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FORCING POSITIVE PARTITION RELATIONS
BY

STEVO TODORCEVIC

Abstract. We show how to force two strong positive partition relations on u, and
use them in considering several well-known open problems.

In [32] Sierpiñski proved that the well-known Ramsey Theorem [27] does not
generalize to the first uncountable cardinal by constructing a partition [ío,]2 = KQ U
Kx with no uncountable homogeneous sets. Sierpinski's partition has been analyzed
in several directions. One direction was to improve this relation so as to get much
stronger negative partition relations on ux. The direction taken in this paper is to
prove stronger and stronger positive relations on <*>, which do not appear to be
refutable by Sierpinski's partition. The first result of this kind is due to Dushnik and
Miller [9] who proved

W,  -»(«p w)  .

This was later improved by Erdös and Rado [11] to

to, -> (<«J|, « + 1) .

In [17] Hajnal proved the following result which shows that the Erdös-Rado theorem
is, in a sense, a best possible result of this sort in ZFC:

CH implies ux-r* (u>x,u + 2) .

Problem 8 of Erdös and Hajnal [12, 13] asks whether w, -r* (w„ w + 2)2 can be
proved without the continuum hypothesis, i.e., whether w, -» (ax, u + 2)2 is con-
sistent with ZFC. The first result on this problem is due to Laver [24] who proved
that

MA8| implies to, ^(w,,("'jj .

This result was improved by Hajnal (see [24]) to

MAN| implies to, -> I to,, I    '))   for all a <wx.

Clearly these results leave open the problem whether w, -» (to,, w + 2)2 is consistent.
In this paper we shall prove the consistency of

ux->iux,ct)     for all a <w,.
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704 STEVO TODORCEVIC

Let us now consider the following relation introduced by Fred Galvin (it can be
considered as a dual of the usual -» relation). Let # and t/» be order types and let r
and k be cardinals. Then the symbol

means: If <j> = tpA, and if [A]r = VJ¡eIK¡ is a disjoint partition such that \K¡\ < k
for all / G /, then there is a B EA such that tp B = tp and | [B]r D K¡\ < 1 for all
i e/.Ut*-(*)i iff *-(*)'<«♦•

It is easily seen that

<> -* Wk implies <t>^(i)rK.

Hence, w, -»(w,)^ is a weakening of w, -» (w,)^, and it is not "obviously" refuted
by Sierpinski's partition. However, Galvin (unpublished) proved that

* 2
CH implies w, -t+(ux)2.

#
He asked whether w, -r*iux)\ is a theorem of ZFC or not. We answer this question
by proving the consistency of

"l ->(«l)<K„i

which is, in a sense, best possible since w, -r* (3)^ .
The next problem we consider is the well-known 5-space problem from general

topology [22, 28, 30]. It essentially asks for a strong partition property of w,. To
state this problem we need some definitions. A topological space X is hereditarily
separable iff every subspace of X has a countable dense subset. X is called
hereditarily Lindelöf iff for every family % of open subsets of X, there is a countable
%0 E % such that U%0 = U%. The 5-space problem asks whether every regular
hereditarily separable topological space is hereditarily Lindelöf. A counterexample
to this problem is called an 5-space. The problem has been intensively studied since
the late 1960's, and its present formulation is due to several mathematicians [22, 28,
30]. The first example of an 5-space was constructed by M. E. Rudin [29] using a
Suslin tree. Since then a number of constructions have appeared using various
assumptions such as <0, CH,_Also a number of partial nonexistence results have
appeared using mainly MA + -,CH (see [22, 28, 30]). In this paper we shall prove
the consistency of:

Every regular hereditarily separable topological space is hereditarily
Lindelöf.

Hence the 5-space problem is undecidable on the basis of the usual axioms of set
theory. Working independently and somewhat later, J. Baumgartner proved the
consistency of ZFC + "there are no weak-HFD's". (HFD's form an important class
of subspaces of {0,1}N| used by Hajnal and Juhász and others in constructing
various sorts of 5-spaces [22, 28].)
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FORCING POSITIVE PARTITION RELATIONS 705

Next we are going to consider the problem of bounds on the cardinalities of
Hausdorff spaces with no uncountable discrete subspaces. (A set D E X is a discrete
subspace of X if for every d E D there exists an open subset Ud of X such that
D n Ud= {d).) That the cardinality of such a space has a bound was first
independently noticed by Isbell [20] (for completely regular spaces), Efimov [10] and
de Groot [16]. The bound they found was 22 °. This bound was improved to 22 "
first by de Groot [16] for the class of all regular spaces, and then by Hajnal and
Juhász [18] for the class of all Hausdorff spaces. The natural question which
remained unanswered is due to de Groot, Efimov and Isbell [12, Problem 77] and
asks whether there exists a Hausdorff space of cardinality (2K°)+ with no uncounta-
ble discrete subspaces. The first result on this problem is due to Hajnal and Juhász
[19] who constructed such a space using a forcing argument. A compact example has
since been constructed by Fedorcuk [14] using <y. In this note we shall prove the
consistency of:

Every Hausdorff space with no uncountable discrete subspaces has
cardinality < 2*°.

We shall deduce this result from the consistency of the following statement, which is
of independent interest:

If X is a Hausdorff space with no uncountable discrete subspace, then
every point of X is the intersection of countably many open subsets of
X.

The results of this paper were proved while I was visiting the Department of
Mathematics at Dartmouth College during the academic year 1980-81. I would like
to express my gratitude to Professor James Baumgartner for making this visit
possible. I would also like to thank Professor Fred Galvin for a very stimulating
correspondence concerning a class of problems about strong partition relations on
to,, a small part of which is considered in this paper. The results of this paper were
announced in [34, 35, and 36].

1. In this section we construct a model of ZFC + MAN in which to, satisfies two
strong partition relations which will be used in the rest of the paper. Our forcing
terminology is standard (see [5, 21, 23]). All undefined terms concerning the
partition calculus can be found in [37]. If A, B E ux, then by A <8> B we denote
{{a, ß): a EA,ß E B,a¥= ß). If K E [to,]2 and a E w„ then Kia) denotes the set
[ß < w,: [a, ß) E K). The symbol

to, -* («,,(«,; fin«,))

means: For any partition [w,]2 = K0 U Kx either
(1) there is an A E [w,]*1 such that [A]2 E K0, or else
(2) there is an A E [«,]"' and a family S of W, disjoint finite subsets of w, such

that i{a) ® F)f) Kx¥= 0 for all a E A and F E % with a < min F.
The set A which satisfies condition (2) is called a bad set. The purpose of this

section is to prove the following theorem.
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706 STEVO TODORCEVIC

Theorem 1. // ZF is consistent, then so is ZFC plus the following statements
simultaneously:

ii)MA + 2*<> = K2,
(ii) <o, — (co,,(co,; finco,))2,

(iii) w, ^(u,)^,.

If A is a set, then QA denotes the set of all finite partial functions from A into 2
ordered by D . Thus 6U is the standard poset for adding <S, Cohen reals. If
a < ß < co,, then we let

ea,ß={pEeai:PE[a,ß)}.

Let tß — L0 ß.
Let & denote the set of all pairs (a. A) where a is a countable closed subset of co,

and A is a closed and unbounded subset of co,. We order S by

(a,A)<(b, B)    iff   b = a H imaxib) + 1)&A EB&a\bEB.

Then S is the Jensen closed unbounded set poset [8]. It is clear that S is a o-closed
poset. Moreover, every countable set S0 C S of pairwise compatible elements has a
greatest lower bound (a, A) E 8 defined by

a= U {b:3B((b,B)e&0)}     and   A = D {B: 3b((b, B) E S0)}.

Let Gg be a generic subset of S. Then

C&= U {a:3A((a,A)EG&))

is a closed unbounded subset of co, which is almost included in every club subset of
co, from the ground model [8].

Lemma 1. Let 6 = Qu be the standard poset for adding N, Cohen reals. Let Ge be a
V-generic subset of Q. Let & be the Jensen club set poset in V[Ge]. Let (/'« V) â be a
c.c.c. poset and let G2 be a V[Ge]-generic subset of'il. Let, in V\G<n], [co,]2 = K0 U Kx
and [co,]2 = Uf<w Jt be two disjoint partitions such that the first partition has no bad
sets, while each color of the second partition is finite. Let G& be a V[Ge][G£]-generic
subset of&. In V[G¿][G¿][GE], we define

S0 = {s E [ux]<i<0: s is separated by Q&[s]2 EK0),

§,= {iË [u^0: s is separated by Q&Vf < co,|[.s]2 n/f|< lj.

Let S0 and S, be partially ordered by D . Then both S0 and §, are c.c.c. posets in
V[Ge][a2][G¿].

Proof. We first prove the lemma for the poset S0. So let, in F[C7(?][G2][Gg], (s(:
| < co, ) be an co,-sequence of elements of S0. By the standard A-system argument we
may assume that sf's are disjoint, increasing and of the same cardinality n, where
1 < n< co.
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FORCINC; POSITIVE PARTITION RELATIONS 707

From now on we work in K[Ge][G2] and fix an ê-name (i¿: ¿ < co,) for the
sequence (í¿: ¿ < co,) and a condition (a0, AQ)E & which forces that n and (if
£ < co,) have the above properties. We shall find (b, B)< (a0, A0) such that

(b,B)hë3t<T,<u>x(si®s^çK0).

This will finish the proof of Lemma 1 for the poset S0.
Note that S is defined in K[Ge], hence it is not necessarily a-closed in l^[Ge][Ga].

Instead of S we shall work with the set of all (a, A)E & such that A E V. The
restriction causes no loss of generality since this set is dense in £. By an abuse of
notation we denote it also by S.

Let 6 be a big enough regular cardinal, and let N0 be a countable elementary
submodel of He such that N0 n V[Ge] E V[Ge], and such that S, (a0, A0), (sf
£<co,), K0, Kx E NQ. Since F[Ge][G2] is a c.c.c. extension of K[Ge], such a
submodel exists. Let 80 = N0 n co,, and let F C co,\ô0 be a fixed set of size n. Let

% ={(a,A)E&n N0: ((a, A) ± (a0, A0)) V

{(a,A)<(a0,A0)&3sE803t<80(s®FEK0&(a,A)h6si = s))}.

Claim 1. %F is a dense open subset of S D N0.
Proof. Let (b, B)< (a0, A0) be a given element of S n N0. By induction on

0 < / < n, for each strictly increasing sequence (xx,...,xn_¡) of ordinals < co,, we
define the statements $„_,■(*,,... ,x„_,) as follows:

*„(*„...,*„)    iff 3£< wx3(a, A)< (b, A)((a, A)\\-gSç= (xx,...,x„));

<¡>„-,(xx,... ,xn_,)   iff |{y < co, : <D„_,+ ,(*„... ,xn_„ y)}\ = »,    forO < i < n.

We shall prove that $0 holds.
Starting from N0 we build a strictly increasing, continuous sequence (Na: a < co, )

of countable elementary submodels of He. Let 8a = Naf) wx for a < co,, and let
D = [8a: a < co,}. Then D is a closed unbounded subset of co,. Since G X â is a c.c.c.
poset, we can find (a', A')< (b, B) and y<co, such that A'\y E D. Choose
(a, A)^ (a', A'), £ < co,, and {z,,... ,zn) E co,\y such that

(a,A)9rssi = {zx,...,z„).

This shows that $n(z,,... ,z„) holds. By induction on / we shall now show that
í>„_,(z,,.. .,*„_,) holds for all 0 < /' < n. Note that {z,,... ,z„) is separated by D, so
we can find a, < ■ ■ ■ < a„ < co, such that 8a < z, < 6a +, for all / = 1,...,/?. So let
us assume that 0„_,+|(z,,...,zn_1+1) holds for someO < i < n. Let

Z„_/+1 = (z<co,:i>n_,+ ,(z1,...,zn_,, z)}.

Then zn_,+ l G Zn_i+X by the assumption. Note that the parameters in the definition
of Z„_,+, are all members of Na + , which implies Zn_,+ X E Na _ . Hence we
must have JVan t= Z„_l+, is uncountable. Hence Z„_j+, is really uncountable.
This shows that i>„_,(z,,... ,z„_,) holds and finishes the induction step.

Thus, in particular, $,(z,) holds, and by repeating the above argument we
conclude that {z < co,: $,(z)} is uncountable. Hence % holds.
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708 STEVO TODORCEVIC

We have already noted that the parameters of each statement 4>, (0 < /' < n ) are
members of N0. Hence, if we let Yx = {y < co,: <bxiy)) then Yx E N0, and by the
fact that $0 holds, Yx is uncountable. We claim that, for some y E Yx n ô0,
{y) <8> F E K0. Otherwise the following holds:

N0 1= V»5<co,3FsG [co,\r5]"V>;e Yx n 8(({y) ® Fs) n Kx # 0).
Since N0< He, this sentence also holds in //s. However, this easily gives a bad set
with respect to [co,]2 = K0 U A",, contradicting the assumption that I/[G(?][G2] is a
property K extension of K[G2] which contains no bad sets. So pick yx E Yx D 80
such that {>>,} 8FÇ K0. Let y2 = {^ < co,: <&2iyx, y)}. Then by the assumption
that ®xiyx) holds, T2 is uncountable. Clearly Y2 E N0. By repeating the above
argument, we can find a y2 E Y2 n 50 such that {j»2} ® F E K0. Proceeding in this
way we construct yx <y2< •'• <yH such that

{^i.yn)®FEK0,   and   <Sf„(yx,...,y„) holds.
Hence JV0 1= 0( j,,... ,>;,). This means that we can find £ < 80 and (a, A)< (b, B)
such that (a, ^> G & D N0 and

(<i,i4)i-sit= {y\,---,y„}-
This shows that (a, A) E %F and completes the proof of Claim 1.

Defined Ç (g n N0) X 80 X [50]n by

fi((a,^),f,s)    iff    (a,i4)l-si{ = ,y.

Since S n N0 and Ä can be coded using only a countable amount of information, we
can find some a < co, such that

S n N0 E v[Ge]    and   R E F[GeJ[Ga].

In F[G(3 ] we choose a mapping 77 which maps 6a o+u isomorphically into a dense
subset of {(a, A)E & n A^: (a, /!)< (a0, ^0)}. Let

Then G is a F[G¿> ]-generic subset of Qa_a+U. So 7r"G is a countable pairwise
compatible subset of S. Hence 7r"G has a lower bound (ä, A) in £.

Note that, for each F G [co,\á0]", %, is definable from F, K0, Kx, S n N0,
(a0, A0), 80, and R. Hence, for each F G [co,\5]", %, G K[GeJ[G2]. Since G is
also a V[Ge ][G2]-generic subset of Gaa+U, it follows that m"G intersects each %F
for F E [co,\r50]". Hence, for each F E [co,\50]", there is an (a, A)E %F such that
<a,/T>< (a, A).

Pick (b,B)< (a, A),i)< co,, and F E [co,\S0]" such that (b, B) lhg i„ = F. Let
(a, A)E %Fbe such that (b, B)^ (a, A). Thus, for some5 G [fî0]" and ¿ < 80, we
have

s®FEK0   and    (a, A)\r&s^ = s.

Hence

This completes the proof of Lemma 1 for the case of poset S0.
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The proof that S, is a c.c.c. poset in F[Ge][G2][Gs] is similar, so we mention only
the main differences. Again we start with a given sequence (s^: £ < co, ) of elements
of §,. We may assume the s/s form a A-system with root s, and if we let »*£ = *5\i
for | < co,, then the i£'s are strictly increasing and of the same cardinality n, where
1 < n < co.

Working in F[Ge][G2], we fix ê-names (sc: £<co,) and (i^: £<co,) for the
sequences (st: £ < co,) and (t^: £ < co, ), and a condition (a0, A0)E & which forces
that n, s, (s(: £ < co,) and (i(: £ < co,) have the above properties. We need to find
(b, B)< (a0, A0) such that

(b, B)h6 3£ < T) < co, V? < co, |[st U sv]2 n Jt\ < 1.

We fix a cardinal 6 and a countable elementary symbol N0 of He as before. Let

D= {r3<co,:lim(r3)&Va<5Vf < co, (jt D [8]2 ¥= 0 => Js(a) ES)).

Then D is a closed unbounded subset of co, such that D E N0. Now we fix an
F E [<o,\S0]" which is separated by D such that

Vf <co, |[iUF]2n J{\< 1,

and define

%F= {(a, A)E & n N: ((a, A)± (a0, A0))

V ((a,A)<(a0, A0)&3t E 80 3£ < 50

(Vf < co,|[í U t U F]2 n Jt\ < 1 & (a, A) lhg f't = t)) ).

As before we claim that ^ is a dense open subset of S n A^. So let (b, B)<
(a0, A0) be a given element of S n N0. The statements $„_,.(*,,... ,*„_,) (0 < /' <
«) are defined as before. The proof that 3>0 holds is also the same.

Let 7, = [y < co,: $,(>')}. Then T, is uncountable and Yx E N0. Let {£,,... ,s¿ }
be a list of all f < co, such that [sUffflJ^ 0. Since each J¡ is finite, and since
T, n 50 is infinite, we can find>>, G Yx n 80 such that

({>>,} ®(sUF)) DJt = 0    for all i G {£„...,&,}.

We claim that

|[sU {yx} UF]2 n/f|< 1    foralU<co,.

Otherwise, let f < co, be such that [j U {yx} U F]2 n Jt contains two different edges
/0 and /,. It is clear that /0 and /, cannot both be subsets of s U [yx) since some
condition from S forces this set to be a subset of a member of §,. From the
definition of D it easily follows that max l0 = max /,. Hence, max /0 = max /, G F.
Hence, for some i <2,l¡Es® F, which means that f G {£,,... ,£A }. It follows that

({yx)®(sUF))nj(= 0.

Consequently, min l0 ^yx and min/, ¥= yx, which yields the contradiction /,, l2 E
[s U F]2.
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Now let y2 = {y < co,: <b2iyx, y)). Then Y2 is uncountable and Y2 E N0. Working
as above, we can find y2 E Y2 n 8 such that

\[s U {yx, y2) U F]2 nyJ< 1    forallf <co,.

Proceeding in this way we construct^, < y2 < ■ ■ ■ <yn < 80 such that

Vf<u,|[iU {yx,...,yn}UF]2nJs\<l,

and
%(Yx,---,yn) holds.

Hence N0 N <t>niyx,.. .,yn). So we can find £ < 80 and (a, A)^ (a0, A0) such that
(a, A)E g n A^and

(a,A)*-&ic = {yx,...,yn}

This shows that (a, A) E 6aTF. Hence, %F is a dense open subset of g n N0.
We leave the remainder of the proof of Lemma 1 to the reader since the rest of the

proof for S, is like the proof for S0.
Now we are going to describe a mixed iteration (^a: a < co2) of Cohen and

Jensen partially ordered sets. This will be done by induction on a, and for this
purpose let E and O denote the sets of all even and odd ordinals < co2, respectively.

If« = 0, then<?0= 0.
If a E E, then9a+1 is the set of all functions p with domain a + 1 such that

p r a E % and

Ihj p(a) is a member of 6(ajXii

\fp, q E %+x, letp < qiffpl a « q\ a andpl a II-«j, pia) D qia).
If a E O, then %+x is the set of all functios p with domain a + 1 such that

p r a G 9a and

Ihg, p(a) is a member of the Jensen club set poset &a.

If p, q E <3'a+x, let p < q iff p\ a < <7f a and pf a Ihg, p(a) *£ «7(a) in the Jensen
ordering.

If a is a limit ordinal with cf a = co, then ^ is the set of all functions p with
domain « such that p \ ß E 9ß for all ß < a, and for some y < a, Ihg, p(/?) = 0 for
all0G[y,a)nF.

If a is a limit ordinal with cf a > u, then ^Pa is the set of all functions p with
domain a such that p t ß E 9ß for all ß < a, and for some y < a, h9 piß) = 0 for
ß E [y, a) HE and \r%piß) = (0, co,) for ß E [y,et) n O.

In both limit cases we putp < q iff p t ß < qt ß for all ß < ct.
From now on let a *£ co2 be a fixed ordinal. For p E ^Pa we define supp(/>) = {/?

<a: piß)=£ 0 if )S G £ and /?(/?) =£ <0, co,> if ß E O). Then it is easily checked
that supp(p) n E is finite, and that supp(p) D O is at most countable.

We say that p E 9a is a determined condition if, for every ß E supp(p) n E,
there is some sßip) E C{Y}xU| sucri iaaX P(ß) = sß(P) (more precisely, piß) =
iSßip)) ). If p G ^ is a determined condition, then by a(p) we denote

U {sß(p):ßEsupp(p)DE)
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FORCING POSITIVE PARTITION RELATIONS 711

considered as a member of 6(a) := C(£na)XW|. By induction on a it is easily seen
that the set of all determined conditions is dense in <35a. So from now on we shall
always work with determined conditons, and use tya informally to denote also the set
of all determined numbers of 9a.

Note that the function a: 9a -» 6(a) is order preserving, and has the property that
if oip) = r and r' < r, then for some/»' <p, oip') = /•'. Hence, forcing with 9a can
be considered as forcing first with 6(a) and then with [p E 9a: oip) G Ge,a)).

Lemma 2. For every f E V9« and p0 E 9a with the property p0 b9 /: a -» On, there
are g E Ve(a) andp < p0 such that oip) = a(p0) andp 1r9 f—g".

Proof. If p E6fa and if r E (3(a) is compatible with oip), then/? A r denotes the
following member q of %. If ß E O, then qiß) = piß). If ß G E, then q(ß) = piß)
U (rr [ß) X co,). It is clear that this is a well-defined condition and that/? A r « p.

Claim 2. Assume p, p' E % are such that/?' < p. Then there exists a q E úJa, with
q <p such that a(cz) = oip), and/;' = q /\ oip').

Proof. We define q\ ßby induction on ß < a. Assume ql ßis defined. If ß E E,
let qiß) = piß). If ß G O, let qiß) be a ^-name for a member of the Jensen poset
&ß which is equal to p'iß) if p' Í ß is a member of Gg>, and equal to piß) otherwise.
If ß is a limit ordinal, let q\ ß = U [q\ y: y < ß). Now by induction on ß < a one
easily checks that

q\ßE%,    qtß^piß,    oiq\ ß) = o(ptß),

and
p'tß<iqAoip'))tß<p'tß.

This completes the proof of Claim 2.
Starting from p0, by induction on « < co, we define a sequence (pn: n < co) of

members of <?„, and for each n < co sequences (rfn: £ < S„) and (x£: £ < 5„) of
members of C(a) and On, respectively, such that

(!)/>„+1 ^Pn,

(2)<Kp„+,) = a(/0,
(3)?,+1Ar£"r?</(») = 4
(4) {r£": £ < 5n} is a maximal antichain below a(pn).
Let us first see how to prove the lemma using such sequences. By induction on

ß^awe construct p t ß E 9ß such that pi ß^p„l ß and a( p r ß) = a( p„ r ß) for
all « < co. Assume p r j8 is constructed. If ß E E, let piß)=p0iß). If /8 G O, let
piß) be a ^-name for the greatest lower bound of [p„iß): « < co} in g^. If ß is a
limit ordinal, let pt ß = U [p\ y: y < ß). Then it is easily checked that pl ß is a
well-defined condition, and thatp = p \ a has the properties/» < pn and oip) = a(p„)
for all n < co. Sincep is uniquely determined by (pn: n < co), we shall denote it by

A n<w/V
Define g G Fe<a) to be a function from co into the ordinals such that

lèin) = x¡\\ = r[   forn<coand£<5„.

Then by (l)-(4) we have

P\x-fj= 8-
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So we are left with the construction of (pn: n < co). Assume /?„ is defined. By
induction on £ < 8„ we define sequences (q'¿: £ < 8n), (rg: £ < 8n) of members of
•??„, 6(a) and On, respectively, such that

(5)<7?<<7^P„for£<f,
(6)a(q¡) = a(p„),
0)r(n<a(p„),
(g)r{±rs"îotÇ¥=$,
(9)q"tAr¿'h%fin) = x¡.

The ordinal 8„ is a countable ordinal determined by the fact that [r¿': £ < 8n) is a
maximal antichain below a( pn ). Assume qg 's, rg 's and xÇ 's are defined for every
£ < f < co,. If {/j": £ < f} is a maximal antichain below a(/?n), we let 8n = f and
p„+, = A e<Snq{. Clearly (l)-(4) are satisfied. So let us assume [rf: £ < f} is not a
maximal antichain below o(p„). Pick r =£ a(p„) which is incompatible with each r{"
(£ < f)- Let c7 = A {<íflí". Choose q' ^ q A r and x¡ such that ¿7' h9 fin) = x\. By
Claim 2 we can find q¡ < C7 such that oiqj?) = 0(47) = a(p„) and q' = q¡ A oiq').
Let /j." = oiq'). It is clear that (5)-(9) are satisfied. This completes the proof of
Lemma 2.

Note that, in particular, Lemma 2 shows that 9a preserves X,. If a < co2, let

%.U2={P^(^2\»)'-P^%).

Let <??a u be ordered in V9" by the ordering < defined as follows:

c7'<c7   iff   3p E G%(p U q'^p U q).

Then 6J   = $ * ^P.    , and Lemma 2 easily gives

""ír^a.ujis equivalent to $*„ .

Lemma 3. /Isíume C//. 77ie7i 9U satisfies the H2-chain condition.

Proof. Since elements of 9U have countable supports, a standard application of
Fodor's Lemma shows that we may restrict ourselves to proving that, for each
a <u2,<$a satisfies the W2-c.c.

So let a < co2 and let 6\)a E % be the set of all p E % such that for every ß E O,
there is a 6(/})-name af for a countable closed subset of co, and a ^-name Af for a
closed and unbounded subset of co, such that/? r ß \r9 piß) = (af, Af).

Claim 3. For every q E % there is ap G 6i)a such that/? < q and oip) = oiq).
Proof. We prove the claim by induction on a.
Assume a = ß + 1. If ß E E, there is nothing to be proved. So assume ß E O. By

Lemma 2 we can find q' < q\ ß and a C(j8)-name af such that oiq') = oiql ß) =
oiq) and

q' ll-g, the first coordinate of qiß) is equal to af.

By the induction hypothesis we can find a /?' G ^ such that /?' < q' and oip') =
oiq'). Let

p=p'u{(ß,(af,Af))},
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where Af is a ^-name such that W<$Af is the second coordinate of qiß). Then
p G 6Da,/?<c7anda(/?) = oiq).

First assume cfa = co. Let (an: n < co) be a strictly increasing sequence of
ordinals cofinal with a such that a0 = 0. By induction on w < co we construct a
sequence ( /?„: n < co) of elements of 9a such that/?0 = a ana

0)A+i </'„anda(p„+,) = a(p„),
(2)/?„+,ra„+,GöDai+|.

Assume pn is defined. By the induction hypothesis we can find p'n+x E fya     such
that p'n+x *£/?„r an+x and a(p'n+x) = a(p„l an+x). Let pn+x E % be defined by
/>„+,! a„+, =p'n+x  and pn+xiß) = pniß) for all /? G [a„+1, a). Then /?„+, </?„,
°(/>„+i) = a(/>n)> andp„+1 r a„+, G ^ +].

Define /? G % as follows. If ß E E, let piß) = qiß). So suppose ß E O, and let
w < co be such that ß E [a„, ûn+1). Let a^ be a C(/j")-name for the closure of

U [af: n <i <co},

and let ¿£ be a ^-name for  Cl{Aßp\ n<i< co}. Let piß) = (af, Af). Then
p E %, p < q and a( p) = oiq).

Now assume cf a > co. Since supp(c7) is countable, there is a a y < a such that
suppiq) E y. Using the induction hypothesis, we can find a /?' G ÖD such that
p' < qt y and a(p') = a(c/r y) = a(c7). Define p E % by p\ y = p' and piß) = 0
for ß E [y, a) n E and /?(/?) = (0, co,) for 0 G [y, a) n O. Then p E %, p ^ q
and o(p) = oiq). This proves the claim.

Suppose p,q E6îla are such that piß) = qiß) for every ß E E and lr-e(j8)ap = <^
for every ß E O. We claim that then p and c? are compatible in <3>a. To see this let us
define /?' G % as follows. If ß E E, let p\ß) = piß) = qiß). If ß G O, we choose
p'(/3) to satisfy ll-g, p'iß) = (af, Af n ^^>. Then clearly /?' G % and p' <p, C7.
Since there are only S, 6(a)-names of countable closed subsets of co,, this finishes
the proof of Lemma 3.

Now we are ready to finish the proof of Theorem 1. Assume GCH holds. Let (9a:
a *£ co2) be the iteration defined above and let 9 = %2- Then in V9, 2K° = 2K| = N2
holds. Working in V9, we define a finite support iteration (§L(: £ < co2) of c.c.c.
posets of size < N, à la Solovay and Tennenbaum [33], such that if 2. = Su , then
V9 *2 satisfies (i)-(iii) of Theorem 1.

Assume £ < co2 and that in V9 "a« we have a partition [co,]2 = K0 U Kx with no
bad sets. Pick an even ordinal a < co2 such that â£, K0, Kx E V9". We have already
remarked that 9a u is, in V9« (equivalent to) a mixed iteration of length co2 of Cohen
and Jensen posets. It begins by first introducing K, Cohen reals and then adding a
Jensen club. So by Lemma 1, the poset §£ of all finite 0-hqmogeneous subsets of co,
which are separated by C¿ is a c.c.c. poset in V9-+i'^. Hence, one condition
s0 G §>£ forces that the generic object is uncountable. At the next step of the iteration
we force with (s E §£: s D $o), which we again denote by %t. We know that 3-j * ef
is a c.c.c. poset in V9°+2, but we have to show that it remains c.c.c after forcing with

?a+2u . Let us prove the following more general fact. Let 2. be an arbitrary c.c.c.
poset. Then 2 remains c.c.c. after forcing with '& = '&„. Otherwise, pick a ^-name
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(q : y < co,) for an co,-sequence of incompatible members of 2. As in the proof of
Lemma 2, by induction on y we construct a decreasing sequence (py: y < co,) of
members of 9, a sequence (ry: y < co,) of members of 6£Xm , and a sequence (qy:
y < co, ) of members of 2 such that

(1) o(Py) = °(Ps) for y < 6 < co„
(2)Py^ry¥9qy = qy.

Pick an A E [co,]s' such that r and rs are compatible, whenever y, 8 E A. Then it is
easily checked that we have reached a contradiction since [qy: y E A) is an
uncountable antichain of 2.

Similarly, one defines posets for getting co, ̂ (co,)<x as well as the posets for
getting MA h . This completes the proof of Theorem 1.

The following result (in ZFC) is an easy consequence of Lemma 1.

Theorem 2. co, -» iclosed a)<So/c?r all a < co,.

Proof. Let [co,]2 = \Ji<uJ( be a given disjoint partition such that |/£ |< N0 for all
£ < co,. Let co < a < co, be fixed. Let S G Ve»i ' & be the set of all finite subsets of co,
separated by C¿ suchthat |[s]2 D J¿\< 1 for all £ < co,. By Lemma 1, S is a c.c.c.
poset in Ve"> '&. So we can find an s0 E § such that s0 H-§ UG§ is stationary in co,.
Thus, in particular, we can find ap0 G Su * S * S and a (Cu * g * S)-name À such
that

p0W- À is a closed subset of co, of type a + 1 & V£ < co,  [^4]   n /£ < 1.

Pick a (6W * g * S)-name/such that p0 \\- f: a + 1 -» À is the unique isomorphism.
Let ( an : n < co ) be an enumeration of a + 1. Now by induction on n < co we define
a decreasing sequence (/?„: n < co) of elements of Gu * g * § and a sequence (ßn:
n < co) of ordinals < co, such that pn+x Ih/(a„) = ßn, making sure that B = {ßn:
n < co} is a closed subset of co,. Then tp5 = a + 1 and V£ < co, \[B]2 n y{|< 1.
This completes the proof.

Remarks. (1) The closed unbounded set poset was defined and first used in
buildling c.c.c. posets in the extension by Jensen [8]. The fact that an elementary
chain of submodels is useful in proving the c.c.c. property of posets with separated
conditions was first realized by Shelah [1, 3]. The use of the Cohen generic reals in
building conditions in u-closed posets was first made explicit by Avraham [2]. The
first mixed iteration of Cohen posets and a-closed posets was defined by Mitchell
[26]. It is clear that if we want only to preserve S,, then in the above mixed iteration
the Jensen posets can be replaced by any a-closed poset. If we want the iteration to
have the S2-c.c, the a-closed posets must satisfy one of the standard strong S2-chain
conditions.

(2) The posets involved in Lemma 1 can also be iterated in a countable support
iteration (5"a: a < co2). A Laver type argument shows that 5"u preserves N, [5,25].
Using GCH, one then shows that 9^ satisfies the N 2-c.c.

(3) If we are not interested in the exact equiconsistency result, we could use the
Proper Forcing Axiom (PFA; [6, 7, 31]) in showing that (i)-(iii) of Theorem 1 are
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consistent. Namely, in this case, in Lemma 1, we can disregard 2 and Gu   and
directly show by the same proof that S0 and S, are c.c.c. posets in V&. To build a
condition which will meet all the ^llf^'s, we need only use MAN , a consequence of
PFA.

(4) It is clear that the proof of Lemma 1 also shows that each (finite) power of the
poset S, satisfies the c.c.c. Hence the model of Theorem 1 can also satisfy the

*        ..
following partition property of co, stronger than co, ->(t0|)<s :

If\u\\2 — ^¡er^i 's a disjoint partition where each K¡ is finite, then
there is a decomposition co, = Un<u.»4n such that

V«<coVz G/|[yl„]2n K,\< 1.

2. This section begins with a discussion of the partition relation co, ->
(co,, (co,; fin co,))2 and ends with the applications mentioned in the introduction.

For G E [co,]2, Chr(G) denotes the chromatic number of G and equals the
minimal cardinal k for which there is a partition co, = U£<)t/1£ such that [^4£]2 n G
= 0 for all £ < k.

Theorem 3. Assume AL4K and co, -> (co,,(co,; finco,))2. Then for every G E [co,]2
either Chr(G) < N0, or else there is an A E [«,]*' and a family 'S o/N, disjoint finite
subsets of co such that ({a} ® F) D G ¥= 0 for all a E A and F E % with a < min F.

Proof. Given G E [co,]2, let <? be the set of all finite p E co, such that [p]2 n G
= 0. The ordering on 9 is D .

If 9 is a c.c.c. poset, then by MAK , 9 is a-centered, so Chr(G) < S0.
Hence, we may assume <? is not a c.c.c. poset. Let [pa: a < co,} be an uncountable

antichain of 9. A standard A-system argument shows we may assume the ptt's are
disjoint, strictly increasing and of the same cardinality n (1 < n < co). Let (paii):
i < n) be the strictly increasing enumeration of pa, (a < co,). For each a < ß < co,,
there exist /', j < n such that {/?a(i), Pßij)} E G. This gives a coloring of [co,]2 into
n2 colors. Now an easy application of co, -» (co,, (co, ; fin co, ))2 completes the proof of
Theorem 3.

A consequence of Theorem 3 is that, in the model of §1,

co, -> (stationary, (co,; finco,))

holds. However, an examination of the proof of Theorem 1 shows that, in fact, in
this model, the stronger relation

co, -» (stationary, (stationary; fin co, ))

holds. Let us also mention the following strengthening (*) of co, -» (co,, (co,; fin co,))2
in a dual direction. The consistency of this strengthening will appear in a later paper.

(*) For every partition [co,]2 = K0 U Kx either there is an A E [co,]X| such that
[A]2 E K0, or else there exist (An: n < co) and (<$„: n < co) such that:

(i)wi\ u„<uA is countable;
(ii) ÍB„ is a family of N, disjoint finite subsets of co,;

(iii) ({a} ® F)C\ Kx¥- 0 for all a G An and F E <$ with a < min F.
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Let us note that it is not possible to strengthen co, -> (co,, (co,; fin co,))2 at the same
time in both the direction of Theorem 3 and that of (*), i.e., there is a partition
[co,]2 = K0 U Kx with no stationary O-homogeneous sets, but co, is not a countable
union of bad sets. A proof of this simple fact will also appear elsewhere.

Theorem 4. Assume MA^ and co, -> (co,,(co,; finco,))2. Then for every partition
[co,]2 = K0 U Kx either there is an A E [co,]N| such that [A]2 E K0, or else for every
a < co, there are B,C E co, such that tpB = a, \C\= 8, and[B]2 U (5 ® C) E Kx.

In particular we have the following consequence mentioned in the introduction.

Theorem 5. Assume AL4K . Then co, -» (<o,,(co,; finco,))2 implies co, -» (co,, a)2 for
all a < co,.

Proof of Theorem 4: Let [co,]2 = K0 U Kx be a given partition, and assume
[A]2 f¿ K0 for all A E [co,]Xl. For each a < co, we shall construct B, C E co, such
that tpB = co", |C|= K, and [B]2 U (5 ® C) E Kx. First we need some technical
definitions and facts.

For each 1 < a < co, we fix a nondecreasing sequence (a(»n):«<co)of smaller
ordinals such that co" = 2„<u<o"("), and if a > 1, then a(0) > 1. Also for every set
B E co, of type co" we fix a decomposition B = Un<üJ5(«) such that

5(0) < •••<£(«)< •••    and   tp5(n) = co"(n).

Let Tbe a fixed nonprincipal ultrafilter on co,. By induction on 1 < a < co, we
define a nonprincipal ultrafilter %a(fi) on every set B E co, of type co". If a = 1,
then the isomorphism of co and B induces %0(5). So now assume 1 < a < co, and
define

DE%aiB)    iff    {«<co:£>nß(«) G%a(„)(5(n))} G "V.

By induction on a it easily follows that tpL> = co" for every D E %a(fi). The
following lemma is due to Hajnal [24, p. 1031]. For the sake of completeness we
sketch the proof.

Claim 4. Let 1 < a < co, and let S Ç co, have type co". Let (L>£: £ < co,) be a
sequence of elements of %a(fi). Then there exists a D E B, with tp D = coa such that
D\D( is a bounded subset of D for every £ < co,.

Proof. The proof is by induction on a. The case a = 1 is a well-known
consequence of MAN . So let 1 < a < co,. By the induction hypothesis, for each
n < co, there is an £„ Ç 5(»i) of type co0'"' such that En\Di is bounded in En for all
£ < co, with the property

n E N( = [m < co: L>£ n 5(m) G %Q(m)(5(m))}.

Now for each £ < co, we fix /£ Guco with the property that for every n E Nc, the
/£(«)-end-section of En is a subset of D£. Let A7 Ç co be an infinite set almost
included in each Nf, and let/ G"co eventually dominate each/£. For n E N, let Dn be
the/(n)-end-section of En. Let D = UneND„. Then D is as required.

Now we are ready for the proof of Theorem 4. By induction on a < co,, for each
A E [co,]K| we shall construct B, C E A such that tpB = co", |C|= 8, and [B]2 U
iB ® C) E Kx. Since the case a = 0 is trivial we assume 1 < a < co,. Let A E [co,]Kl
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be given. By co, -» (co,,(co,; finco,))2 there is an A0 E [A]1*' and a family ® of 8,
disjoint finite subsets of A such that ({/?} ® F) n Kx ¥= 0 for all a E A0 and
F E<$> with a < min F.

Using the induction hypothesis we recursively construct sets Bn, Cn E A0in < co)
such that:

(l)tpJ[l = «^->ft|C;|=«I;
i2)B„<B„+x&CnDCn+x;
i3)Bn+xEC„;
i4)[Bn]2UiBn®Cn)EKx.

Let B = Un<wfi. Then tpB = co" and [fi]2 E Kx. Pick F G $ such that sup fi «
min F. By the assumptions on A0 and ®, we have that B E UyfEFKxiy). Hence for
some y = y(F) G F, we have /¡C,(y) n B E ^LaiB). By Claim 4 there is a D E B
with tpD = co" such that L>\A:,(y(F)) is bounded in D for every F E %, with
sup B < min F. Thus, for some uncountable ®0 Ç ^ and 5 G D we have D\8 E
KxiyiF)) and sup fi < min F for all F E %. Let B* = D\8 and C* = (y(F):
F G %). Then fi*, C* C/l, tpB* = co", | C* |= 8,, and [B*]2 U iB* ® C*) E Kx.
This completes the proof.

Let us now consider the following combinatorial principle introduced by Fred
Galvin:

(**) There are ideals i, % E iP(co,) such that:
(i) 3 n£ =[«,]<«<>;

(ii)SV<j.= {A U B:A E<S&BE<y) = [w,]<K°;
(iii) Vv4 G[co,]s'([^]N°n í ^ 0 &[^]s»n}^ 0).
Galvin proved that ♦ implies (**) and that (**) has some topological applications

[15, Theorem 4]. He also asked for the consistency of -i(**). The next result shows
that -.(**) is consistent.

Theorem 6. co, -» (co,; finco,)2 implies -,(**).

Proof. Let 5 and % be ideals satisfying (i) and (ii) of (**). For each a < co, we can
find disjoint AaE§ and Ba E f such that Aa U Ba = a. Define [co,]2 = K0 U Kx by

{ß,a}<G^0   iff   ßEAa.

Since co, -> (co,; fin co,)2 holds, we consider the following two cases:
Case I. There is an A G [co,]Nl and a family $ of 8, disjoint finite subsets of co,

such that ({a} ® F) n K0 ¥= 0 for all a E A and F E % with a < min F.
For F G ÍB we define/1(F) = U [Aa: a E F). Then/1(F) G 5 and/l n min F Ç

/1(F) for each F G "35. Hence [/1]N° Ç 5, contradicting the conjunction of (i) and
(iii). This shows that (**) fails in this case.

Case II. There is an A E [co,]*1 and a family <$ of 8, disjoint finite subsets of co,
such that i{a) ® F)D Kx¥= 0 for all a G A and F G % with a < min F.

Proceeding as in Case I we show that here [A]*° E j-, which again contradicts
(**). This completes the proof.

The remainder of this section is devoted to the topological applications mentioned
in the introduction.
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Theorem 7. Assume co, -» (co,,(co,; finco,))2. Let X be a toplogical space with no
uncountable discrete subspaces. Let % be a family of open subsets of X such that
U % = X. Then there is a countable %0 E % such that X= U {¿7: U E %„}.

Proof. Assume by way of contradiction that, for every countable %0 E %,
X¥=U{U: UE%0). Then by induction on a < co,, we can easily construct
sequences (Ua: a < co,) and (xa: a < co,) of members of % and X, respectively,
such that

(l)xaEUa, _
(2) xa E U [Uß: ß < a).

Define [co,]2 = K0 U Kx by

{ß,a)<EK0    iff      xßEUa.

Since co, -» (co,, (co,; fin co,))2 holds, we consider the following two cases:
Case I. There is an A E [co,]N| such that [A]2 E K0. Then for every a EA,

Ua n [Xß. ß E A) = [xa). Hence [xa: a E A) is an uncountable discrete subspace
of X, a contradiction.

Case II. There is an A G [co,]8' and a family iß of 8, disjoint subsets of co, such
that ({a} <8> F) D Kx ¥= 0 for all a E A and F G <S with a < min F. For F G iß we
define

Í/(F) = U í/y.

Then for each F G 'S,
{x„: a G A n min F) E (7(F).

Choose inductively an A0 G [/I]*1 and, for each a G /10, an Fa G iß such that if
ß < a arein/l0, then

max Fß < ß < min Fa < max Fa < a.

Then by (1) and (2), for each a E A0,

(Ua\UiFa))n {xß:ßEA0) = [xa).

Hence {xa: a E A0) is an uncountable discrete subspace of X, a contradiction. This
completes the proof.

Theorem 8. Assume ux -» (co,,(co,; finco,))2. Then every regular toplogical space
with no uncountable discrete subspace is hereditarily Lindelöf.

Proof. Clearly it suffices to show that X is Lindelöf. So let % be a family of open
sets such that U % = X. Since A" is a regular space, there is a family T of open
subsets of A' such that U 'Y = X, and such that for every W E °v" there is a
UiW)EGll such that UiW) D W. By Theorem 7 there is a countable % E Tsuch
that

A-= U{ÍF: WE\).

Hence %0 = {{/( W): W E %} is a countable subfamily of % such that U %0 = X
This completes the proof.
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Corollary 9. Assume co, -> (co,,(co,; finco,))2. Then every regular hereditarily
separable topological space is hereditarily Lindelöf.

Theorem 10. Assume co, -» (co,,(co,; finco,))2. Let X be a Hausdorff space with no
uncountable discrete subspaces. Then every point of X is the intersection of countably
many open subsets of X.

Proof. Fix x E X. Since A' is a Hausdorff space, for every y E X\{x) there is an
open set Uy such that y E Uy and x & Uy. By Theorem 7, applied to the space
A'XLx}, there is a countable Y E X\{x) such that X\{x) = U {£/: y E Y). This
shows that [x) is a Gs subset of X.

The following theorem is a simple consequence of Theorem 10 using a result of
[18]. However, since the result we need is a relatively simple application of (2N°)+ -»
(8, )W , we shall give some details.

Theorem 11. Assume co, -» (co,,(co,; finco,))2. Then every Hausdorff space with no
uncountable discrete subspaces has cardinality < 2N°.

Proof. Assume by way of contradiction that A' is a Hausdorff space of cardinal-
ity > 2K° with no uncountable discrete subspaces.

Let < be a well-ordering of X. By Theorem 10, for each * G X we can fix a family
[U": n < co} of open subsets of X such that {x} = dn<JU". For m, n < co and
{x, y)<E [A1]2 we let

[x,y) EKmn   iff   x<£Uy"&y*U?.

Clearly, [X]2 = Um n<aKm,, By (2*°)+ - (»,)£„, there are m', n' < co and D E
[*]"• such that [D]2 E Km.„.. For x E D, let Wx = Uxm' n Uxn'. Then for each
x E D, WXC\ D = [x). Hence, D is a discrete subspace of X, a contradiction. This
completes the proof.

We conclude the paper with a remark on the following partition relation (it is dual
to co, -» (co,,(co,; finco,))2), denoted by

co, ->(co,, (finco,; co,)) .

This relation means: For every partition [co,]2 = A"0 U Kx either
(1) there is an A E [co,]S| such that [A]2 E K0,or
(2) there is a family 6B of 8, disjoint finite subsets of co, and a set B E [co,]*1 such

that (F ® {/?}) n Kx ¥= 0 for all F G & and ß E B with max F < ß.
The consistency of co, -» (co,,(finco,; co,))2 is an open problem. It is easily seen

that co, -> (co,,(finco,; co,))2 implies the dual statement of Theorem 8, i.e., that every
regular space with no uncountable discrete subspaces is hereditarily separable.

The reader interested in the role of MAN in the problems we have considered
here can find some information in [4].
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