W ∩ [1, ε) such that p( f0, g) � α

is a condition in Pα below every member of gα and there is a condition q below
p( f0, g) � α in Pα with the property that whenever G is Pα-generic over V with
q ∈ G, then every proper initial segment of (

⋃
G0)(δW ) is an element of W , and is

an ṠGα -node. Since the 0-th coordinate of q extends f0, we know that

q �Pα
“ (

⋃
Ġ0)(δ̌W ) = ť ”. (13)

Let HW denote the transitive collapse ofW , and let σ : HW −→ W ≺ H(θ) denote
the inverse of the transitive collapsing map of W . Set ḡ = σ−1[g], ḡα = σ−1[gα],
P̄ = σ−1(P) and P̄α = σ−1(Pα). Let G be Pα-generic over V with q ∈ G. Since q
extends every element of the (W , Pα)-generic filter gα , it follows that G ∩ W = gα ,
ḡα is P̄α-generic over HW , and the map σ can be lifted to an elementary

σ̂ : HW [ḡα] −→ H(θ)[G]

by setting σ̂ (τ̄ ḡα ) = (σ (τ̄ ))G for all P̄α-names τ̄ in HW . Moreover, we know that ḡ
is P̄-generic over HW and the function

b̄ = σ−1(ḃ)ḡ : δW −→ δW

is an element of HW [ḡ], but not necessarily an element of its inner model HW [ḡα].
Claim 4.29 t = b̄.

Proof of Claim 4.29 Fix γ < δW , and set s = t � γ . By earlier remarks, we know that
s ∈ W and, by the definition of t in (11), there is p ∈ g ⊆ W with p �P “ ḃ � γ̌ = š ”.
We now know that p, ḃ, γ , and s are elements ofW = ran(σ ), and since crit (σ ) = δW ,
it follows that σ fixes γ and s. The elementarity of σ now implies that

σ−1(p) �
P̄
“σ−1(ḃ) � γ̌ = š ”

holds in HW . Moreover, since p ∈ g, we have σ−1(p) ∈ ḡ and hence b̄ � γ = s holds
in HW [ḡ]. ��

Let S̄ = σ−1(Ṡα)ḡα . By Corollary 4 and the elementarity of σ : HW −→ H(θ), we
know that (SδW

κ \ S̄)HW [ḡα] remains stationary when going from HW [ḡα] to HW [ḡ].
Since b̄ maps from δW to δW and (SδW

κ \ S̄)HW [ḡα] is stationary in HW [ḡ], there is an
� < δW such that the following statements hold in HW [ḡ]:
• cof(�) = κ .
• � is closed under b̄.
• � /∈ S̄.
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Then b∗ = b̄ � � maps from � to �, and, by the <δW -distributivity of P̄ over
HW , we know that b∗ is an element of HW . Moreover, since crit

(
σ̂
) = δW , we have

σ̂ (b∗) = b∗. In addition, since � = dom(b∗) ∈ (SδW
κ \ S̄)HW [ḡα] and � is closed

under b∗, we can conclude that HW [ḡα] believes that b∗ is not a S̄-node.22 Then the
elementarity of σ̂ : HW [ḡα] −→ H(θ)[G] implies that σ̂ (b∗) = b∗ is not a ṠGα -node
in H(θ)[G]. By Claim 4.29, we now have b∗ = t � �. So t � � is not a ṠGα -node,
contradicting our earlier arguments. ��

We are now ready to complete the proof of the main technical result of this paper.

Proof of Theorem 4.2 Let κ be an infinite regular cardinal and let P = Pε be the poset
constructed in Definition 4.12. Then Lemma 4.20 shows that part (1) of the theorem
holds.

Next, we prove part (2) of the theorem. We will prove that the poset P is (2κ)+-
stationarily layered (see [3, Definition 29]) in V, which, by [3, Lemma 4], implies
that P is (2κ)+-Knaster. A poset R is λ-stationarily layered if for some sufficiently
large regular cardinal θ , there are stationarily-many M ∈ ℘∗

λ(H(θ)) such that M ∩ R

is a regular suborder of R. Equivalently, we can demand that every condition p in R

has a reduction into M ∩ R, i.e. there exists q ∈ M ∩ R such that all extensions of q
in M ∩ R are compatible with p in P.

For all sufficiently large regular cardinals θ , the set

R = {M ∈ ℘∗
(2κ )+(H(θ)) | M ≺ H(θ), κM ⊆ M, P ∈ M}

is stationary in ℘(2κ )+(H(θ)).
We prove that R witnesses the (2κ)+-stationary layeredness of P. Fix M ∈ R and a

condition p in P. By the density of flat conditions in P, we we may assume that there
exists a sequence 〈xα | α ∈ sprt(p)〉 that witnesses that p is flat.

Furthermore, we may assume that

p(α) = x̌α ⇐⇒ p(α) 
= ∅̌ ⇐⇒ p � α �Pα
“ x̌α ∈ Q̇α ”

holds for all α ∈ sprt(p), because redefining p in this way results in a condition
equivalent to p.

Set s = M ∩ sprt(p) and define q = p � s.

Claim 4.30 The condition q is a reduction of p into M ∩ P.

Proof of Claim 4.30 First, we verify that q is an element of M . Since we have xα ∈
H(κ+) ⊆ M for all α ∈ sprt(p), the closure properties of M imply that the sequence
〈xα | α ∈ s〉 is an element of M . Since the condition q is definable from the sequence
〈xα | α ∈ s〉, it follows that q is also an element of M .

Next, assume r is a condition in M ∩ P below q. Let p ∧ r denote the natural
amalgamation of p and r , i.e. we have (p ∧ r)(β) = r(β) for all β ∈ sprt(r), and
(p ∧ r)( j) = p(β) for all β ∈ sprt(p) \ sprt(r). Since p ∧ r is clearly a function
whose support has size at most κ , it is a condition in P. We verify that p ∧ r is below

22 Recall from Definition 4.8 that a function s is an S-node if no element of Sκ+
κ \ S is closed under s
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both p and r in P by checking inductively that (p ∧ r) � β is below both p � β and
p � β for all β ≤ ε. Suppose this statement holds at all α < β ≤ ε. Clearly, if β is a
limit ordinal, then it holds at β as well. Hence, we may assume that β = α + 1 and
that (p ∧ r) � α lies below both p � α and r � α. If α is not in the support of either p
or r , then the above statement trivially holds at β as well. Hence, we have to consider
the following two cases:

Case 1: α ∈ sprt(r). By definition of the condition p∧ r , we have (p∧ r)(α) = r(α)

and r ≤P q implies that r � α �Pα
“r(α) ≤

Q̇α
q(α) ”. Since (p ∧ r) � α ≤Pα

r � α

by our induction hypothesis, this shows that

(p ∧ r) � α �Pα
“ (p ∧ r)(α) ≤

Q̇α
q(α) ”. (14)

Moreover, since r ∈ M and |sprt(r)| ≤ κ ⊆ M , we have α ∈ sprt(r) ⊆ M . In
particular, if α ∈ sprt(p), then α ∈ s and hence p(α) = q(α). In combination with
(14), this yields

(p ∧ r) � α �Pα
“ (p ∧ r)(α) ≤

Q̇α
p(α) ”. (15)

In the other case, if α /∈ sprt(p), then (15) holds trivially.

Case 2: α ∈ sprt(p)\sprt(r). By the definition of (p∧r), we have (p∧r)(α) = p(α).
Since α /∈ sprt(r), it follows trivially that

(p ∧ r) � α �Pα
“ (p ∧ r)(α) ≤

Q̇α
p(α) ≤

Q̇α
r(α) ”.

These computations show that q is a reduction of p into M ∩ P. ��
This concludes the proof that the poset is P is (2κ)+-stationarily layered, and hence

(2κ)+-Knaster.
We now verify part (3a) of the theorem. Let G be P-generic over V. Suppose S is a

bistationary subset of Sκ+
κ inV[G] such that Sκ+

κ \S contains a stationary set T in I [κ+]
in V[G]. Pick a club D in κ+ and a κ+-sequence �z of sets from [κ+]<κ witnessing
that T is an element of I [κ+] in V[G]. A combination of Lemma 4.20 and part (2)
of this theorem now shows that there is a subset P ∈ V of Sκ+

κ × 2κ and a sequence
〈qγ,ξ | (γ, ξ) ∈ P〉 ∈ V of flat conditions in P such that ḂG = S, where Ḃ is the P-
name {(γ̌ , qγ,ξ ) | (γ, ξ) ∈ P}. Pick an element s of the setN defined before Definition
4.12 such that dom(s) = P and, if (γ, ξ) ∈ P , then dom(s(γ, ξ)) = sprt(qγ,ξ ) and
qγ,ξ (�) = x̌ for all � ∈ dom(s(γ, ξ)) with b(γ, ξ)(�) = x . By our assumptions on ε

and b, part (2) of this theorem allows us to find 0 < α < ε with the property that Ḃ
is a Pα-name, b(α) = s and �z, D, T ∈ V[Gα], where Gα is the filter on Pα induced
by G. Clearly, the fact that T is bistationary in V[G] implies that T is bistationary
in V[Gα]. Moreover, since V[G] and V[Gα] have the same κ-sequences of ordinals,
every element of D ∩ T is also approachable with respect to �z in V[Gα]. Hence, we
know that Sκ+

κ \ S contains a stationary set in I [κ+] in V[Gα]. Since our choice of α

ensures that Ḃα = Ḃ, we can conclude that ṠGα
α = ḂGα

α = ḂG = S and hence forcing
with Q̇

Gα
α over V[Gα] adds an order-preserving function from T (S) to T (G0).
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Finally, we prove part (3b) of the theorem. Hence, assume that κ<κ ≤ κ+ holds
in V and fix an enumeration �z = 〈zξ | ξ < κ+〉 of all elements of [κ+]<κ in V. By
Lemma 2.10, the set M of all γ ∈ Sκ+

κ that are approachable with respect to �z is a
maximal element of I [κ+] ∩ ℘(Sκ+

κ ) mod NS in V. Since P is <κ+-distributive and
therefore �z still enumerates all of [κ+]<κ in V[G], it follows that M is still the set of
all γ ∈ Sκ+

κ that are approachable with respect to �z in V [G], and hence M is still a
maximal element of I [κ+] ∩ ℘(Sκ+

κ ) mod NS in V[G].
Now, suppose that S ∈ V[G] is bistationary in Sκ+

κ and M \ S is stationary. Since
M ∈ I [κ+] and I [κ+] is an ideal, it follows that M \ S ∈ I [κ+]. So M \ S is a
stationary set in I [κ+]. Hence by part (3a) of the theorem, there is an order-preserving
function from T (S) to T (G0) in V [G]. ��

5 Applications

We now apply Theorem 4.2 to prove the results presented in the introduction of the
paper.

Corollary 5 Let κ be an infinite regular cardinal satisfying κ<κ ≤ κ+, let P be the
partial order given byTheorem4.2 and let M beamaximumelement of I [κ+]∩℘(Sκ+

κ )

mod N S. If G is P-generic over V, then the set N S � M is �1(H((2κ)+))-definable
in V[G].
Proof Work in V[G] and let T be the subtree of <κ+

κ+ given by Theorem 4.2. Then
T ⊆ <κ+

κ+ ∈ H((2κ)+). Define S to be the collection of all subsets A of M such
that either there exists a closed unbounded subset C of κ+ with C ∩ M ⊆ A or there
exists an order-preserving function from the tree T (Sκ+

κ \ A) into the tree T .
Then the set S is definable by a �1-formula with parameters M , T and <κ+

κ+.

Claim 5.1 The set S is equal to the collection of all subsets of M that are stationary
in κ+.

Proof of Claim 5.1 First, let A ⊆ M be stationary in κ+ with the property that there is
no club C in κ+ with C ∩ M ⊆ A. Since M is stationary in κ+, this shows that A
is bistationary in Sκ+

κ , M \ A is stationary, and hence Theorem 4.2 yields an order-
preserving function from T (Sκ+

κ \ A) into T that witnesses that A is contained in S.
This argument shows that S contains all stationary subsets of M .

Now, assume, towards a contradiction, that there is a non-stationary subset A of κ+
that is contained in S. Then there is an order-preserving embedding of T (Sκ+

κ \ A)

into T and a closed unbounded subset C of κ+ with A∩C = ∅. But then C ∩ Sκ+
κ is a

κ-club that is a subset of Sκ+
κ \ A and, by earlier remarks, the tree T (Sκ+

κ \ A) contains
a cofinal branch. But then the tree T also contains a cofinal branch, a contradiction. ��

By the above claim, the set NS � M = ℘(M) \ S is definable by a �1-formula
with parameters in H((2κ)+). ��

In particular, the above corollary directly shows how the definability results of [13]
and [23] can be derived from Theorem 4.2.
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Corollary 6 Let κ be an infinite regular cardinal satisfying κ<κ = κ and let P be the
poset given by Theorem4.2. If G isP-generic overV, then N S � Sκ+

κ is�1(H((2κ)+))-
definable in V[G].
Proof By Lemma 2.10, if κ<κ = κ holds in V, then Sκ+

κ is a maximum element of
I [κ+] ∩ ℘(Sκ+

κ ) mod NS . Since forcing with P does not change cofinalities below
κ+, the desired conclusion directly follows from Corollary 5. ��

The following lemma establishes a connection between principles of stationary
reflection and the �1-definability of restrictions of the non-stationary ideals that will
be crucial for proofs of our main results.

Lemma 5.2 Let S be a stationary subset of an uncountable regular cardinal δ and
let E be a set of stationary subsets of Sδ

>ω with the property that for every stationary
subset A of S, there exists E ∈ E such that A reflects at every element of E.

If E is definable by a�1-formula with parameter p, then the set N S � S is definable
by a �1-formula with parameters p, S and H(δ).

Proof Let S denote the collection of all subsets A of S with the property that there
exists E ∈ E such that A ∩ α is stationary in α for all α ∈ E . By our assumptions on
E , the set S is definable by a �1-formula with parameters p, S and H(δ).

If A ⊆ S is stationary in δ, then our assumptions on E ensure that A is contained
in S.

In the other direction, if E ∈ E witnesses that A is an element of S and C is closed
unbounded in δ, then there is α ∈ E ∩ Lim(C) with A ∩ α stationary in α and hence
∅ 
= A ∩ C ∩ α ⊆ A ∩ C . Together, this shows that S is equal to the collection of all
subsets of S that are stationary in δ and hence NS � S = ℘(δ) \ S is definable by a
�1-formula with parameters p, S and H(δ). ��

The above lemma directly shows that strong forms of stationary reflection cause
restrictions of non-stationary ideals to be �1-definable.

Corollary 7 Let δ be an uncountable regular cardinal, let E be a stationary subset
of Sδ

>ω and let S be a stationary subset of δ such that every stationary subset of S
reflects almost everywhere in E (i.e. for every stationary subset A of S, there is a
closed unbounded subset C of δ with the property that A reflects at every element of
C ∩ E). Then the set N S � S is definable by a �1-formula with parameters E, S and
H(δ).

Proof If we define E = {C ∩ E | C club in δ}, then E is definable by a �1-formula
with parameter E and this shows that the sets E and S satisfy the assumptions of
Lemma 5.2. ��

Note that a classical result of Magidor in [22] shows that, starting with a weakly
compact cardinal, it is possible to construct a model of set theory in which every
stationary subset of S20 reflects almost everywhere in S21 . The above corollary shows
that the set NS � S20 is �1(H(ω3))-definable in Magidor’s model.

The next theorem will be used to derive Theorem 1.2.
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Theorem 5.3 Assume that 2ω1 = ω2, and θ is a cardinal with θω2 = θ .
Then there exists a<ω2-directed closed, cardinal-preserving posetPwith the prop-

erty that the following statements hold in V[G] whenever G is P-generic over V:

(1) 2ω2 = θ .
(2) If for every stationary subset A of S20 , there is a stationary subset R of IAω1 such

that W ≺ H(ω3) and A reflects at W ∩ ω2 for all W ∈ R, then the set N S � S20
is �1(H(ω3))-definable.

Proof Let G be Add(ω2, θ)-generic over V. Since 2ω1 = ω2 holds in V, we know
that Add(ω2, θ) satisfies the ω3-chain condition in V and hence all cofinalities are
preserved in V[G]. Work in V[G]. Then our assumptions ensure that 2ω1 = ω2 and
2ω2 = θ = θω2 . Let P be the poset given by Theorem 4.2 for κ = ω1 and ε = θ , and
let M be a maximum element of I [ω2] ∩ ℘(Sω2

ω1 ) mod NS , which exists due to the
assumption that 2ω ≤ ω2 (see Lemma 2.10). Then Lemma 3.6 and part (1) of Theorem
4.2 show that P is forcing equivalent to a <ω2-directed closed poset. Moreover, since
2ω1 = ω2 holds, part (2) of Theorem 4.2 shows that P satisfies the ω3-chain condition.
Finally, Lemma 4.20 shows that P has a dense subset of cardinality θ .

Now, let H be P-generic over V[G] and work in V[G, H ]. By the above observa-
tions, we then have 2ω2 = θ . In addition, part (3b) of Theorem 4.2 shows that M is
the maximum element of I [ω2]∩℘(Sω2

ω1 ) mod NS . Moreover, Corollary 5 shows that
NS � M is �1(H(ω3))-definable. In the following, assume that for every stationary
subset A of S20 , there is a stationary subset R of IAω1 such that W ≺ H(ω3) and A
reflects at W ∩ ω2 for all W ∈ R. Set E = ℘(M) \ NSω2 . Then E is definable by a
�1-formula with parameters in H(ω3).

Claim 5.4 For every stationary subset A of S20 , there is an element E of E with the
property that A reflects at every element of E.

Proof of the Claim By our assumption, there is a stationary subset R of IAω1 such
that W ≺ H(ω3) and A reflects at W ∩ ω2 for every W ∈ R. If we now define
E0 = {W ∩ ω2 | W ∈ R}, then E0 is a stationary subset of Sω2

ω1 . Moreover, since
2ω ≤ ω2, each W ∈ R has (as an element) an enumeration �z = 〈zξ | ξ < ω2〉 of
[ω2]ω and therefore the internal approachability of W and the fact that �z ∈ W imply
that W ∩ ω2 is approachable with respect to �z. Hence, the set E0 is stationary and an
element of I [ω2]. Since M is the largest such element mod NS , we have in particular
that E = E0 ∩ M is a stationary subset of M . ��

Using Lemma 5.2, we can now conclude that NS � S20 is definable by a�1-formula
with parameters in H(ω3). ��
Proof of Theorem 1.2 Assume that FA holds, where FA is one of the following axioms:

• MM+μ, where μ is a cardinal and 0 ≤ μ ≤ ω1; or
• PFA+μ, where μ is a cardinal and 1 ≤ μ ≤ ω1.

Let θ be a cardinal with θω2 = θ . Since PFA implies that 2ω = 2ω1 = ω2 holds
(see [15, Theorem 16.20 & 31.23]), our assumption allows us to apply Theorem 5.3
to obtain a <ω2-directed closed poset with the properties listed in the conclusion of
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theorem. Let G be P-generic over V. Then [4, Theorem 4.7] ensures that FA holds
in V[G]. Since FA holds in V[G], there exists a stationary subset R of IAω1 with the
property that for all W ∈ R, we have W ≺ H(ω3) and A reflects at W ∩ ω2.23 Then
Theorem 5.3 allows us to conclude that NS � S20 is �1(H(ω3))-definable in V[G]. ��

The next theorem will be used to derive Theorem 1.3.

Theorem 5.5 Assume that 2ω = ω1, 2ω1 = ω2, and θ is a cardinal with θω2 = θ .
Then there exists a<ω2-directed closed, cardinal-preserving posetPwith the prop-

erty that the following statements hold in V[G] whenever G is P-generic over V:

(1) 2ω2 = θ .
(2) If every stationary subset of S20 reflects to a point in S21 , then the set N Sω2 is

�1(H(ω3))-definable.

Proof Let G be Add(ω2, θ)-generic over V, let P be the poset produced by an appli-
cation of Theorem 4.2 with κ = ω1 and ε = θ in V[G], and let H be P-generic over
V[G]. As above, we have (2ω2)V[G,H ] = θ and, since 2ω = ω1 holds in V[G], part
(4) of Lemma 2.10 and part (3b) of Theorem 4.2 imply that (S21 )

V[G] = (S21 )
V[G,H ]

is a maximum element of I [ω2] ∩ ℘(S21 ) mod NS in both V[G] and V[G, H ]. In
particular, Corollary 5 implies that NS � S21 is �1(H(ω3))-definable in V[G, H ].

Now, work in V[G, H ] and assume that every stationary subset of S20 reflects to a
point in S21 . Then every stationary subset of S20 reflects to stationary-many points in
S21 and we can apply Lemma 5.2 with S20 and ℘(S21 ) \ NSω2 to show that NS � S20 is
�1(H(ω3))-definable. Since it is easy to see that

NSω2 = {A ⊆ ω2 | A ∩ S20 ∈ NS � S20 and A ∩ S21 ∈ NS � S21 },

these computations allow us to conclude that NSω2 is �1-definable. ��
Proof of Theorem 1.3 Assume that 2ω = ω1, 2ω1 = ω2 and either FA+(σ -closed)
or SCFA holds. Let θ be a cardinal with θω2 = θ , let P be the poset produced by
an application of Theorem 5.5 and let G be P-generic over V. Then (2ω2)V[G] = θ

holds. Moreover, by Theorem 4.7 of [4], either FA+(σ -closed) or SCFA holds in
V[G]. In the case of SCFA, the fact that CH also holds ensures (by [11, Theorem 2.7
and Observation 2.8]) that, in V[G], every stationary subset of S20 reflects in a point in
S21 .

24 In the case where FA+(
σ -closed

)
holds, the proof of Theorem 8.3 of [2] ensures

the same kind of stationary reflection.
By Theorem 5.5, this shows that NSω2 is �1-definable in V[G]. ��

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

23 For the case corresponding to MM, this follows by the proof of [6, Theorem 13]. For the case corre-
sponding to PFA+μ where μ ≥ 1, it follows from the remark on [6, p. 20]. The ω1-enumerations in both
proofs are easily seen to be internally approachable enumerations.
24 Note that the CH assumption seems to be required for this consequence of SCFA; see Fuchs [12] for
some corrections on previous literature.
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