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Campos, 12228900, Brazil

2KTH Royal Institute of Technology, Dept. of Engineering Mechanics, FLOW,
SE-10044, Stockholm, Sweden

Submitted to Journal of Fluid Mechanics

An analysis of the statistics of the non-linear terms in resolvent analysis is
performed in this work for turbulent Couette flow at Reynolds number 400.
Data from a direct numerical simulation of a minimal flow unit is post-processed
using Fourier analysis in both time and space, leading to the covariance matrix
of the velocity. From the same data, we computed the non-linear terms of the
Navier-Stokes equations (treated as forcing in the present formulation), which
allowed us to compute the covariance matrix of the forcing for this case. The two
covariances are related exactly by the resolvent operator. Such a quantitative
relation is confirmed here for the first time, accounting for relevant signal
processing issues related to the windowing procedure for frequency-domain
quantities. Such exact correspondence allowed the eduction of the most relevant
force components. This is carried out for the dominant structures in this flow,
which participate in the self-sustaining cycle of turbulence: (i) streamwise
vortices and streaks, and (ii) spanwise-coherent fluctuations of spanwise velocity.
The present results show a dominance by a subset of the non-linear terms
for the prediction of the full statistics of streamwise vortices and streaks; a
single term is seen to be dominant for spanwise motions. A relevant feature
observed in these cases is that the forcing covariance is dominated by its first
eigenfunction, showing that non-linear terms also have a coherent structure.
Different forcing components are also coherent between them, which leads to
constructive and destructive interferences that greatly modify the flow response.
These observations show that forcing colour is an important feature of turbulent
flows, and should thus be accounted for in modelling work.

1. Introduction

Coherent structures have been studied in turbulent flows for some time now.
Findings in that area led to a change in view: instead of considering turbulence as
completely stochastic, this is now seen as having a clear coherent motion among
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the apparent unsteady, chaotic field. In turbulent jets, for instance, structures
governed by the Kelvin-Helmholtz instability were found to be important not
only for transition (Michalke 1964), but also for the sound radiation at shallow
angles (Cavalieri et al. 2012). In wall-bounded flows, streamwise elongated,
spanwise organised structures (called streaks), found firstly by Kline et al.

(1967), are also ubiquitous in shear flows. These structures are found for all
kinds of turbulent shear flows, including channels (Gustavsson 1991), pipes
(Hellström et al. 2011), and even round jets (Nogueira et al. 2019).

The mechanism behind streak formation was firstly studied by Ellingsen
& Palm (1975), later complemented by Landahl (1980). In their study, they
concluded that the presence of shear in the mean flow and a non-zero wall-
normal velocity induce momentum transfer between different layers of the fluid.
If streamwise vortices are present, for instance, these generate streaks via a non-
modal, linear mechanism such that, when fluid is lifted from high- to low-speed
regions of the flow, a high-speed streak is formed (the opposite happening for a
low-speed streak). This is called the lift-up effect and, considering that streaks
are present in several shear flows, this effect should be an important part of the
turbulent dynamics. This is explored, for example, by Hamilton et al. (1995);
Waleffe (1997) where a self-sustaining process for wall bounded turbulence was
proposed. This can be summarised as following: (i) streamwise vortices in
the turbulent medium generate streamwise streaks via the lift-up effect; (ii)
streaks grow until the instability is triggered, leading to their breakdown; (iii)
the resulting flow interacts non-linearly in order to regenerate the streamwise
vortices, thus restarting the process. The first step is well understood, and
was considered by the work of Ellingsen & Palm (1975). The other stages
have also received a good deal of attention: the streak breakdown was studied
by Schoppa & Hussain (1999) using numerical simulation and linear stability
theory, revealing that the breakdown of a low-speed streak directly generates
new streamwise vortices in the end of the process. This was further explored
numerically (Jiménez & Pinelli 1999; Andersson et al. 2001), experimentally
(Asai et al. 2002) and even theoretically (Kawahara et al. 2003), using a simplified
vortex sheet model. As synthesised by Brandt (2007), this process can occur via
either a varicose or a sinuous mode, the latter being the dominant mechanism;
in both cases, the final structures resulting from the instability of a low-speed
streak are elongated in the streamwise direction (quasi-streamwise vortices).

The cited works focused on the steps leading to the breakdown of streaks,
looking at the self-sustaining cycle in the time domain (in order to evaluate
the sequence of events); in most cases results confirm qualitatively trends
observed in turbulent flows, but quantitative comparisons are difficult due to
the simplifications introduced in the modelling process. Alternative approaches
for studying these phenomena are based on the analysis of the linearised
Navier-Stokes operator, considering the mean field as the base flow. In this
framework, linear methods such as resolvent analysis (Jovanovic & Bamieh
2005; McKeon & Sharma 2010) and linear transient growth (Butler & Farrell



Forcing statistics in resolvent analysis 225

1992; Schmid & Henningson 2001) are useful to obtain optimal responses from
the harmonically forced linearised Navier-Stokes system (resolvent) or the flow
structure resulting from a non-modal growth of initial disturbances (linear
transient growth). Both analyses, albeit linear, reproduce some experimental
trends in both wall-bounded flows (Del Alamo & Jimenez 2006; Pujals et al.
2009; Cossu et al. 2009; Sharma & McKeon 2013; Morra et al. 2019; Abreu
et al. 2019) and free-shear flows (Schmidt et al. 2018; Lesshafft et al. 2019).
Nevertheless, there are intrinsic limitations to these approaches. For instance,
resolvent analysis typically considers the unknown forcing terms as spatially
white noise, suggesting that the energetic coherent structures in the turbulent
flow should be closely related to optimal response modes from resolvent (Towne
et al. 2018a). Usually, this analysis assumes that the statistics of the non-
linear terms are uncorrelated in space (spatial white noise), often due to lack
of knowledge of the real force statistics. This assumption is never verified in
practice, considering, for instance, that non-linear terms are zero on a wall, and
should be negligible in regions of uniform flow. Moreover, non-linear terms are
expected to have a specific structure, as they result from the turbulent flow
field which itself has a level of organization.

Hence, attempts have been made to identify the colour of such “forcing”
terms using some flow statistics. Zare et al. (2017), for instance, proposed
a formulation to estimate the non-linear forcing statistics from a turbulent
flow field based on the knowledge of a limited number of velocity correlations.
Similar work was performed by Towne et al. (2020), who proposed a method
for estimating the systems response statistics via an indirect estimation of the
system force statistic, although a comparison between the estimated and real
forces is not presented. The method was applied to different problems, such as
Ginzburg-Landau and linearised Navier-Stokes, showing that it can outperform
several approaches in flow cases that are not dominated by the first resolvent
mode. It is worth noting that the cited works focused on estimating the forcing
from a limited number of sensors, in an optimisation framework aimed at
matching statistics from such sensors, instead of evaluating the characteristics of
such forcing. Also, there is thus no a priori guarantee that the identified forcing
is the one actually present in turbulence dynamics. In his thesis, Towne (2016)
also analysed the structure of the equivalent non-linear forcing of a turbulent
jet using data from a large-eddy simulation. The preliminary results of forcing,
as computed in the cited work, can be considered as a first approximation of
the non-linear terms of the Navier-Stokes equations; still, it also accounts for
the subgrid model in the simulation. This earlier effort did not account for
windowing issues later studied by Martini et al. (2019), and hence the presented
results may suffer from signal processing issues. Another way to consider the
structure of non-linear terms is by introducing an eddy viscosity model on the
linearised Navier-Stokes operators (Del Alamo & Jimenez 2006; Pujals et al.
2009; Illingworth et al. 2018; Morra et al. 2019), which models at least part of
non-linear effects as turbulent diffusion on the flow structures. However, such
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model should not be required when full force knowledge is available and the
proper signal treatment is performed.

None of the cited works dealt with the exact covariance, within numerical
accuracy, of non-linear terms, as each included some degree of approximation
whose effect is difficult to evaluate a priori. In order to avoid the simplifications
above, one may consider the exact covariance of the non-linear terms in the
analysis. By taking the exact covariance of the non-linear terms into account
(or the cross-spectral density if the analysis is carried out in the frequency
domain), the exact response of the system can be obtained. To the best of
the authors’ knowledge, this has not been attempted for turbulent flows, but
only for model problems such as the forced Ginzburg-Landau equation (Towne
et al. 2018a; Cavalieri et al. 2019). A notable exception is the work of Chevalier
et al. (2006), where time covariances of the non-linear terms are obtained from
a simulation of turbulent channel flow, and subsequently used, assuming white
noise in time, to design estimators of flow fluctuations using Kalman filters.
However, the use of the exact covariance of the non-linear forcing term can be
prohibitive for complex flow cases. Therefore, an approximation or modelling
of the forcing term is usually needed to reduce the number of variables to be
computed/modelled, and may also lead to insight on the relevant physics, as
the dominant mechanisms of excitation of flow structures may be thus isolated.
An analysis of forcing covariances should reveal the degree of organisation of
the excitation, showing how significant are the departures from the simplified
white-noise assumption.

This work focuses on the analysis of the non-linear forcing term in the
resolvent analysis of a turbulent Couette flow, here studied in the minimal
computational box of Hamilton et al. (1995), which allows a full determination
of the cross-spectral densities of forcing and response without any simplifying
assumption. Differently from other previous approaches (Zare et al. 2017; Towne
et al. 2020), instead of estimating the forcing from a subset of data in order
to estimate other flow statistics, we explicitly compute the non-linear term of
the Navier-Stokes equations, performing the whole analysis using the actual
statistics of these terms. Reduction of the complexity of forcing statistics can be
performed subsequently in modelling steps, whose accuracy may be evaluated
by computing flow responses to simplified forcings using the resolvent operator.
The paper is divided as follows: In § 2 the relevant parameters of the simulation
are defined, followed by the methods showing how the covariance of the velocity
fluctuations is obtained from the covariance of the non-linear terms of the
Navier-Stokes equations. The reconstruction of the velocity statistics from the
forcing covariance is evaluated in § 3, where the role of the windowing correction
term is highlighted. After that, in § 4 we focus on obtaining the relevant parts
of the non-linear terms (the ones that will generate the bulk of the covariance
of the response) for two different cases (streaks, and streamwise oscillations
of spanwise velocity). The paper closes in § 5 with a connection between this
analysis and the self-sustaining cycle characteristic of turbulent Couette flow.
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2. Numerical approach

The case chosen for the study is the Couette flow in the minimal flow unit. Such
a flow case retains salient features of turbulent flows, like the dominance of
streaks by the lift-up effect and the self-sustaining process defined by Hamilton
et al. (1995); Waleffe (1997), and minimises computational power requirements.

2.1. The Minimal Flow Unit

The flow case chosen is the one explored by Hamilton et al. (1995). It is defined
by the smallest box and the smallest Reynolds number in which turbulence
can be sustained without any external forcing. For Couette flow, the minimal
box has dimensions (Lx, Ly, Lz) = (1.75πh, 2h, 1.2πh), denoting lengths in the
streamwise, wall-normal and spanwise directions, respectively; h is the channel
half-height. The discretisation was chosen as (nx, ny, nz) = (32, 65, 32) before
dealiasing in the wall-parallel directions, which gives a slightly higher resolution
than the one used in Hamilton et al. (1995). We consider Couette flow with
walls moving at velocity ±Uw; the Reynolds number for this case is Re = 400,
based on wall velocity Uw and half-height h. For this flow this leads to a friction
Reynolds number Reτ ⇡ 34, based on the friction velocity. From now on, all
quantities are non-dimensional values based on outer units, with h and Uw

as reference length and velocity. The simulation is performed in SIMSON, a
pseudo-spectral solver for incompressible flows (Chevalier et al. 2007), with
discretisation in Fourier modes in streamwise and spanwise directions, and in
Chebyshev polynomials in the wall-normal direction.

The simulation is initialised with white noise in space for Re = 625, which
becomes turbulent after a few timesteps; the Reynolds number is, then, slowly
decreased until the desired value of 400. After reaching the desired value of
Re and discarding initial transients, flow fields are stored every ∆t = 0.5 in
the interval 10000 < t < 25000. During this period, several streak regeneration
cycles are observed, and the flow is expected to be statistically stationary. The
mean turbulent velocity profile is shown in figure 1(a), which has the usual
“S” profile typical of turbulent Couette flow. The mean profile and fluctuation
levels match previous results for the same computational domain and Reynolds
number (Gibson et al. 2008). A snapshot of the streamwise velocity fluctuations
for a (y, z) plane is shown in figure 1(b). As expected, streaks arise clearly in
the velocity field, since these structures are the most relevant in the turbulent
dynamics of this sheared flow; they are flanked by streamwise vortices with the
expected lift-up behaviour: positions with downward/upward motion display
lifted high/low momentum, leading to a high/low-speed streak.

Using the results from the DNS, the velocity fluctuations around the mean
flow profile (treated as response of the input-output version of the Navier-Stokes
system) were computed; these, in turn, were used to compute the non-linear
terms of the Navier-Stokes equations, which will be treated as a forcing term in
the N-S equations expanded around the mean flow. These are computed directly
as a function of time in the physical domain. After that, the resulting forcing
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Figure 1: Mean velocity for Couette flow and snapshot of the velocity field in
the (y, z) plane (colours: streamwise velocity; arrows: spanwise and wall-normal
velocities).

was Fourier transformed in space, leading to forcings as a function of streamwise
and spanwise wavenumbers, but still in the time domain. Using the forcing
and velocity in the time-wavenumber domain, we computed the cross-spectral
densities of the response (S) and of the forcing (P). This is further detailed in
the next section.

2.2. Recovering response statistics from the forcing cross-spectral density

Since Couette flow is homogeneous in x and z directions, the first step for the
analysis of this flow is to perform a spatial Fourier transform of both response
and forcing, so the analysis can be performed separately for each wavenumber.
Modes are defined by the integers (nα, nβ), with α = 2πnα/Lx and β = 2πnβ/Lz

being the wavenumbers, following the same notation of Hamilton et al. (1995).
The wall-normal integrated kinetic energy of the first two modes, some of the
most relevant ones in the analysis of Hamilton et al. (1995), is shown in figure
2, showing the fluctuations peak at vanishing frequency ω ! 0 for mode (0, 1),
and a plateau is observed at low frequencies for mode (1, 0). Since we consider
a Couette flow with walls moving at opposite velocities, ±Uw, this very-low
frequency behaviour reflects that the two modes peak at approximately zero
phase speed, without preferred motion following some streamwise or spanwise
direction, as can be induced from the results of Hamilton et al. (1995). The time
power spectral density (PSD) for each mode was estimated using the Welch
method, with the signal divided in segments of nfft = 1024 with 75% overlap,
which led to 114 blocks for the analysis. A Hanning window was used to reduce
spectral leakage, allowing accurate relation between forcing and response of the
system.
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Figure 2: Power spectral density of the wall-normal integrated kinetic energy
for the different modes studied herein.

We will study the two most energetic modes at low frequencies, as showed in
Hamilton et al. (1995): mode (0, 1), which is related to the appearance of streaks;
and mode (1, 0), which emerge once the amplitude of mode (0, 1) decreases,
characterising streak breakdown (Hamilton et al. 1995). Applying the Reynolds
decomposition, we will consider an expansion around the mean flow, averaged
over streamwise and spanwise directions and in time, so that each component of
the velocity can be written as the sum of mean and fluctuation fields (Ui + ũi),
with Ui denoting the mean velocity profile and the tilde indicating fluctuations
in time domain. Thus, we can write the incompressible Navier-Stokes equations
as

∂ũi

∂t
+ Uj

∂ũi

∂xj

+ ũj

∂Ui

∂xj

= �
∂p̃

∂xi

+
1

Re

∂2ũi

∂xj∂xj

+ f̃i, (1)

and the continuity equation

∂ũi

∂xi

= 0, (2)

where Einstein summation is implied, ũi are the three velocity components, p̃
is the pressure and the forcing term f̃i is considered to gather the non-linear
terms of the Navier-Stokes equations,

f̃i = �ũj∂ũi/∂xj + ũj∂ũi/∂xj . (3)

where ũj∂ũi/∂xj is the mean Reynolds stress, which is only be present in the
zero-frequency/zero-wavenumber equation (i.e. the mean-flow equation, which
is the Reynolds averaged Navier-Stokes equation). Taking the Fourier transform
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in x, z and t, and considering that the mean flow has only the streamwise
component U(y), leads to

�iωu+ iαUu+ v
∂U

∂y
= �iαp+

1

Re

✓

�α2 � β2 +
∂2

∂y2

◆

u+ fx (4a)

�iωv + iαUv = �
∂p

∂y
+

1

Re

✓

�α2 � β2 +
∂2

∂y2

◆

v + fy (4b)

�iωw + iαUw = �iβp+
1

Re

✓

�α2 � β2 +
∂2

∂y2

◆

w + fz (4c)

iαu+
∂v

∂y
+ iβw = 0, (4d)

where ω is the frequency, (u, v, w, p) are the Fourier transformed perturbation

quantities, and (fx, fy, fz) the Fourier transforms of f̃i. From the equations
above, we can write the incompressible Navier-Stokes equations for the per-
turbations in the wavenumber and frequency domain in an input-output form
as

� iωHq = Aq+ f , (5)

where q = [u v w p]T is the output and f = [fx fy fz 0]T is the forcing
term (input). The matrix A is the linear operator defined by Navier-Stokes
and continuity equations (which is a function of the streamwise and spanwise
wavenumbers α and β) and the matrix H is defined to zero the time derivative
of the pressure. This can be rewritten in the usual resolvent form

(�iωH�A)q = f (6)

) Lq = f (7)

) q = L�1f = Rf . (8)

With the equations written in this shape, optimal forcings and responses
(in the linear framework, based on linearisation of the Navier-Stokes equations
around the mean flow) can be obtained for a turbulent flow by performing a
singular value decomposition of the resolvent operator, which leads to orthogonal
bases for responses qi and forcings fi, related by gains si. In other words,
resolvent analysis amounts to solving the linear optimisation problem given by

s21 = max
f

hRf ,Rfi

hf , fi
, (9)

where h , i is the Euclidean inner product associated with the energy norm,
and s1 is the highest resolvent gain. The solution for equation 9 is obtained by
performing a singular value decomposition of the resolvent operator R. When
inner products other than Euclidean are considered, eq. 9 is modified to account
for weighting matrices related to forcing and response spaces, and such matrices
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are used in the singular value decomposition; the reader is referred to Schmidt
et al. (2018) for the complete description of the inclusion of weighting matrices.
Here the same weighting matrix was used for both forcing and response spaces,
corresponding to Clenshaw-Curtis quadrature associated with the Chebyshev
weights in the present grid (Trefethen 2000).

Optimal response and the respective gain from resolvent analysis are directly
comparable to the most energetic structures in the flow if the forcing is considered
to be statistically white in space (Towne et al. 2018a). In order to consider the
actual statistics of the flow in this framework, we define the covariance matrices
of the response S = E(qqH) and of the forcing P = E(ffH), and E representing
the expected value of a signal, which is computed by averaging realisations in
the Welch method (taking the block-average of qqH as a function of frequency).
Following Towne et al. (2018a); Cavalieri et al. (2019), these quantities are
related via

qqH = Rff
HRH

E(qqH) = RE(ffH)RH

S = RPRH . (10)

If it is assumed that the covariance of the forcing is uncorrelated in space,
then P = I and the covariance of the response is given by S = RRH . Therefore,
if the statistics of the forcing follows this hypothesis, the SPOD modes, defined
by the eigenfunctions of

Z 1

�1

S(y, y0,ω)qSPOD(y0,ω)dy0 = σqSPOD(y,ω) (11)

are identical to response modes (left singular vectors of R). For more details on
this derivation, the reader should refer to Towne et al. (2018a); Cavalieri et al.
(2019). As in the computation of resolvent modes, SPOD modes are computed
numerically with the inclusion of integration weights (Schmidt et al. 2018), such
that flow structures resulting from both analyses can be directly compared to
each other.

However, non-white forcing covariance (which must be the case in turbulent
flows) must be included in the formulation in order to correctly educe the
response statistics. The inclusion of P can be done in several ways. One of them
is to directly compute the non-linear terms of the Navier-Stokes equations from
simulation data. Other approaches include modelling the forcing starting from
specific assumptions on the flow case (Moarref et al. 2013), its identification from
limited flow information (Zare et al. 2017; Towne et al. 2018b), and modelling
by means of an eddy viscosity included in the linear operator (Tammisola &
Juniper 2016; Morra et al. 2019).

The present work focuses on exploring different forcing covariances and their
effect on the covariance of the response. The first approach is to simply consider
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the forcing to be uncorrelated in space; for this case, previous analyses for
wall-bounded flows has shown that even though reasonable agreement may be
obtained for near-wall fluctuations (Abreu et al. 2019), a mismatch is observed
for large-scale structures (Morra et al. 2019). One can also compute the non-
linear terms directly from a numerical simulation and then determine accurately
P. If the simulation is converged and the signal processing is done properly, the
result of equation 10 using the actual forcing covariance P (in the sense that
this quantity is directly obtained from the simulation) should be equal to the
response covariance S computed from the same simulation.

3. Reconstruction of response statistics from the full forcing

CSD

3.1. Connection between forcing and response statistics – role of the correction

due to windowing

Although equation 10 is exact, if P and S are estimated from a finite set of
data, large errors arise in the velocity statistics recovery process using the
resolvent operator, leading to non-negligible values for S�RPRH . From the
analysis of Martini et al. (2019) (summarised in Appendix A for the present
case), application of windowing in the data (which is necessary for applying
Welch’s method) generates extra force-like terms that must be accounted to have
the correct input-output relation, so that equation 10 holds for the estimated
covariances. The impact of these extra terms can be measured as

Error =
||Srec � S||

||S||
, (12)

where Srec is the covariance of the response recovered from the statistics of the
forcing using eq. 10, applied for both uncorrected and corrected forcing terms;
the norm was chosen as the standard 2-norm for matrices. With this metric,
we can evaluate how this correction term affects the process of recovering S

from P. The comparison of the errors with and without this correction term is
shown in figure 3 for the two Fourier modes studied in this work.

From figure 3, we can see that the correction affects a wide range of
frequencies, with a slightly lower effect in higher frequencies. Following Martini
et al. (2019), we can divide the aliasing error into two components: the first is
due to spectral content at frequencies higher than the Nyquist frequency, and
the other is due to the window spectral leakage, which generates extra content
above the Nyquist frequency. Only the latter can be reduced with a proper
choice of windowing function. The aliasing behaviour of the error explain the
larger errors obtained at higher frequencies in figure 3, and indicates that the
first type of aliasing is dominant in that region. As this work will focus on the
study of low frequency structures, no further effort is made in order to reduce
the error in higher frequencies; moreover, since the normalised errors are below
10�4 in all cases, an optimisation of the window was deemed unnecessary for
our purposes.
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Figure 3: Effect of the correction term in the recovery of S. Error spectrum
normalised by ∆ω.

The correction greatly improves the recovery process for all modes, leading
to a reduction of the error of about 5 orders of magnitude for the two considered
modes, which is possibly related to the low-order dynamics of the flow for this
combination of wavenumbers, a feature that will be further explored in §4.1 and
4.2. The effect of the correction on the shapes of each case will be studied in
the next section.

The role of the forcing terms is studied throughout this work. All the
comparisons between forces and responses will implicitly consider the correction
term, unless otherwise stated. In all other contexts “external force” will refer
only to the term f , without considering the correction term.

3.2. Comparison with statistics from white-noise forcing and no correction

Here, we analyse the effect of the different choices of forcing CSD P on the
velocity statistics. As stated previously, we focus on very low frequencies in
order to evaluate the effect of the statistics of the non-linear terms on the most
energetic streaks, and on the equivalent structures for other combinations of
wavenumbers. For that reason, we choose ω = 0.0123 for the analysis of modes
(0, 1) and (1, 0); this is the first non-zero frequency from the Welch method
for the present case (this frequency can be seen as the limit ω ! 0 in this
analysis). This frequency was chosen so as to analyse the behaviour of the
very-large, almost time-invariant structures observed in the minimal flow unit.
Analogous structures have been identified by a number of authors (Komminaho
et al. 1996; Tsukahara et al. 2006; Pirozzoli et al. 2011, 2014; Lee & Moser 2018)
for turbulent Couette flow at higher Reynolds numbers. For the present low
Reynolds number, these large structures have the same characteristic length of
the near-wall streaks; since they have the same overall behaviour, it becomes
harder to separate these in such a small box. The analysis of Rawat et al.

(2015) indicates nonetheless that the minimal flow unit streaks become very
large scale structures in turbulent Couette flow if continuation methods are
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applied. Therefore, the analysis of mode (nα, nβ) = (0, 1) should be seen as a
study of the overall dynamics of the largest streaks in Couette flow.

Figure 4 shows the comparison between the absolute value of the main
diagonal of S, which corresponds to the power spectral density (PSD) of the three
velocity components. We consider the response CSD of case (nα, nβ) = (0, 1)
using the statistics of the forcing obtained from the simulation without any
correction (PDNS), the one considering the correction term (PDNS+c), and the
one using the white-noise P = γI (with constant γ chosen so as to match the
maximum PSD for this frequency). It can be seen that the shape of the main
component (streamwise velocity u) can be fairly well reproduced by simply using
P = γI. Streaks are represented, with peak amplitudes distant of about 0.4
from the wall; this may be related to the higher shear near the walls, as shown
in figure 1, leading to a stronger lift-up mechanism in that region. Considering
white-noise forcing, we can see some discrepancies in the amplitudes and in some
details of the shapes of the streamwise vortices (v and w components). Resolvent
analysis (as formulated by McKeon & Sharma (2010)), assumes white-noise
forcing, predicting thus streamwise vortices and streaks that are in reasonable
agreement with the DNS, although with a mismatch in the relative amplitudes
of u, v and w components; similar results were obtained for turbulent pipe flow
by Abreu et al. (2019). This will be explored in more detail in § 4.1. For an
accurate quantitative comparison, the statistics of the non-linear terms should
be used; by doing that without the correction, the overall relative levels are
closer to the one from the simulation, but the amplitudes are still off, especially
at the peak of each component (which explains the errors seen in figure 3).
When the correction is taken into account, the exact shapes are recovered for
all components, without any rescaling.

The same process was carried out for case (1, 0), and the results can be seen
in figure 5. For this combination of wavenumbers, the flow is dominated by the
spanwise velocity component, and the energy of the other velocity components
are several orders of magnitude lower, as shown in figure 5. The dominance of w
for the (1,0) mode was also observed by Smith et al. (2005); analysis of spectral
density of turbulent channels also shows that structures with large spanwise
extent are observed for w (del Álamo & Jiménez 2003). By considering white-
noise statistics of the forcing, this dominance of spanwise velocity fluctuations
could not be captured, and all components predicted by RRH have the same
overall levels, leading to large errors for the (u, v) components. For the spanwise
component, however, the position of the peak and the shape of S at the centre
of the domain is roughly captured by the method, even though larger errors
are found for regions closer to the wall. These facts altogether point out to an
action of the non-linear terms in forcing mainly in the spanwise direction, with
a more effective action closer to the wall (highlighted by the higher amplitude
of the response around y = 0.4, 1.6). By including the uncorrected statistics
of the forcing, PDNS , the problem of the relative amplitudes of the different
components is solved; now the spanwise component dominates the response,
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Figure 4: S from simulation and from the recovery process using different P
(white-noise, uncorrected and corrected) for case (nα, nβ) = (0, 1). Prediction
using white-noise P was scaled to match the maximum of S by the factor
γ = 1.029⇥ 10�4.

and its shape resembles the one obtained directly from the simulation, even
though a slight mismatch is found in the centre of the channel. This comparison
is further improved by including the correction term in the statistics of the
forcing; by using it, a perfect match between S computed from the simulation
and the one from the forcing statistics is obtained, and the normalised error for
this case is lower than 10�5.



236 Nogueira, P.A.S., P. Morra et al.

0 2 4 6 8

10
-4

0

0.5

1

1.5

2

(a) Streamwise component

0 0.5 1

10
-4

0

0.5

1

1.5

2

(b) Wall-normal component

0 2 4 6 8

10
-3

0

0.5

1

1.5

2

(c) Spanwise component

Figure 5: S from simulation and from the recovery process using different P
(white-noise, uncorrected and corrected) for case (nα, nβ) = (1, 0). Prediction
using white-noise P was scaled to match the maximum of S by the factor
γ = 3.6295⇥ 10�5.

4. Analysis of the forcing CSD

The previous analysis detailed the full response statistics recovery process,
aiming at obtaining accurately the response statistics from the full statistics of
the non-linear terms of the Navier-Stokes equations. However, the structure of
the non-linear terms can be complex, and analysis of the full non-linear term
can hardly lead to clear physical insight about the flow turbulent dynamics. For
this reason, it would be interesting to simplify the forcing, with an evaluation
of which components are mostly responsible for the energy of the response.
This is performed in this section for wavenumbers (nα, nβ) = (0, 1) and (1, 0).
The present analysis can uncover some of the physical mechanisms behind the
action of the non-linear terms of the Navier-Stokes equations in the linearised
operators, which can be useful in the design of turbulence models. Thus, in
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this section we analyse the structure of the non-linear terms from the DNS,
evaluating their relevant characteristics and performing simplifications whenever
is possible. Inspired by this analysis, we inspect simple modelling approaches
in Appendix B, pointing out how the simplest non-white P performs in this
problem.

4.1. Case (nα, nβ) = (0, 1)

4.1.1. Contribution of each component of the non-linear terms

In this section we analyse more closely the structure of the non-linear terms for
the case (0, 1) for ω ! 0 (ω = 0.0123). Our objective here is to look closely at
the forcing statistics in order to isolate the important parts for this simple case.
The number of components of the non-linear terms, as defined in equation 3,
makes an ad hoc modelling approach prohibitive; still, if only certain parts of
the forcing are necessary to reproduce the statistics of the response, modelling
can be considered an option. Specifically for the case (nα, nβ) = (0, 1), the
momentum equations 4b and 4c (v and w) decouple from the streamwise velocity,
and these equations become also independent of the mean flow U . That allows
us to rearrange the system in order to obtain separate equations for streamwise
vortices (concentrated in the v, w components) and streaks (concentrated in the
u component) as
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where the influence of the spanwise component of the forcing is already con-
sidered in equation 13, by considering that only the solenoidal part of the
forcing leads to a response in velocity; inspection of the linear operators in
the Orr-Sommerfeld-Squire formulation (Jovanovic & Bamieh 2005) confirms
that hypothesis, which was also verified by Rosenberg & McKeon (2019) and
Marsden & Chorin (1993). The spanwise component w can be obtained from v
using the continuity equation. The linear optimal response of equation 13 for
ω ! 0 are streamwise vortices (as obtained from resolvent analysis), and these
structures are independent of the mean flow chosen for the analysis, since the
operators L01 and B01 do not depend on U . The effect of U is seen directly
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in the equation of the streamwise velocity, via the v ∂U
∂y

term, which is related

directly with the lift-up effect: due to the presence of shear, these vortices
will lead to the growth of streamwise velocity, which will assume the shape of
streaks. One should note that there are two forcing terms in the right hand
side of equation 14, which force directly the streaks; we would like to evaluate
the influence of each one in the response. For that, we can rewrite the equation
as a function of the expected value of u as
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where R01 is the resolvent operator associated with L01. The equation above
shows that the statistics of the streamwise velocity can be educed from the
statistics of the wall-normal velocity (which in turn can be obtained from the
statistics of fy), from the statistics of the streamwise component of the forcing
fx and from the cross-term statistics. Using the values obtained from the DNS,
we can evaluate the influence of each term on the right hand side of equation
16: Pxx is related to the statistics of the streamwise component of the forcing;
(∂U
∂y

)Syy(
∂U
∂y

)H is related to statistics obtained using only the lift-up mechanism;

the other components are the covariances between streamwise forcing and
wall-normal velocity.

Figures 6(a-e) show the reconstruction of Sxx using each term of equation
16 (just the real part is shown). As expected, the reconstruction using all terms
reproduces the results from the DNS; on the other hand, if we take only the term
related to the lift-up mechanism, the shapes of Sxx differ, especially considering
the position of the peaks. The same happens when we use only the term related
to the statistics of the forcing in the streamwise direction, or when we use only
the cross-terms (which have a negative contribution of the sum). Still, the
sum of all these quantities generates a combination of constructive-destructive
influence on Sxx, leading to the correct shape and amplitude, when all terms are
considered. This can be better understood by looking at power spectral density
(which is the main diagonal of S) using each term, compared to DNS results.
This is shown in figure 6(f), where we can see that, even though the amplitudes
of each component are high, the final result considering all terms is rather small,
and the contribution of the cross-term seem to be responsible for this overall
reduction. The negative effect of the cross-term thus represents a destructive
interference between the lift-up mechanism and the direct excitation of streaks
by the streamwise forcing component. This effect cannot be appropriately
modelled when the forcing is considered as white noise, as seen in § 3.2.
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This analysis highlights that consideration of isolated mechanisms (such as
lift-up only or streamwise forcing only) may lead to quantitative errors in the
prediction of flow responses. Similar results were obtained by Freund (2003);
Bodony & Lele (2008) and Cabana et al. (2008) in studies of sound generation
by a sheared flow, using Lighthill’s acoustic analogy. The cited works showed
that when source terms, analogous to the forcing CSD P considered here, are
decomposed into subterms, an analysis of the isolated contribution of each one
may be problematic, as destructive interference between components may lead
to a summed radiation which is lower than the individual contributions. In
the context of wall-bounded flows, Rosenberg & McKeon (2019) also noticed a
similar destructive interference phenomenon for the terms composing the huvi
Reynolds stress for an exact coherent state in channel flow. The authors pointed
out that modes forced by different mechanisms may have similar absolute value
but opposite phase, leading to a smaller amplitude for the quantity, similar to
the behaviour observed in figure 6(f). The present analysis shows that a similar
effect occurs in the analysis of the streamwise velocity covariance in turbulent
Couette flow.

4.1.2. Contribution of each component of the non-linear terms

From the preceding analysis we can understand that all components (lift-up
related and streamwise forcing) are important to obtain good predictions of S.
Nevertheless, some simplification can still be performed on the forcing terms
by rewriting them as the sum of the non-linear terms of the Navier-Stokes
equations. Overall, these terms can be written as
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Individual terms are evaluated in physical space and transformed to frequency-
wavenumber space afterwards. Writing the forcing this way allows us to decom-
pose P into 9 components, related to each of the 3 forcing terms in equation 18
and extract the relevant parts of this term. Due to the low number of forcing
components to evaluate, we chose to remove some of them by trial and error, in
order to evaluate the influence of those in the statistics of the response. A first
analysis shows that f̃u does not play a significant role in this case, as predictions
of the shapes of S disregarding this term did not lead to any considerable
mismatch. The terms ṽ ∂ṽ

∂y
and ṽ ∂w̃

∂y
are also less relevant for this case. This

reduces the forcing to
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Figure 6: Real part of streamwise component of S from simulation (a) and the
prediction using different forcing term (b-e). Contribution of each term in the
reconstruction (f).
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Figure 7: Streamwise component of S from the reconstruction using the whole
forcing (a), the reduced order forcing (b), statistical white forcing (c) and the
absolute value of the diagonal of each one compared with the one from the
simulation (d).

This is the maximum simplification that the covariance of the forcing can
suffer in order to recover the covariance of the response without introduction of
significant error in its shape. A final evaluation of the influence of the reduction
is performed in section 4.1.3, showing that the most energetic structures of the
flow for these reduced covariances are virtually unchanged.

The cross-spectral density S recovered using the total forcing, the reduced
forcing and the white-noise forcing can be seen in figure 7. From figures 7(a-c), it
is clear that the reduction of the forcing to the expression 19 leads to the correct
amplitude distribution of the streamwise velocity CSD, with better agreement
than consideration of white-noise forcing; in particular, the coherence between
the two peaks in amplitude, which can be seen by the nearly identical values
for (y, y) and (y,�y), is recovered from Pred. Still, by retaining only the terms
in eq. 19, a mismatch starts to appear in the amplitudes of the reconstruction,
as shown in figure 7(d).
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4.1.3. Low rank of forcing

We now consider the most energetic structures in the flow, extracted using
Spectral Proper Orthogonal Decomposition (SPOD) for this combination of
frequency-wavenumber. In particular, we evaluate if forcings and responses
have low rank, which may simplify the modelling. Figure 8(a) shows the
eigenvalues of the SPOD of the full covariance of the forcing, the reduced one
(both considering the correction in eq. 25), and the covariance of the response.
SPOD here amounts simply to an eigendecomposition of the mentioned cross-
spectral densities, which are Hermitian by construction. In figure 8(a) we can
see that there is a clear separation between the first and the following modes for
these matrices; therefore, the first SPOD mode would be sufficient to represent
the forcing and response. Also, the energies of the covariance of the reduced
forcing Pred are close to the ones of the full P, which highlights the similarities
between the two matrices. The comparison between the leading SPOD mode
of the response (denoted as follows as SPOD-q) and the reconstruction using
q = RfSPOD (where fSPOD is the first SPOD mode of the corrected forcing,
both full and reduced) is shown in figure 8(b). These plots show clearly that
the leading SPOD mode of both P and Pred lead to close agreement with
the first SPOD mode of S, which confirms that the terms in equation 19 are,
indeed, the dominant ones in this problem. Figure 8(b) also show that the first
resolvent mode, computed under the hypothesis of white-noise forcing, does
not match the SPOD mode from the simulation, showing that the statistics of
the non-linear terms are important to match exactly the shapes of the most
energetic structures of the flow (Zare et al. 2017; Towne et al. 2020). The
main shapes are nonetheless retrieved in the leading response mode of resolvent
analysis, with v and w forming a streamwise vortex, as seen for instance in
the amplitude distribution of w, with two lobes in phase opposition, and an
amplified streak in u. There is a mismatch in the relative amplitudes of the
streamwise vortex and the streak, which is corrected when the forcing statistics
are considered.

We can also evaluate the most energetic structure of the non-linear terms;
considering that we are interested in their physical shapes, we calculated the
SPOD of P without the correction term. The first SPOD mode of the forcings
for the considered frequency is shown in figure 9. Even though the leading mode
of the full forcing has an intricate structure (especially due to the presence of an
extra oscillation in the centre of the domain in the wall-normal velocity), the first
SPOD mode of the reduced forcing, from eq. 19 is clear, at least considering
the spanwise and wall-normal components, with the shape of a streamwise
vortex (also shown in figure 9(b), where the mode was reconstructed using the
wavenumbers for this case). This connects directly with the conclusions drawn
previously: the streamwise vortices of the response are excited by streamwise
solenoidal forcing from the non-linear terms; these vortices, in turn, feed the
lift-up effect such that streaks appear in the velocity field. Considering that we
are dealing with the non-linear term of the Navier-Stokes equations, this result
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Figure 8: SPOD eigenvalues for S and the different P used here (a) and the
shapes of the leading SPOD mode of the response (SPOD-q) compared with
the reconstruction using the leading SPOD mode of the forcing and the first
response mode from resolvent (b).

may be seen as surprising. The non-linear forcing term gathers the contribution
of all triadic interactions that affect the considered frequency and wavenumber,
being fed by a myriad of combinations of frequencies and wavenumbers. Still,
the dominant part of these non-linear combinations in the y and z directions
(related to the w̃∂ṽ/∂z and w̃∂w̃/∂z terms) will generate a streamwise vortex
in the forcing. However, the streamwise vortical forcing alone is not sufficient
in order to match the response; a distribution of streamwise forcing, related to
ṽ∂ũ/∂y and w̃∂ũ/∂z, is essential to recover the correct response. Finally, the
appearance of w in all forcing directions (in equation 19) also shows that the
spanwise velocity fluctuations greatly affects the forcing term for the mode (0, 1).
Therefore, any combination of triadically interacting Fourier modes dominated
by w is likely to have a contribution to this forcing term and to the dynamics
of the (0, 1) wavenumber.

One can also think of the most energetic structure of the forcing in light of
the lift-up effect. Figure 10 shows the comparison between velocity components
from the first SPOD mode and the linear optimal response mode from resolvent
analysis, now rescaled to have matching wall-normal components. From this
plot, it is clear that the shapes of the vortices from resolvent analysis and
SPOD are in close agreement. Still, by performing such scaling, the streak
associated with the resolvent response has a much larger amplitude than the
one from SPOD. This can be connected to the phenomenon seen in Figure
9(b): considering that there are large portions of negative streamwise forcing
at positions where the vertical forcing would induce a positive streak via the
lift-up effect, this component of the non non-linear terms acts as a destructive
interference in its peak positions, substantially decreasing the amplitude of the
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Figure 9: Absolute value of first SPOD mode of the full and reduced forcings (a)
and the shape of the reduced forcing in the physical space. Colours: streamwise
forcing; arrows: wall-normal and spanwise forcings.
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Figure 10: Sketch of the action of the non-linear terms on the optimal response of
mode (0, 1). All quantities are defined as in figures 8(b) and 9(a), and the arrows
point to the regions of the flow where the destructive interference/cancellation
effect is more pronounced. Log scale is used to provide a better visualisation
of the agreement between resolvent and SPOD vortices, and to highlight the
amplitude mismatch between the streaks.

streaks, and slightly changing its overall wall-normal shape. Therefore, the
effect of the forcing in this case is mostly to cancel the streak generated by the
linear mechanism, decreasing the streak-to-vortex amplitude ratio, thus leading
to the structure found in the SPOD. This is shown schematically in figure 10.
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4.2. Case (nα, nβ) = (1, 0)

4.2.1. Contribution of each component of the non-linear terms

We now analyse the case (1, 0), also taken at the limit ω ! 0 (ω = 0.0123, as in
the previous section). Analysis of the energy related to each velocity component
for this case points to a dominance of w fluctuations for the present mode.
Since the dynamics of w is uncoupled from the rest (by inspection of equation
4c), it is sufficient to analyse the non-linear terms related to fz to recover the
correct statistics of the velocity, which will also be dominated by the spanwise
component, as observed in the DNS data.

The z component non-linear terms can be written as
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, (20)

which is already simpler than the previous case, since the full forcing term only
has the contribution of only three terms. We can perform the same analysis as
in the previous case and try to remove some of the terms in order to check the
impact of each one in the statistics of the response. The reductions that led to
similar shapes for the statistics of the response are the combinations f̃u + f̃v
(nearly perfect agreement) and f̃u (mismatch in amplitude). The reconstructions
of S using each of these combination of terms is shown in figure 11.

As expected, the reconstruction using all components of the forcing term
recovers very accurately S from the simulation, as well as by using just the terms
f̃u and f̃v. A further reduction (using just f̃u) also gives overall correct shapes,
but an amplitude mismatch appears for the computed S, as shown in figure
11(f). No other simplification led to accurate recovery of S. These plots also
highlight the need of using the statistics of the forcing for the prediction of the
response for this mode: figures 11(e,f) show that consideration of white-noise
statistics for the forcing leads to inaccurate shapes for the statistics of the
response, even though the peak is roughly captured.

4.2.2. Low rank of forcing and response

Taking SPOD modes of S and of the corrected P (both full and reduced), we
obtain the gains shown in figure 12(a). It is clear that, for the present frequency,
these matrices are also low-rank: the first SPOD mode is at least one order
of magnitude higher than the other ones, pointing out that using only the
first SPOD mode is sufficient to represent the forcing and the response. For a
reconstruction using the first SPOD mode of the forcings, we obtain modes very
close to the first SPOD mode of the response for all cases; even the more drastic
reduction, considering only f̃u, leads to a close agreement with the response
statistics for most positions, with a slight mismatch above the centerline. As
expected, given the differences between the prediction using the white-noise P

and the covariance of the response from the simulation, the first resolvent mode
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Figure 11: Streamwise component of S from the velocity field (a), from the

reconstruction using the whole forcing (b), the reduced order forcing with f̃u+ f̃v
(c), the reduced order forcing with f̃u (d), statistical white forcing (e) and the
absolute value of the diagonal of each one compared with the one from the
simulation (f).
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Figure 12: Energies from SPOD for S and the different P used here (a) and the
shapes of the SPOD mode of the response compared with the reconstruction
using the first SPOD mode of the forcing (b).
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Figure 13: Absolute value of first SPOD mode of the full and reduced forcings
(a) and the shape of the reduced forcing in the physical space. Colours: spanwise
forcing.

does not capture the correct shape of the most energetic structure in the flow,
especially close to the wall.

Finally, we can also look at the shapes of the leading SPOD mode of the
forcing for this case. Figure 13 shows that the reduction of the forcing to f̃u
only does not lead to any substantial changes in the optimal forcing from SPOD;
the f̃v component adjusts the shape of forcing structure in some specific regions,
without a major role in the bulk shape. In figure 13(b) we can see the reduced
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forcing in the physical space. The peaks, for this case, are concentrated in
regions close to the wall, which explains why the difference between resolvent
and SPOD modes is more evident in these regions; since fz is higher in that
region, the first SPOD mode also has higher amplitudes closer to the wall.

From these results, we can see that the case (1, 0) is mostly dependent on

the term f̃z. Since the forcing is mainly dependent on ũ∂w̃/∂x, as shown in
figure 13(a), it is expected that the triadic interactions composed by terms with
wavenumbers pairs with high streamwise velocity amplitudes will affect the
non-linear term more substantially. This is confirmed in the next section.

5. Relation with the self-sustaining process

This work was based on the minimal flow unit for Couette flow, the minimal
computational box in which turbulence can be sustained. This case was devel-
oped by Hamilton et al. (1995), who also proposed a self-sustaining process for
the turbulence in this simple shear flow. Considering that the structures present
in this flow are ubiquitous to all shear flows, the proposed mechanism has also
been extended to several other cases (see Jiménez & Pinelli (1999); Schoppa
& Hussain (2002), for example). This can be summarised as: (1) streaks are
produced as a result of the lift-up effect (Ellingsen & Palm 1975); (2) the growth
of the streaks leads to an instability in the flow, which triggers the breakdown
of these structures; (3) streamwise vortices are regenerated via a non-linear
mechanism, thus leading to a regeneration of the streaks. With this process in
mind, we can explore the possible reasons why only some of the terms from the
non-linear forcing are relevant for capturing the overall low-frequency dynamics
of this flow, as shown in section 4. First, it should be expected that velocity
fluctuations ṽ would play a role in this case, considering that the lift-up effect is
the dominant phenomenon in this sheared flow. It is thus relevant to examine in
detail how vertical velocity fluctuations ṽ, associated with streamwise vortices in
the (0,1) wavenumber, are forced by non-linear terms. Two possible candidates
for a consistent triadic interaction would be wavenumbers (1,0) and (1,1). As
shown by Hamilton et al. (1995), mode (1,0) is one of the most energetic ones in
this flow, and the triadic interaction between this spanwise velocity-dominated
mode, and mode (1,1) (which shows no dominant velocity component) would
be expected to be one of the main mechanism of energy transfer to mode (0,1)

– thus, w̃(1,0)∂ũ
(1,1)
i /∂z should be a dominant part of the forcing associated

with ṽ(0,1), since this is the relevant forcing component in the y direction, as
examined in § 4.1.

The above arguments suggests how an interaction between (1,0) and (1,1)
modes would force the (0,1) mode. A similar argument can be formulated to
explore how triadic interactions give rise to the term ũ∂w̃/∂x in mode (1,0),
shown to be dominant in § 4.2: since the streamwise velocity component of
mode (0,1) has a high amplitude, the triadic interaction between ũ from this
mode and ∂w̃/∂z from mode (1,1) should affect the temporal evolution of mode
(1,0).
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Figure 14: Integrated energy as a function of time of streamwise velocity
of modes (0,1) and (0,1), and relevant non-linear term for each combination
of wavenumbers, as discussed in the text. Triadic interactions between the
most energetic modes leading to the non-linear terms for each case are also
shown. Interaction between modes (1,0) and (1,1) considers the contribution
of wavenumber combinations (-1,0)/(1,1) and (1,0)/(-1,1), and equivalently for
modes (0,1) and (1,1).

Figure 14 shows some of the relevant quantities for two cycles of the present
simulation. The process of generation and breakdown of streaks can be tracked
by looking at the streamwise component of the velocity for mode (0,1) in figure
14(a). Streak breakdown (intermittent decay of the amplitude of ũ(0,1)) is
closely associated with an increase of the amplitudes of ṽ. Considering that
the evolution of the streamwise velocity does not affect the evolution of the
wall-normal component except via non-linear terms (as shown in equation 13),
this growth in ṽ should be related to the equivalent non-linear forcing in the
y direction. Figure 14(a) shows that the most relevant component of this
forcing, w̃∂ṽ/∂z (as shown in § 4.1), follows the evolution of the wall-normal
velocity, with matching regions of growth/decay. Since this non-linear forcing
can be explicitly written as the sum of the triadic interaction between modes



250 Nogueira, P.A.S., P. Morra et al.
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Figure 15: Self-sustaining process in turbulence as proposed by Hamilton et al.

(1995). The vortex regeneration mechanism obtained from non-linear interac-
tions analysed in the present study is shown in red. The non-linear interaction
from “streaks” and “x-dependent flow” is associated with the saturation of
streaks.

with summed wavenumbers resulting in mode (0,1), it is expected that the
interaction between energetic modes should contribute greatly to this term. In
fact, the non-linear term computed from the interaction between modes (1,0)
and (1,1) (also shown in figure 14(a)) seems to follow the same growth/decay
trend with similar absolute value for high-amplitude periods, pointing to a
connection between the evolution of the spanwise velocity of mode (1,0) and
the regeneration of vortices.

Similarly, the energy of mode (1, 0) is basically due to w̃. It is shown in
figure 14(b), where the dominant part of the forcing term for mode (1,0) and
the dominant triadic interation between modes (0,1) and (1,1) are also depicted.
It is clear that the evolution of the spanwise velocity is closely related to the
evolution of the forcing term – growth and decay regions of the velocity follow
the same regions of the forcing with a time delay. For this mode, the forcing is
dominated by the non-linear term associated with the most amplified streak
interacting with mode (1,1). Therefore, even though the linearised Navier-
Stokes equation for w̃(1,0) does not depend on the other velocity components
with the same wavenumber (as mentioned in section § 4.2), its evolution is
still determined by the evolution of the streaks via non-linear interactions.
Considering that no clear forcing reduction was found for mode (1,1), the role
of this mode is highlighted here as an “inter-wavenumber energy transfering”
mode in this dynamics, connecting streaks to the spanwise velocity mode. We
show that this is a crucial element in the vortex regeneration process.
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In summary, energy flows from the streak (in ũ(0,1)) to the spanwise velocity
mode via triadic interactions with mode (1,1), which leads to an increase of
w̃(1,0). This growth, in turn, leads to an increase of the non-linear forcing
related to the vortices of mode (0,1), regenerating these structures. Finally,
these will regenerate the streaks in the flow via the lift-up effect. This vortex
regeneration mechanism is summarised in figure 15, as an addendum to the
diagram proposed by Hamilton et al. (1995). As a consequence of that, the
dynamics of the spanwise velocity for mode (1, 0) (followed closely by its main
forcing component) opposes the trend of the streamwise velocity of mode (0, 1),
which agrees with the analysis of streak breakdown for Couette flow performed
by Schoppa & Hussain (1999). The authors show that the streak instability is
triggered by streamwise varying, low-amplitude spanwise velocity disturbances;
therefore, it is expected that an increase in the w component of the velocity
will lead to the breakdown of the streaks. Hamilton et al. (1995) observed that
the amplitudes of this component can reach the same order of magnitude of the
streamwise component during streak breakdown, highlighting the importance
of the underlying dynamics followed by w̃(1,0) in this flow. The relevance of
this mode was further detailed in the present analysis, where its role in the
non-linear dynamics of the flow is also explored. The analysis in section 4.1 has
shown that this component is essential for the recovery of the velocity statistics
of streaks; the simplified forcing of eq. 19 has its streamwise vortical component,
fw, strongly related to fluctuations in w. Therefore, in order to recover the
energy of mode (0, 1) (thus leading to streak regeneration), higher amplitudes
of spanwise velocity should be present in the flow.

6. Conclusions

Using a direct numerical simulation of a minimal flow unit, taken for turbulent
Couette flow at Re = 400, we carried out an analysis of the non-linear terms of
the Navier-Stokes equations expanded around the mean turbulent field, built as
the product of velocity fluctuations in the physical domain. It is shown that,
even though resolvent response modes coming from linear analysis correspond
to SPOD modes if the non-linear terms are uncorrelated, the statistics of
these terms actually play a substantial role in some cases, changing the shape
of the resulting energetic modes. Therefore, a proper consideration of these
statistics is necessary for high-fidelity response prediction, leading to considerable
improvements over the white-noise assumption often used. By detailing the
process of recovering the frequency-domain statistics of the velocity from the
statistics of the non-linear terms (treated as a forcing term, in a resolvent
formulation), we managed to understand the influence of the windowing in the
equations, which gives rise to new terms that must be included in the formulation,
as proposed by Martini et al. (2019); in the present work, we further show
the validity of this result by applying the methodology for the analysis of a
turbulent flow. Most of the comparisons between SPOD and resolvent modes
in the literature do not consider, to the best of our knowledge, the error due
to windowing. For lower frequencies, this may lead to unexpected errors that
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may deteriorate the comparisons. In order to correctly evaluate the validity
of the models using linear analysis, a correction term should be considered as
an additional forcing (as done in the present work), or as a correction of the
statistics of the velocity. For the present analysis, this error mainly affects low
frequencies/wavenumbers. When the appropriate correction is included, relative
errors of about 10�5 are obtained, which ensures the accuracy of the obtained
cross-spectral densities of forcing and response for this flow.

Considering that the CSDs of forcing (P) and response (S) are accurately
related to each other by the resolvent operator, we further analysed the linearised
Navier-Stokes equations in order to evaluate which parts of the forcing were
relevant for the prediction of the statistics of the velocity. This was done for
the two most energetic cases at low frequencies: the case (nα, nβ) = (0, 1)
(streaks), and (nα, nβ) = (1, 0) (spanwise velocity modes). These analyses were
performed for ω ! 0, as spectra for the two wavenumbers have highest levels
for the lowest frequencies, a consequence of the zero phase speed of dominant
modes in Couette flow with walls moving in opposite directions. The first mode,
(0, 1), is characterised by the appearance of streaks and streamwise vortices.
We have shown that using spatial white-noise as statistics of the forcing leads
to a partial agreement between the prediciton of the covariance of the response
using the resolvent operator and the one obtained from the simulation; even
though streamwise vortices and streaks are obtained from white-noise forcing,
there is a mismatch in their relative amplitudes. The forcing is shown to act
with a destructive interference between direct forcing of streaks by streamwise
forcing and the lift-up mechanism, where the streamwise vortical part of the
forcing leads to streamwise vortices and streaks. This behaviour is similar to
the one observed by Rosenberg & McKeon (2019) for the hu, vi statistics in the
case of an exact coherent state in channel flows. Simplification of non-linear
terms is also possible, with four of them (among nine possible ones) leading to
the bulk of the response statistics; of particular relevance is the contribution of
spanwise velocity in forcing, as it appears in three of the four dominant terms.

The same process was performed for the wavenumber (1, 0). The equations
for this case decouple for the spanwise velocity. As this component is the most
energetic one for this case, only the spanwise forcing would be needed to recover
most of the covariance matrix of the response. By applying the same process as
the previous case, we manage to reduce the forcing to only one term, ũ∂w̃/∂x.
Simplification of the forcing as white noise again led to a mismatch in the
predicted flow responses; here, the amplitude distribution of the forcing, which
is stronger closer to the walls, is a salient feature, leading to the observed flow
response. Even though no significant forcing reduction was found for mode (1,1),
a connection with this oblique wave mode was also made in the self-sustaining
process framework, showing that the interaction between the streaks and the
(1,1) wavenumber mode dominates the excitation of mode (1,0). By analysing
the non-linear terms from the DNS, we managed to isolate dominant terms and
interactions in the excitation of each mode, clarifying some of the relevant steps
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of the vortex regeneration process. In summary, energy is transferred from
mode (0,1) (streaks) into (1,0) (spanwise velocity) through the oblique wave
mode (1,1). This is followed by a second interaction, where energy is transferred
from the (1,0) mode (and the oblique (1,1)) back into the (0,1) mode through
the breakup of of the x-dependent motions.

Even though only two wavenumbers were analysed in this work, the conclu-
sions presented herein lead to a better understanding of the turbulence dynamics
in wall-bounded flows. Instead of modelling the effects of the non-linearities,
we show the structure of the non-linear terms explicitly, pointing out that these
can be simpler than the general understanding. Moreover, the cases studied
are connected to the self-sustained process in turbulence, which is considered
to be one of the building blocks of the turbulent flows; knowing more about
the action of the non-linearities in such case affects the understanding about
the whole dynamics. This can also support the design of new control strategies
aiming to reduce turbulence levels close to walls (as in Canton et al. (2016)),
thus leading to drag reduction.

The results presented herein aim to clear the usual complexity related to
dealing with the non-linear terms. Even though these may be considered as
an external forcing of the system for a simplified analysis, leading for instance
to interesting conclusions about linear optimal responses of the system, we
must keep in mind that these “forcing” terms come from the dynamics of
the flow. Turbulence thus leads to a particular structure, or colour, to these
forcing terms, and such structure has been shown to be relevant if one wishes
to obtain accurately the flow responses via resolvent analysis. It is notable that
for the two considered wavenumbers, at low frequencies, the forcing CSD is of
low rank, dominated by its first eigenfunction. Hence, despite the apparent
complexity of the bulk of non-linear terms from this flow, order can still be
found. Such organisation contributes to the aforementioned constructive or
destructive interferences in leading to flow responses. In light of the present
results, it is thus relevant to understand and model how coherent structures in
turbulent flows give rise to such organised non-linear terms.

Acknowledgements
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Appendix A. Correction due to windowing

The equations shown in the section §2.2 are exact when no windowing func-
tion is applied to the turbulent signals; cross-spectral densities (CSD) can be
obtained as Fourier transforms of the correlation function. Still, considering
most applications, windowing and segment averaging are applied to time series
in order to apply Welch’s method for a faster determination of cross-spectral
densities. As windowing is unavoidable when dealing with large datasets, one
can choose the window in order to minimise spectral leakage and/or aliasing.
The inclusion of a window in the signal processing, in turn, leads to appearance
of new terms in the equations. Following the formulation of Martini et al. (2019),
the linearised, time-invariant, Navier-stokes equations,

H
∂q̃(t)

∂t
= Lq̃(t) + f̃(t), (21)

when multiplied by a window function h(t), can be re-written as

H
∂(h(t)q̃(t))

∂t
= L(h(t)q̃(t)) + (h(t)f̃(t)) +H

✓
∂h

∂t
q̃

◆

(t), (22)

where q̃ = [ũ ṽ w̃ p̃]T , f̃ = [f̃x f̃y f̃z 0]T are the response and forcing in time
domain, and H is defined to disregard the derivative of the pressure in the
equations. The Fourier transform of the windowed signal in each segment is
given by

q̂(ω) =
1

T

Z t0+T

t0

h(t)q̃(t)eiωtdt, (23)

and equivalently for f , where t0 denotes the initial time for each segment and T
the duration of time segments. Defining

q(ω) =
1

T

Z T

0

dh(t)

dt
q̃(t)eiωtdt, (24)

equation 22 can be written as

(�iωH� L)q̂ =
⇣

f̂ +Hq
⌘

= f̂corr, (25)

where the right-hand side becomes the effective force of the windowed signal,
which is the sum of the external driving force and the external extra term due to
windowing. Equation 25 indicates that, even if we manage to obtain converged
statistics for the forcing and the response, the fact that we multiply the signal by
a window leads to a mismatch between the statistics of the response computed
from the velocity fields, and the recovered statistics from the non-linear terms
(by using RPRH). This error is well defined and is a function of the window
used in the Welch method, of the operator used in the analysis and of the chosen
frequency. Fundamentally the error comes from the difference between q, the
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true Fourier transform of the signal, and q̂, its estimate obtained with using the
window h(t), the difference also being present for f . Such error is reduced when
long segments are taken, which decreases the magnitude of the time derivative of
the windowing function in eq. 24; however, the use of sufficiently long segments
for negligible correction terms is potentially prohibitive.

Appendix B. Simple coloured forcing statistics

The paper focused on the analysis of the forcing statistics in the minimal
Couette flow. From the full forcing statistics, reduced order forcings based on
the identification of the relevant parts of the non-linear terms were proposed in
order to simplify the analysis. One of the main outcomes of this survey was
that coherent structures in the non-linear terms could be clearly distinguished,
revealing some of the dynamics behind the streak generation. The results
presented herein can also be used to guide modelling of the forcing statistics,
since a modelled P should keep the main characteristics of the one identified in
the simulation. To exemplify such a process, we devote this appendix to the
analysis of some of the relevant characteristics of P, its effect in S and how
does a simple model for the forcing behave in some frequencies. We start by
looking at the frequency studied in the paper (ω = 0.0123) and wavenumbers
(nα, nβ) = (0, 1), corresponding to streaks and streamwise vortices studied in
section 4.1. The covariance matrices and their respective coherences are shown
in figure 16.

As previously observed, the response for this combination of wavenumbers
is mostly concentrated at the streamwise direction (leading to a clear signature
of streaks), but the other components also have non-negligible amplitudes due
to the presence of streamwise vortices in the flow. The forcing also has the
same overall behaviour, with higher amplitudes in the streamwise directions
and lower in the wall-normal and spanwise ones. Amplitudes of the forcing in
the main diagonal of P are comparable to the ones outside this region, pointing
to the presence of coherent structures that extent throughout domain (as in
the response). This is confirmed by the coherence computed for each quantity,
shown in figure 16(c,d). From these plots, it is clear that both forcing and
response are completely coherent throughout the domain (except for the regions
where this quantity decays to zero, closer to the walls). For this frequency, it is
expected that a model for the forcing that does not consider this high coherence
between the components will not adequately represent P, leading thus to errors
in predictions of S.

A similar analysis can be performed for a slightly higher frequency still
associated with an energetic region of the spectrum (ω = 0.135). Figure 17
shows the same plots for this frequency. As in the case ω ! 0, there is
also a dominance of the streamwise component in both P and S, but the
off-diagonal terms are much lower than the ones at the main diagonal of the
matrix. Therefore, structures for this case could be assumed as less coherent (or
to have a smaller coherence length) than the previous ones. This is seen by the
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(a) Cross-spectral density matrix of the re-

sponse

(b) Cross-spectral density matrix of the forcing

(c) Coherence of the response (d) Coherence of the forcing

Figure 16: Cross-spectral density matrix of the response (a) and of the forcing
(b) for mode (0, 1) and ω = 0.0123. The coherence of each quantity is shown
in (c,d). Each square corresponds to the absolute value of one of the matrix
components of the given quantity, starting from the streamwise component
(farther from the viewer) to the spanwise component (closer to the viewer).

coherence plots in figure 17(c,d); as usual, the main diagonal has values equal
to one, but coherence of both forcing and response decays fast as we move away
from that line. Another feature that differentiate this case from the previous
one is that the coherence of the cross-components of forcing/velocity for this
case is also low. The observed difference between frequencies highlights that the
forcing is coloured in time, with different statistics for each frequency. Models
based on the white-in-time hypothesis Chevalier et al. (2006) would thus be
unable to describe the present behaviour.

Consider a simple coloured statistics of the forcing given by the diagonal
matrix Pcolour = diag(gx(y) gy(y) gz(y)), where gx,y,z(y) are functions that
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(a) Cross-spectral density matrix of the re-

sponse

(b) Cross-spectral density matrix of the forcing

(c) Coherence of the response (d) Coherence of the forcing

Figure 17: Cross-spectral density matrix of the response (a) and of the forcing
(b) for mode (0, 1) and ω = 0.135. The coherence of each quantity is shown
in (c,d). Each square corresponds to the absolute value of one of the matrix
components of the given quantity, starting from the streamwise component
(farther from the viewer) to the spanwise component (closer to the viewer).

satisfy the boundary condition of the problem. These functions can be ap-
proximated, for example, by a sum of sine functions in the shape gx,y,z(y) =

|
PNs

n=1 an,x,y,z sinnπy/2|, which will lead to real positive values for the main
diagonal of P, and zero values at the boundaries. This corresponds to spatially
incoherent forcing with amplitude varying in y. An optimisation using the
fminsearch function in MATLAB using eight sine functions for each gx,y,z(y)
(focusing on minimising the error between the predicted S and the one from
DNS) led to forcing statistics whose S predictions are shown in figure 18. We
call these slightly coloured statistics, since only the main diagonal is modelled,
and no coherence between cross-components is considered. In figures 18(a,b)
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(a) Cross-spectral density matrix of the re-

sponse (coloured P)

(b) Cross-spectral density matrix of the re-

sponse (white P)

(c) Cross-spectral density matrix of the re-

sponse (coloured P)

(d) Cross-spectral density matrix of the re-

sponse (white P)

Figure 18: Predicted cross-spectral density matrix of the response using a
coloured P (a,c) and the white-noise P (b,d) for the two frequencies of the
study. Each square corresponds to the absolute value of one of the matrix
components of the given quantity, starting from the streamwise component
(farther from the viewer) to the spanwise component (closer to the viewer).

we compare the results of the prediction using this model and the white-noite
forcing statistics. The model seems to improve the results for the streamwise
component, improving the amplitudes of the off-diagonal peaks. Still, adding
a colour to the forcing in that fashion led to virtually no difference for the
other components. Considering that the main problem of the prediction for
this frequency is the relative amplitude of the streaks compared to the vortices,
as discussed in section 4 this simple model does not seem to be sufficiently
accurate to recover accurately the said behaviour.
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For higher frequencies (ω = 0.135), the action of the present model is more
concentrated in the main diagonal of S, having low influence on the lateral lobes
(which are very low for this case). By using the colouredP, we managed to obtain
higher amplitudes between the two main peaks of the streamwise component,
which qualitatively follows the behaviour found in the data. Considering that
the coherence associated with the covariance of the forcing decays sharply from
the diagonal for this frequency, the model was expected to work better; still,
the present results lack quantitative correspondence. These results point out
that simple models for the statistics of the non-linear terms can be useful in
order to recover some of the characteristics of the response. However, a more
complete description of the statistics of the forcing is required to reproduce
results from simulation and experiments when high fidelity levels are needed.
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del Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in
turbulent channels. Physics of Fluids 15 (6), L41–L44.

Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the
breakdown of boundary layer streaks. Journal of Fluid Mechanics 428, 29–60.

Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a
near-wall low-speed streak. Journal of Fluid Mechanics 455, 289–314.

Bodony, D. J. & Lele, S. K. 2008 Current status of jet noise predictions using
large-eddy simulation. AIAA journal 46 (2), 364.

Brandt, L. 2007 Numerical studies of the instability and breakdown of a boundary-
layer low-speed streak. European Journal of Mechanics-B/Fluids 26 (1), 64–82.

Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in
viscous shear flow. Physics of Fluids A: Fluid Dynamics 4 (8), 1637–1650.
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