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Abstract

Malaria epidemics in regions with seasonal windows of transmission can vary greatly in size from year to year. A central
question has been whether these interannual cycles are driven by climate, are instead generated by the intrinsic dynamics
of the disease, or result from the resonance of these two mechanisms. This corresponds to the more general inverse
problem of identifying the respective roles of external forcings vs. internal feedbacks from time series for nonlinear and
noisy systems. We propose here a quantitative approach to formally compare rival hypotheses on climate vs. disease
dynamics, or external forcings vs. internal feedbacks, that combines dynamical models with recently developed,
computational inference methods. The interannual patterns of epidemic malaria are investigated here for desert regions of
northwest India, with extensive epidemiological records for Plasmodium falciparum malaria for the past two decades. We
formulate a dynamical model of malaria transmission that explicitly incorporates rainfall, and we rely on recent advances on
parameter estimation for nonlinear and stochastic dynamical systems based on sequential Monte Carlo methods. Results
show a significant effect of rainfall in the inter-annual variability of epidemic malaria that involves a threshold in the disease
response. The model exhibits high prediction skill for yearly cases in the malaria transmission season following the
monsoonal rains. Consideration of a more complex model with clinical immunity demonstrates the robustness of the
findings and suggests a role of infected individuals that lack clinical symptoms as a reservoir for transmission. Our results
indicate that the nonlinear dynamics of the disease itself play a role at the seasonal, but not the interannual, time scales.
They illustrate the feasibility of forecasting malaria epidemics in desert and semi-arid regions of India based on climate
variability. This approach should be applicable to malaria in other locations, to other infectious diseases, and to other
nonlinear systems under forcing.
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Introduction

Epidemic or ‘unstable’ malaria occurs in areas of marginal

environmental conditions for the development of the parasite and

the population dynamics of the mosquito vector, at the edge of the

distribution of the disease. Millions of people live in the highlands

and desert fringes around the tropics in Africa, Asia and South

America. It is in these regions, where temperature or rainfall limit

transmission, that climate variability and climate change have the

potential to most strongly impact the population dynamics of the

disease. Determining the role of climate variability is fundamental

to evaluate both the feasibility of early-warning systems for

infectious diseases based on climate, as well as the consequences

of longer-term trends in climate. The intermittent nature of

epidemics in unstable malaria regions results in populations that

cannot sustain high levels of acquired immunity and are therefore

susceptible to high morbidity and mortality; it also poses a different

challenge for control efforts than the more stable, high-trans-

mission intensity, endemic regions [1]. The ability to forecast and

identify epidemic events becomes one important component of

control efforts that can contribute to the timely implementation of

effective prevention and treatment, as recognized by on-going

efforts to develop malaria early-warning systems (MEWS) [1–3].

Studies of the role of climate variability, not just in malaria but

also in other infectious diseases, have been limited by the scarcity

of long temporal records of disease incidence, and by the

difficulties of addressing the role of climate forcing in the context

of the nonlinear dynamics of infectious diseases. These systems are
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well-known to behave as seasonally-forced nonlinear oscillators,

capable of generating substantive variation from year to year on

their own, in the complete absence of any year-to-year variation in

an external driver such as climate [4–7]. The waxing and waning

of immunity in the population has long been recognized as the key

mechanism behind this intrinsic ability of disease systems to cycle

on characteristic time scales longer than one year, leading to inter-

annual variation in the size of outbreaks. The severity of epidemics

is influenced by the size of the non-immune population, which in

turn decreases as levels of infection rise, and rebuilds with the loss

of functional immunity and demographic processes such as birth

and immigration [8,9]. This dynamic feedback within the disease

system underlies different conclusions on the role of climate

variability in the inter-annual variation of vector-borne diseases,

especially for malaria in E. African highlands [7,10–13]. It can also

modulate the sensitivity of the response to climate drivers by

generating periods of time that are refractory to forcing because of

the temporary depletion of the non-immune population that fuels

transmission [14]. Other feedbacks such as those generated by

control efforts that are reactive to previous levels of infection, or

behavioral responses, can also generate interannual cycles and

refractory periods.

Extensive epidemiological records for the past two decades in

desert and semi-arid districts of India provide an opportunity to

examine the role of rainfall on malaria epidemics of Plasmodium

falciparum, while also taking into account disease dynamics. The

periodically recurring epidemics in the (semi) arid parts of India,

particularly the Punjab, were amongst the most devastating

described in the history of malaria [15]. Early efforts to understand

and forecast malaria epidemics included not just rainfall but also

spleen rate, the proportion of children with enlarged spleens,

which reflected recent exposure and provided an indirect measure

of population levels of immunity [16–18]. After the malaria

eradication efforts in India were abandoned in the 1970s, the

epidemic belt shifted to the more arid and increasingly populous

regions of Gujarat and Rajasthan. In the last decades the severity

of these epidemics have made developing a MEWS based on

rainfall [19] and rainfall forecasts [20] a public health priority.

Quantifying the role of climate variability, and doing so in the context

of epidemiological dynamics, remains an important open problem

for these regions and for epidemic malaria in general. Recent

developments on parameter estimation for nonlinear dynamical

systems now make possible the consideration of epidemiological

models that can be confronted to noisy and incomplete data [21,22].

We show here that these recent developments provide a basis for a

formal statistical comparison of rival hypotheses on extrinsic drivers

vs. intrinsic feedbacks, or more specifically, on climate vs. nonlinear

disease dynamics, represented in mechanistic dynamical models. This

differs from previous efforts to answer this same question, that did not

provide a formal statistical comparison of hypotheses, based on

models whose structures were constrained to simple forms by the

inference methods, and that did not include the climate covariate

explicitly (e.g. [10,14]). We formulate here a dynamical model

of malaria transmission that incorporates rainfall explicitly. The

sequential Monte Carlo methods allow for more flexible represen-

tations, as well as the consideration of process and measurement

noise, because their computational implementation only requires the

numerical simulation of the dynamical models. Desert malaria

provides an ideal initial application of this approach, given previous

correlative evidence for an association between desert malaria and

rainfall from shorter records in Africa [9,23], and the potentially-

weak dynamical role of immunity in these epidemic regions at the

edge of the geographical distribution of the disease.

Our analysis shows a strong and significant effect of rainfall in the

inter-annual variability of epidemic malaria that involves a

threshold in the disease response. Simulations of the transmission

model for twenty years capture remarkably well the observed

epidemic patterns when rainfall is prescribed. We demonstrate the

high prediction skill of the model for yearly cases in the transmission

season following the monsoonal rains. We compare this skill to that

of statistical models, in particular a mixture model that incorporates

a threshold, to examine the feasibility of forecasting epidemics in

these regions with simpler, more phenomenological, models of

malaria’s response to rainfall. We end by showing the robustness of

the results to a more complex transmission model that includes

clinical immunity, and the value of the dynamical models for

predicting the time course of epidemics.

Results

A maximum correlation between monthly cases and rainfall was

found when rainfall was accumulated for the five to six previous

months (Figure 1B and Figure S3C). A nonlinear response of cases

to accumulated rainfall is evident in Figure 1C, with no apparent

response of the disease below a threshold of approximately

200 mm, and an increase in both cases and variability above this

threshold. Based on these observations, we incorporated accumu-

lated rainfall and a threshold response in the force of infection of a

model of malaria transmission (Methods and Figure 2), where both

the value of the threshold and the length of the relevant time

window previous to reported cases are parameters to be estimated.

Our models for P. falciparum malaria were developed to capture

some key aspects of the human, parasite and vector dynamics

while remaining sufficiently parsimonious for parameters to be

estimated directly from the available time series data. The

structures of the two models are shown in Figure 2 and their

formulation described in the Methods and in Text S1. We begin

with the simpler model, with the simpler representation of waning

immunity, in which immune individuals are temporarily protected

from both (clinical) disease and infection. We follow with a more

realistic representation of malarial immunity in which we

differentiate susceptibility to disease from that to infection [24–26].

Author Summary

Malaria epidemics can exhibit pronounced variation from
year to year that can be driven by external forcings, such
as climate, or can be generated instead by dynamic
feedbacks within the disease system itself. For example,
levels of immunity in the population (or control efforts)
can rise and fall as the result of past levels of infection. This
type of feedback is found in the dynamics of all (nonlinear)
biological systems. Feedbacks can interact in complex
ways with external drivers, for example by creating
refractory periods. It remains a challenge to identify
internal feedbacks vs. external forcings from available
temporal records of aggregated reported cases and
forcing variables. We propose a quantitative approach
that can statistically compare the hypotheses of feedbacks
vs. forcings (epidemiological vs. climate) based on
dynamical and mechanistic models. Our approach is
computational, based on a large number of computer
simulations of the different models. We illustrate and apply
the approach to the analysis of extensive monthly records
for malaria incidence in desert regions of India that span
two decades. Our analyses confirm the strong role of
rainfall, and quantify this effect with transmission model(s)
for malaria that include rainfall and are shown to exhibit a
remarkable prediction skill.

Desert Malaria and Monsoon Rains
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The VSEIRS model that includes rainfall in the force of

infection performs better than the model without rainfall, based on

log-likelihoods (respective log-likelihoods for Kutch are 21265.0

and 21275.0; pv0:001, chi-square likelihood ratio test). We can

also compare these values to those obtained for a linear seasonal

autoregressive moving-average models (SARIMA) with and

without rainfall. These comparisons are meant only as a general

point of reference: if our mechanistic models fit better, or at least

Figure 1. Malaria cases and rainfall. (A) Monthly P:falciparum malaria reported cases (red) and monthly rainfall from local stations (black) for
Kutch. (B) Correlation between accumulated rainfall in different time windows preceding the month of reported cases. A maximum is observed when
rainfall is accumulated over 5 to 6 months. (C) Monthly reported cases as a function of accumulated rainfall in the previous five months. A threshold,
nonlinear response is apparent with no effect of rainfall below a value of around 200mm and an increase in both the mean and the variance of cases
above it.
doi:10.1371/journal.pcbi.1000898.g001

Figure 2. Flow diagram for two compartment models of malaria transmission. (A) shows the VSEIRS model and (B) shows the VS2EI2

model. Human classes in (A) are S (Susceptible), E (Exposed), I (Infected), and R (Recovered). Mosquito classes are k (latent force of infection) and l
(current force of infection). The possibility of transition between classes X and Y is denoted by a solid arrow, with the corresponding rate written as
mXY . The average time of mosquitoes in the latent state is denoted by t. The dotted arrows represent interactions between the human and mosquito
stages of the parasite. The model in (B) adds clinical immunity [25], by differentiating between clinical infections that contribute to the measured
cases, and less severe infections in a new class I2 that are not clinical but remain infectious to mosquitoes at a lower level than I1 . Clinical infections
can fully recover becoming susceptible again, or remain parasitemic and transition to I2 . Recovery from mild infections results in individuals who are
fully protected from clinical disease, in class S2 , whose further exposure to infected mosquitoes, can result again in mild infections. In time, clinical
immunity can also be lost, with transitions from S2 to S1 , and therefore the return to full susceptibility. Only a fraction q of individuals in I2 contribute
to the force of infection; the susceptibility to infection is reduced by a factor cƒ1 in class S2 relative to S1 .
doi:10.1371/journal.pcbi.1000898.g002

Desert Malaria and Monsoon Rains
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not substantially worse, than flexible statistical models then we

conclude that they are capable of explaining most features of the

available time series data. Both disease models, with and without

rainfall, are better supported by the data than their SARIMA

counterparts (SARIMA 1, 0, 1ð Þ| 1, 0, 1ð Þ12, respective log-

likelihoods are 21322.6 and 21329.0) (Table S1). This is also

the case if we base this comparison on the Akaike Information

Criterion (AIC) to take into account model complexity and

penalize the likelihood based on the number of parameters (Table

S1). Figure 3A shows numerical simulations of the VSEIRS model

that includes rainfall together with the malaria data. This model

captures well the observed patterns of the epidemics, in particular

the pattern of large outbreaks followed by smaller ones, with

exceptions during 1999–2001 (including the large earthquake of

2001). The similarity is striking given that these simulations are not

next-step predictions, but predicted trajectories for the whole

twenty years starting only from estimated initial conditions in

1987. When rainfall is not included, simulations of the VSEIRS

model (Figure 3B) have a poor resemblance to the data, and

generate interannual cycles of approximately 5 years. Similar

results were obtained for the district of Barmer and are shown in

Text S1 and Figure S5. In particular, Barmer experienced an

extremely large epidemic, of nine thousand reported cases, in

1994–1995, coincident with an extreme in precipitation (Figure

S3A and Figure S3B). This epidemic is five times larger than any

of the outbreaks in the data, and makes the fitting of the models

more challenging as reflected in likelihoods comparable to those of

SARIMA (with and without rainfall respectively) (Table S1).

One difference between the parameters of the two VSEIRS

models is the duration of ‘effective’ immunity at the population

level (1=mRS in Table 1). Immunity is shorter when rainfall is

included, lasting approximately 2 months, instead of 8 years

without rainfall, in the respective models with the best likelihoods.

Despite fairly broad confidence intervals, some interesting patterns

are apparent in the profiles of this parameter (Figure S6). In

particular, the profile for the model with rainfall is bimodal which

gives rise to a discontinuous confidence region, including short

durations of immunity (below one year, corresponding to the

maximum likelihood estimate, MLE), and longer durations around

five years. This second peak maps approximately to the MLE of

the model without the climate covariate. In other words, the model

with rainfall fits the data in two different ways: for short immunity,

interannual variability would be mostly driven by rainfall, given

that the depletion of susceptibles is short-lived and within the

epidemic season; whereas for longer-lasting immunity, both

rainfall and the nonlinear intrinsic dynamics of the system would

play a role. The corresponding log-likelihoods of these two

solutions (21265.0 and 21266.8, respectively) suggest that the

short and effectively negligible duration of immunity provides a

better explanation for the data, though both modes, since they fall

in the confidence region, are statistically consistent with the data.

To compare these further, we examine the resulting dynamics of

the cases from the perspective of the dominant periodicities using

wavelet analysis (see [27,28] for a description of this method in the

context of population dynamics).

Figure S12 shows that the wavelet spectrum of the cases

corresponds closely to that of rainfall, with the variability at a

period of one year reflecting seasonality and showing the timing of

large annual epidemics. Variability is also apparent transiently at a

number of longer periods, including values of approximately 3

years, especially in the first decade and after 2002, between 4 and

5 years from 1990 to 2000, and two years from 2000. This

similarity supports the role of rainfall variability as a main driver of

the dynamics of cases, and a response of the system that does not

involve the nonlinear dynamics of the disease itself. Representative

wavelet spectra for simulations with the three models with the best

likelihoods support this conclusion. These are shown in Figure

S13, for the model without rainfall, and the model with rainfall but

Figure 3. Reported monthly malaria cases and simulations for Kutch. Black lines show the median of ten thousand simulations; the
shadowed regions correspond to the range between the 10% and 90% percentiles of the simulations. Red lines show the reported cases. (A) VSEIRS
model with rainfall; (B) VSEIRS model without rainfall. Note that these curves do not represent the fit of the model one time-step ahead but the
numerical simulation from estimated initial conditions at the end of 1986 for the complete twenty years’ period, using observed rainfall values.
doi:10.1371/journal.pcbi.1000898.g003

Table 1. Selected point estimates for the VSEIRS model with
and without rainfall.

VSEIRS with rain (years) VSEIRS without rain (years)

1=mIR 0.026 0.073

1=mRS 0.176 8.621

1=mEI 0.095 0.137

t 0.033 0.025

A full list of all estimated parameters is given in Table S3.
doi:10.1371/journal.pcbi.1000898.t001

Desert Malaria and Monsoon Rains
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with the two different lengths of immunity. When rainfall is not

included, the model tends to generate cycles of periods from four

to five years, and large epidemics whose timing does not match

that of observations (see regions of high power at period one in the

wavelet spectrum Figure S13 A and compare with Figure S12 B).

Another feature that compares poorly with the data are the long

intervals with no variability for periods between one and two years

that follow large epidemics. These refractory intervals during

which there is little signal, even at seasonal time scales, result from

the relatively long duration of immunity which reduces the pool of

susceptibles after large events. When rainfall is added in the model

with similarly long immunity, the timing of epidemics improves

but the existence of these refractory intervals persists (Figure S13

C). Finally, simulations from the model with rainfall and a

negligible duration of immunity are better able to capture both

the timing of the large (annual) events, and also many of the

interannual features of the variability, in terms of timing and

periods (compare the spectra in Figure S12 B and Figure S13 B).

To further explore the possibility of an interaction between the

longer immunity and rainfall forcing, we considered an interme-

diate model, with the epidemiological parameters fixed at the

values of the best VSEIRS model without rainfall (see Text S1).

Only the rainfall and noise parameters were then fitted to the data.

This intermediate model was unable to reproduce the inter-annual

oscillations observed in the reported temporal series (Figure S9).

Another parameter of interest is the delay between the latent

and current force of infection. This was estimated to be approx-

imately 10 days in the model without rainfall (t in Table 1) and

around 11 days when rainfall is included (Table 1; Figure S8).

These values are consistent with empirical values of the parasite’s

development given the observed temperatures in these regions. In

this case, the delay represents the combined effect of multiple

processes that establish a lag in transmission, relative not only to

previous levels of infection but also to precipitation, such as the

development of larvae into adult mosquitoes. The value of the

delay will further depend on the specific variable chosen to

represent rainfall’s influence; here, accumulated rainfall in the

previous five months. Another parameter estimate of interest is

the reporting rate which was found to be low, with a small frac-

tion of the infected population detected by the surveillance system

in the two districts (see r in Table S2, Table S3, Table S4 and

Figure S7).

The performance of our best VSEIRS model suggests the

feasibility of forecasting malaria cases as a function of previous

rainfall. Moreover, the short duration of immunity, which here

involves full protection to both disease and infection, further

suggests that the depletion and replenishment of susceptibles, that

is at the heart of intrinsic interannual cycles in infectious disease

dynamics, does not play an important role here, despite the low

reporting rate. This is confirmed by simulations with a fixed and

large value of S that display essentially the same patterns as those

of the best-fit model. Hence, the nonlinear dynamics of the disease

in this model are not crucial for the interannual cycles and simpler

statistical models may also perform well for forecasting cases

aggregated for the whole season. We considered both a standard

linear regression model and a mixture model that effectively

implements a threshold response to rainfall and an increasing

variance as a function of rainfall (Figure 1C) (see Methods and

Text S1 for details on the statistical models and measures to

evaluate predictions). For Barmer, the VSEIRS model with rain-

fall exhibits the best performance overall, regardless of how we

measure prediction performance, with the mixture model second

in terms of prediction likelihoods and with fairly high values of

prediction skill for both models (Table 2). For Kutch, high values

of prediction skill are also found especially for the VSEIRS model

with rainfall (Table 2). Prediction likelihoods place the VSEIRS

model with rainfall on top (Table 2). Overall, the VSEIRS model

without rainfall exhibits a very low predictive ability for Kutch, as

expected. This is not so for Barmer, possibly because the impact of

rainfall is strongly concentrated in one single extreme event, for

the extreme rains of 1994.

We have considered above forecasts of the total accumulated

cases for the whole epidemic season. It is also of interest to predict

the time course of cases during the epidemic season. The

dynamical model of transmission with rainfall appears valuable

for this purpose. This is illustrated by Figure 4 with hindcast

predictions from one to four months ahead, for the rise of the

peaks, immediately after the monsoons at the end of August, and

for their decay, after the typical timing of the main peak, at the

end of December.

We examined the robustness of our results by considering the

data for Kutch and the more complex VS2EI2 model, in which

individuals can acquire clinical immunity and contract infections

that lack severe symptoms (and do not contribute to reported

cases) but retain the ability to transmit to mosquitoes. This

formulation explicitly differentiates susceptibility to disease from

that to infection, and does not allow for full immunity to both

disease and infection. Interestingly, the likelihood of this model

when rainfall is included (21251.0) justifies the added complexity

(Table S1). Also, this model performs better than its counterpart

without rainfall (21261.1) (see Table S1), as reflected by the

substantial decrease in the levels of process noise (Table S2 and

Table S3). This performance is also evident in a high prediction

skill (90%) and prediction log-likelihood (2161.3) (Table 2 and

Figure S11). The prediction performance of the model can be

further evaluated by defining an epidemic (or extreme event) based

on a threshold for the accumulated total number of cases dur-

ing the epidemic season. We can then quantify the forecasted

probability of an epidemic and compare this to the observed

occurrence of large outbreaks (Table 3). Simulations of the

VS2EI2 model (and the resulting medians for the total cases in the

epidemic season) correctly predict four out of five epidemic years,

with 2 false positives and one false negative (Table 3). Despite the

higher likelihood of this model and its predictive ability, several

parameters are poorly identified, as shown by their large con-

fidence intervals, in particular the parameters determining the

duration of the classes associated with clinical immunity (I2 and

S2) (Table S3). By contrast the estimate of the delay t in the force

of infection improves, with the confidence interval reduced to

(6.2–28.4) days with the best likelihood corresponding to a value

around 12 days (Figure S10). The wavelet spectrum of simulations

Table 2. Hindcast prediction performance.

Kutch Barmer

skill1 skill3 ‘‘ skill1 skill3 ‘‘

1. VSEIRS with rainfall 0.899 0.798 2161.3 0.928 0.887 2141.0

2. VSEIRS without rainfall 0.545 20.921 2176.2 0.747 0.596 2150.0

3. Linear model 0.787 0.619 2176.7 20.004 0.405 2181.9

4. Mixture negative
binomial model

0.753 0.409 2167.3 0.826 0.613 2147.6

Subscripts 1 and 3 denote the model whose variances were used for the
calculation of the skill measure. ‘ is the prediction log likelihood as defined in
Text S1.
doi:10.1371/journal.pcbi.1000898.t002

Desert Malaria and Monsoon Rains
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Figure 4. Hindcast predictions for the time course of epidemics for Kutch. The malaria data are shown in red. Superimposed on these
observations, we show the predicted mean cases from one to four months ahead obtained by simulating the VSEIRS model from (1) the end of
August (blue dots) and (2) the end of December (green dots). Shadowed regions in respective colors correspond to the standard deviation from a set
of 5000 predicted values for each given time. Notice that this procedure requires the estimation not only of the observed state (i. e. reported cases)
but also of all non-observed states at each time (i.e. S,E,I,R,k,l). Simulations of the model require the accumulated rainfall in the previous five months:
to obtain this quantity, the observed rainfall is used only until the initial time (end of August or December) and the rest of the months are completed
by replacing the ‘missing’ rainfall value (given that we are predicting one to four months ahead) by its monthly average. (A) VSEIRS model with
rainfall; (B) VSEIRS model without rainfall.
doi:10.1371/journal.pcbi.1000898.g004

Table 3. Hindcast predictions for malaria outbreaks during the epidemic seasons with the VS2EI2 model with rainfall.

Year Quantiles from simulation
Aggregated observed
cases (Sep–Dec)

Forecast probability
of an epidemic

0.1 0.25 0.5 0.75 0.9

1987 39 65 113 203 328 78 0.000

1988 1017 2102 4230@ 6673 8740 2182 0.665@

1989 7644 8805 10356 12030 13748 9990 1.000

1990 496 763 1267 1949 2737 2093 0.101

1991 251 401 650 1050 1547 275 0.010

1992 1517 2500 3902 5293 6495 4691 0.714

1993 300 447 704 1095 1565 427 0.009

1994 1989 2942 3987 5023 6049 6109 0.790

1995 300 474 747 1172 1688 984 0.009

1996 124 188 301 471 702 198 0.000

1997 139 221 361 607 957 2320 0.002

1998 425 697 1170 1895 2732 837 0.100

1999 508 815 1324 2180 3159 324 0.153

2000 205 342 612 1068 1742 89 0.027

2001 1306 2036 3300@ 5025 6690 2692 0.601@

2002 670 1056 1730 2784 3945 425 0.258

2003 6242 7594 9196 10986 12911 7372 0.995

2004 581 880 1350* 2012 2778 2857 0.107*

2005 425 651 1070 1708 2550 675 0.076

2006 238 395 681 1155 1795 661 0.031

The second through fifth columns show the quantiles of 103 simulated epidemics aggregated over September to December in each year, using initial conditions and
rainfall covariates based on information available up to August. The column ‘aggregated observed cases’ shows the reported malaria cases accumulated over the same
period. We declare a year to be epidemic if cases rose to more than the 75th percentile of aggregated observed cases ( = 2733) (bold black). We forecast an epidemic if
the median of the prediction distribution exceeds this threshold. Equivalently, we can measure the forecast probability of exceeding this epidemic threshold (last
column), predicting an epidemic if this probability exceeds 0.5. Four out of five epidemics were forecasted correctly (bold black). The false negative (underlined *) and
two false positives (underlined @) all contain the actual presence/absence of an epidemic within their central 80% prediction intervals.
doi:10.1371/journal.pcbi.1000898.t003

Desert Malaria and Monsoon Rains
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generated with this model closely resemble that of the cases, as

illustrated with a representative simulation in Figure S12 A.

Finally, to further compare the temporal patterns generated by

this model to the data in a way that accounts for the uncertainty in

the parameters, we considered the correlation value between total

rainfall, accumulated during the monsoon season, and the cases,

accumulated during the epidemic season. This value is influenced

by both the timing and the interannual variability of the peaks

in cases. We simulated repeatedly from the fitted model by

resampling the 2|103 sets of plausible parameters identified while

investigating the parameter space, with probabilities according to

their likelihood. For each simulation, we computed the predicted

correlation and generated in this way a distribution for this statistic

for the two models (the VS2EI2 model with and without rainfall).

Figure 5 shows the comparison of the observed correlation to the

two distributions of correlations from simulations of these models.

Whereas the distribution of the model without rainfall results in a

very low probability of the observed association (pv0:0001), its

counterpart for the model with rainfall peaks at the observed

correlation (p&0:4). This further supports rainfall as the main

driver behind the temporal variability of cases, a conclusion that is

robust to the uncertainty in parameter values. A more detailed

comparison of the models will be reported elsewhere [29]. We

discuss below the implications of these findings.

Discussion

We have proposed a computational approach to formally

compare hypotheses on the respective roles of extrinsic forcings vs.

intrinsic feedbacks in dynamical systems for which time series data

are available but provide only a partial measurement of the

relevant variables. This extends previous efforts on this inverse

problem by incorporating climate covariates explicitly in dynam-

ical models that also include both measurement uncertainty and

dynamic noise. Our approach complements time series methods

based on phenomenological, autoregressive models, developed to

address the role of covariates and density-dependence in ecology

and epidemiology (e.g. [30–32]). Concerns on the limitations of

(linear) correlative analyses to infer the role of climate drivers in

the interannual variability of malaria and other infectious diseases

[33] can be addressed directly by formulating different hypotheses

as epidemiological models. Beyond a better understanding of tem-

poral disease patterns, such models can also contribute valuable

tools for forecasting purposes. Ultimately, any early-warning sys-

tem should benefit from an ensemble of models, including epi-

demiological models driven by climate variability.

We have applied the proposed approach to demonstrate the

impact of rainfall on the interannual cycles of epidemic malaria in

desert regions of India, by incorporating a climate variable into a

stochastic dynamical model of disease transmission. Our approach

directly confronted different hypotheses on the population dyna-

mics of the disease based on time series data. The findings on the

predominant role of rainfall are robust to consideration of more

complex epidemiological models of malaria transmission with a

different representation of immunity [25]. The same approach

should be applicable to other nonlinear systems and to other

vector-transmitted diseases in particular, including those for which

the nonlinear population dynamics of the disease is especially

relevant. One example is dengue for which evidence of a temporal

association with the El Niño Southern Oscillation (ENSO) differs

across geographic location and study [34,35], consistent with the

complex multi-strain dynamics of the disease [36]. For malaria,

the role of climate variability in East African highlands could be

revisited, given previous conflicting evidence in these areas where

the interplay of immunity and climate is likely [7,9,10,37]. Even in

more ‘stable’ malaria regions with seasonal behavior, the question

of interannual climate variability might be of relevance and worth

examining in retrospective records.

Our results with the simpler model suggest that immunity, in the

sense of complete protection to both infection and disease, is of

Figure 5. Density plot of correlation between the accumulated rainfall from May to August and the accumulated cases from
September to December in 10,000 simulations from a set of 2,000 solutions for the VS2EI2 model with rainfall (black) and without
rainfall (gray). The vertical line is the observed correlation of 0.778. For the model with rainfall, 38.63% of the simulations have a correlation with
rainfall above the observed value (black circle).
doi:10.1371/journal.pcbi.1000898.g005
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short duration and negligible at the population level in these semi-

arid regions. These regions are expected to lie at one extreme of

continuum in the gradient from stable to unstable, or endemic vs.

epidemic. In this case, climate variability and not epidemiological

dynamics are expected to be the main driver, as proposed for

desert fringes in Africa [9,38]. We have used, however, the term

‘effective’ population immunity to emphasize that our results apply

to the dynamical role of (full) immunity at the spatial scale of

districts, and do not necessarily imply that individual immunity is

also short. Disease risk may be, for example, spatially heteroge-

neous within districts. We have tested this possibility by con-

sidering a reduced total population of susceptibles, systematically

lower than that of the whole district, but obtained similar results

regarding immunity and rainfall. In a more complex situation,

high risk areas may shift their location from year to year, tending

to mask the effect of immunity at the more aggregated spatial level

of districts. Detection of immunity patterns in this case would

require analyses and data at higher spatial resolutions; although

they might still be effectively inconsequential at the aggregated

level of districts. The bimodal character of the likelihood surface

with two peaks, corresponding respectively to two different dura-

tions of immunity, raises the possibility that longer time series with

a higher number of interannual cycles may support an interaction

of rainfall with the nonlinear dynamics of the disease (via the

longer-lasting immunity). However, the analyses of the patterns

of variability generated by the model for these two peaks in

parameter space do not support this conjecture. Additional data

could be considered in future work by identifying multiple districts,

or different areas within districts, for which it is sensible to fit more

than one time series simultaneously.

Our second model follows naturally from the result that

immunity as included in a typical SEIRS framework, meaning

protection against disease and infection, appears negligible. The

better performance of the model with clinical immunity indicates

that a more complex representation of the epidemiological

dynamics is warranted, and further suggests the importance of

the contribution of asymptomatic infections to transmission,

especially as a reservoir during the low season. In particular, the

incorporation of two pathways, associated with more than one

time scale of the recovery to disease susceptibility, appears

warranted. This better performance is consistent with more

detailed models of malaria transmission in the literature that

consider the different effects or underlying mechanisms of

immunity in malaria (e.g. [24,26,39]). These are typically

confronted to age prevalence curves especially for endemic

regions; it is of interest here, that time series patterns per-se also

support a more complex structure of immunity than that typically

used for childhood diseases, and do so for an epidemic region.

Long time series patterns for malaria have not been analyzed

before from this perspective; they are of particular relevance in

epidemic regions where the interannual variation is high. It is also

of interest to note that most mathematical arguments on the role of

intrinsic disease dynamics in the interannual variability of

epidemic malaria (in highland regions) rely essentially on analytical

approaches related to dominant or resonant frequencies of SEIRS-

type models (e.g. [7,13]). The understanding of intrinsic

interannual cycles in infectious diseases in general is influenced

by the rich literature on this subject in childhood diseases that

confer full immunity (see [40]). The biology of malaria and our

results here suggest that such understanding is not likely to simply

transfer in a relevant way. The consideration of epidemiological

models in the analysis of population-level time series provides a

natural link to, and opens the door for, analytical approaches

[13,41] to malaria’s cycles based on empirical patterns.

However, we are here at the limit of model complexity that

retrospective data on a single epidemiological variable (the number

of cases) can support, as shown by the poor identifiability of specific

parameters, especially those associated with the duration of clinical

immunity. This is not surprising given the obvious trade-offs

between epidemiological parameters that become possible in this

more complex model: for example, individuals may remain for

shorter times in the infectious but clinically immune class if we

increase their contribution to the force of infection. Despite this

limitation, it is interesting that even for an epidemic region, where

transmission is intermittent and at its limit for disease persistence, we

can clearly improve the fit of the data by including asymptomatic

infections. The low estimate of the reporting rate also suggests the

possibility of a considerable number of asymptomatics and a larger

disease burden than reflected by the detected cases. Microscopy has

been shown to underestimate the diagnosis of malaria compared to

PCR (polymerase chain reaction) in similarly low prevalence

settings [42]. This may be particularly relevant in the Indian

context, as part of the slides examined for malaria are not obtained

from patients seeking medical care but from active surveillance (see

Methods).

In our model, the reservoir provided by infectious individuals

that lack severe symptoms plays a dynamical role primarily at

seasonal scales in the decay and trough of epidemics [29] rather

than at interannual ones, with the interannual signal in the data

largely captured by the variability of the rainfall forcing. Future

work with this more realistic model should consider independent

measurements of specific epidemiological parameters, as well as

the age distribution of clinical and non-clinical infections, to

constrain the dimensionality of the search. This would allow a

better understanding of the possible mechanisms and temporal

scales of a reservoir in transmission, given that class I2 plays two

different roles in this model that are difficult to separate: it

provides a reservoir for infection at low levels and for longer times

than the symptomatic class I1, while also keeping individuals

protected from clinical disease. Our results suggest that this

protection might be long lasting, once acquired, requiring only low

levels of re-infection (with a low value of the coefficient c). This

may reflect a low (antigenic) diversity of P. falciparum in these

regions of low transmission intensity. In its current formulation,

this kind of long-lasting protection is obtained by making I2 long

lasting with only a very small fraction q of individuals in this class

contributing to the force of infection. A more realistic formulation,

currently under investigation, would require and extension of the

model that incorporates more continuous levels of susceptibility

and infection without increasing model complexity.

Alternatives to our likelihood-based approach for inference on

nonlinear dynamic systems include spectral matching [43],

gradient matching [44] and Bayesian methodology [45,46]. Our

choice of likelihood-based methods was influenced by their

statistical efficiency (even in the face of poor estimability of some

parameters [47]), the availability of computationally efficient

numerical algorithms [21], and the lack of scientifically supported

prior distributions for a Bayesian analysis. However, alternative

methods could lead to complementary perspectives on data

analysis. All statistical methods can be expected to give valid

conclusions only when the model under consideration is adequate

for the investigation at hand. By comparing a range of models,

including empirical statistical models, we can be confident that our

mechanistic models have a reasonable level of statistical fit, even

once they are penalized for additional model complexity. We

cannot, however, rule out the possible existence of superior models

leading potentially to differing conclusions. Indeed, we hope and

expect that future work will refine the models that we have
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presented. We anticipate the development of a body of research

investigating and explaining fluctuations in epidemic malaria,

based on confronting dynamic models to population-level time

series data.

Finally, our results indicate the feasibility of forecasting malaria

epidemics in these desert and semi-arid regions of India based on

climate variability. Our epidemiological models including rainfall

exhibited high prediction skill for seasonal cases as a function of

monsoonal rainfall. This skill is comparable to, and even higher

than, that of a purely statistical model that incorporates a thres-

hold and increasing uncertainty with rainfall. Thus, these aspects

of the nonlinear response to climate variability, and not the

nonlinear dynamics of the disease itself, appear key to variation

and prediction of total epidemic size in these regions. However,

disease dynamics appear useful to predict the time course of the

epidemic curve, that is, the rise and fall of the individual outbreaks

following the monsoons. Future investigations should consider

other districts to encompass a larger geographic area, as well as the

effects of control efforts, socio-economic conditions, and related

land-use patterns including irrigation, to tackle the remaining

unpredictability in the size of large epidemics. Other aspects of

rainfall variability, in particular those pertaining to the monsoon

season, should be examined to consider not just short-term

prediction but possible implications of changes in the intensity and

frequency of extremes with climate change in India [48]. Longer

lead times for prediction should also be explored based on climate

dynamics and global scale drivers of rainfall.

Methods

The malaria data consists of monthly clinical cases from positive

slides of Plasmodium falciparum from 1987 to 2007 in Kutch and

from 1985 to 2005 in Barmer, two large semi-arid and desert

districts of North-West India in the states of Gujarat and

Rajasthan respectively (Figure 1A and Figure S3A; see also map

in Figure S1). The epidemiological data reported by the health

system are based on two mechanisms: (a) active surveillance on a

fortnight basis: collection of blood slides from fever patients by

house to house visits by a health worker and examination of these

slides for malaria parasites at the Primary/Community Health

Center of that area; (b) passive surveillance: examination of blood

slides from fever patients reporting directly to the Primary/

Community Health Center. Both types of data are pooled and

analyzed for each village. For this study, epidemiological data were

collected from the office of the District Malaria Officer.

Monthly accumulated rainfall for 20 years of data was obtained

from local weather stations (Figure S2). Monthly rainfall data were

supplied by the Indian Meteorological Department, Pune (India).

For Kutch rainfall was recorded at Bhuj located at 23 159 N, 69

499 E and for Barmer at a station located at 25 459 N, 71 259 E.

Time series for total population size were obtained via inter-

polation from census data available every 10 years, i.e., in 1990

and 2000.

For our malaria transmission models, we do not rely on the well-

known Ross-Macdonald formulation and its extensions [49,50]

because they assume that the human and mosquito populations

are constant, and track the respective fractions infected. In

epidemic regions, mosquito abundances are highly dynamic.

Malaria further differs from the well-known models of childhood

diseases such as measles that have been studied extensively on the

parameter inference front [45,51], in two ways: transmission by a

vector and more complex, waning patterns of immunity that have

been represented with different structures of the human popula-

tion (e.g. [25,26]). An innovative feature of our model is the

inclusion of a parsimonious representation of the vector dynamics

motivated by our inference goals. The stage k represents the latent

force of infection or latent per-capita rate of infection from an

infected to a susceptible human. This is not the realized force of

infection because a mosquito that acquires infection by biting an

infective or infectious human cannot immediately transmit the

disease through a second bite. The Plasmodium parasite needs to

first complete its incubation period, and to do so before the vector

dies. To account for the development of the Plasmodium parasite

among surviving mosquitoes, we introduce a second variable, l,

representing the current force of infection and consisting of the

latent infection lagged by a distributed delay. We specifically

consider Gamma-distributed transitions [52,53] for the latent

period of the force of infection, these are more flexible than the

more standard exponential and better suited to developmental

times that give rise to a (temperature-dependent) lower bound.

This parsimonious representation of the vector can be mapped

explicitly to, and derived from, the well-known parameters and

treatment of mosquitoes in standard malaria models, by rewriting

these models as non-autonomous with mosquito abundance as the

forcing (see Text S1).

By representing mosquito dynamics implicitly through a model

for the force of infection of humans, we avoid explicit con-

sideration of mosquito abundance, survival and behavior. In the

absence of mosquito data, we limit our inclusion of vector dyna-

mics to the aspect that is most directly relevant to the human

disease. We consider that the main stochasticity in this system

arises from variations in vector abundance and behavior, and

model this by forcing the rate of change of k with three different

sources of exogenous variability, namely seasonality, climate co-

variates (here rainfall), and random environmental noise (multi-

plicative Gamma noise) (see Text S1 for details). The form of the

climate covariate in this forcing is given by brRain tð Þ with

Rain tð Þ~max C tð Þ{h,0ð Þ, a function of the accumulated rainfall

C tð Þ over the past x months. Accumulated rainfall is given by

C tð Þ~
Ð t

t{x=12
r sð Þds where r sð Þ is a spline interpolation of the

discretely measured monthly rainfall. Here, h is a threshold for

accumulated rainfall, and br is a constant coefficient. From

preliminary investigations based on likelihood profiles, we selected

x~5 months and h~200mm for Kutch and Barmer. Seasonality

is modeled nonparametrically.

For the human component, we adopt first the well-established

practice of subdividing the population into the following distinct

classes: S, susceptible to infection (and disease); E, exposed (i.e.,

carrying Plasmodium parasites which have not yet matured into

gametocytes); I , infected and gametocytemic (infectious); and R,

recovered and protected from all but asymptomatic and negligibly

gametocytemic reinfections (Figure 2A). The total population size

P tð Þ is supposed known by interpolation from census, and

the birth rate into the susceptible class is set to ensure that

S tð ÞzE tð ÞzI tð ÞzR tð Þ~P tð Þ. We refer to this model hereafter

as VSEIRS (for the vector and population classes respectively). To

examine the robustness of our results, we consider then a more

complex representation of immunity that differentiates between

two classes of infected individuals, and in so doing, adds the

possibility of clinical immunity (Figure 2B, VS2EI2). This formu-

lation follows that of [25] and differentiates between susceptibility

to disease and infection [24]. It is one of several possible

representations that follow from the pioneer work of Dietz et al.

(1974) on malaria models that recognize different levels and roles

of immunity. We incorporate here two classes of infected indi-

viduals, corresponding to two levels of infection, for clinical and

asymptomatic cases, respectively. The latter retain the ability to

transmit to mosquitoes but at a reduced rate. Two classes of
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susceptibles allow us to differentiate individuals lacking protection to

clinical disease from those protected from disease but retaining

susceptibility to (asymptomatic) infection. Thus this model incor-

porates clinical immunity (classes S2 and I2) but does not allow for

the development of full immunity to infection; instead, individuals

can be re-infected and maintain in this way their protection to

disease. This is meant to represent in a simple way that immunity

to disease is acquired by repeated exposure [54,55], and its

maintenance depends on repeated re-infection [26,50,56–58]. The

model effectively introduces two pathways, and therefore, two

different temporal scales, for the acquisition and loss of immunity: a

first pathway between fully susceptible individuals and severe

infection and back, which allows for repeated symptomatic

infections and the resulting acquisition of protection from disease;

a second pathway through less severe infections, which potentially

allows for a longer lasting removal from the pool of individuals

susceptible to disease. Sustaining clinical immunity (by keeping

individuals in this pathway) would require very different levels of re-

infection (from S2 to I2) in different regions depending on the

parasite’s (antigenic) diversity and therefore, on transmission

intensity. In epidemic regions, where such diversity is presumably

low, the rate of repeated re-infections would also be low but

individuals may be nevertheless effectively protected from clinical

disease for a long time once they have transitioned to asymp-

tomatic infection because they have been exposed to much of the

existing diversity. The corresponding system of stochastic differ-

ential equations and details on the seasonal and stochastic forcing

are given in Text S1.

To complete the model, we need to specify the relationship

between the continuous-time dynamic system S tð Þ, E tð Þ, I tð Þ,f
R tð Þ, k tð Þ, l1 tð Þ, . . . , l nl{1½ � tð Þ, l tð Þg and the data on monthly

reported malaria cases y1, . . . ,yN at the discrete set of observation

times t1, . . . , tN . We assume that, on average, a fraction r of the

people moving from class E to class I are detected by the

surveillance system. Specifically, we model yn conditional on the

history of the dynamic system as

yn*Negbin Mn, s2
obs

� �
for Mn~r

ðtn

tn{1

mEI E sð Þds, ð1Þ

where Negbin a, bð Þ is the negative binomial distribution with

mean a and variance aza2b. The negative binomial distribution

provides a model for count data that includes the possibility of

overdispersion relative to Poisson or binomial models, and permits

both under-reporting and over-reporting. To estimate parameters

but also to compare among different models representing different

hypotheses on the origin of the interannual variation of malaria

epidemics, we used a recently developed likelihood-based infer-

ence technique for stochastic differential equations based on

iterating filtering, a sequential Monte Carlo optimization method

[21,22,51]. The method allows the comparison of different mech-

anistic models that include stochasticity, non-linearity, and non-

observed states (see Text S1). The algorithm is briefly explained

and summarized in Text S1. We implemented iterated filtering via

the mif function of the R package pomp [59], which carries out the

algorithm detailed in the supplement to [22].

To investigate the information in the data about specific

parameters, in the absence of constraints on other parameters, we

used profile likelihood methods. The confidence intervals resulting

from these profiles are based on likelihood ratio tests. Thus, our

confidence intervals enjoy the properties of likelihood ratio tests

and are in particular robust to weak identifiability of other

parameters [47]. Of course, inasmuch as the parameter itself is

weakly identified, its profile will be flat and its confidence interval

wide.

To investigate forecasting, we focus on the task of predicting the

total malaria incidence in the peak transmission months of

September through December based on information available at

the end of August. We challenge the different models to predict the

reported incidence rather than the actual number of cases: the

former measures the burden on the public health services and the

latter is an unobserved quantity which is linked to the reported

cases through an unknown reporting rate. We compare mecha-

nistic models with and without rainfall, a linear prediction based

on accumulated rainfall during the May through August monsoon

season, and a nonlinear mixture model where the chance of the

epidemic component of the mixture depends on accumulated

rainfall [60]. The main idea of the mixture model is to capture the

threshold response of cases as a function of an environmental

covariate (here, rainfall), and allow for different means and

variances as a function of this covariate. We constructed a mixture

model motivated by [60] in which the Poisson mixture com-

ponents of [60] were replaced with a negative binomial distri-

bution (see details in Text S1). This overdispersed distribution is

better suited to the large variance of the data (Figure 1C and

Figure S3C), given the limitation that the variance equals the

mean imposed by a Poisson distribution. The predictive ability of

the models was evaluated retrospectively in two different ways:

first, prediction skill was measured by comparing for each season

the error of the model’s prediction to that of a trivial and

uninformative model that simply predicts the mean total cases,

with both errors normalized by a variance (see Text S1). This tells

us how much better is our ability to predict than that of trivially

using the mean. A value close to one indicates high prediction skill,

whereas a value close to zero or even negative indicates poor skill.

The second approach is based on likelihoods and evaluates how

likely the observed total number of cases is for a given season,

given forecasts from the different models. This approach is

illustrated in detail in Text S1 and Figure S4.

To examine the dominant temporal scales present in the

observed and simulated time series, we used wavelet analysis (e.g.

[27,28]). The wavelet spectrum differs from its predecessor, the

Fourier power spectrum, in that it describes the distribution of the

variance in the data not just as a function of the different

frequencies but also as a function of their localization in time. This

is achieved by decomposing the signal with a family of functions

(wavelets) whose support is local, and differs in this way from the

sines and cosines of Fourier analysis. The local nature of the

wavelet power spectrum makes it better suited to characterize

patterns of variability whose dominant periods change over time.

See Cazelles et al. [27] for a detailed explanation of wavelet

analysis in the context of population dynamics, and [28] for an

application to epidemiology.

Supporting Information

Figure S1 Studied districts in Northwest India.

Found at: doi:10.1371/journal.pcbi.1000898.s001 (2.80 MB TIF)

Figure S2 Seasonality of rainfall and reported cases for Kutch,

1987–2007. (A) Superimposed monthly rainfall; (B) Superimposed

monthly cases. Some extreme years are highlighted: 1988 in black,

1989 in red, 1992 in green, 1994 in orange, and 2003 in blue.

Found at: doi:10.1371/journal.pcbi.1000898.s002 (0.72 MB TIF)

Figure S3 Malaria cases and rainfall for Barmer (c.f. Figure 1 for

Kutch). (A) Monthly P. falciparum malaria reported cases (red) and

monthly rainfall from local stations (black) for Barmer. (B) The

Desert Malaria and Monsoon Rains

PLoS Computational Biology | www.ploscompbiol.org 10 September 2010 | Volume 6 | Issue 9 | e1000898



same rainfall data is shown here with the monthly malaria cases in

a logarithmic scale, which emphasizes the patterns of the

outbreaks other than the extreme event of 1994–1995. (C)

Correlation between accumulated rainfall in the previous months

to the months of the cases. A maximum is observed when rainfall

is accumulated for 4 to 6 months (D) Correlation between

accumulated cases in the previous five months to the month of the

cases. A threshold non-linear response of cases to accumulated

rainfall can be noticed, with a threshold of around 200mm.

Found at: doi:10.1371/journal.pcbi.1000898.s003 (1.08 MB TIF)

Figure S4 Prediction likelihood density for the year 2006 and

the VSEIRS model with rainfall. The histogram is produced from

one thousand simulations. Red line shows a kernel density estimate

using a bandwith of 0.45 and a gaussian kernel. Given a value of

observed cases (on x axis), we can use this curve to determine its

likelihood when predicting with a given model (on the y axis).

Found at: doi:10.1371/journal.pcbi.1000898.s004 (1.47 MB TIF)

Figure S5 Reported monthly malaria cases (red) and simulations

for Barmer (1985–2005) in a logarithmic scale. Black lines show

the median of ten thousand simulations; the shadowed regions

correspond to the range between the 10% and 90% percentiles of

the simulations. (A) VSEIRS model with rainfall; (B) VSEIRS

model without rainfall.

Found at: doi:10.1371/journal.pcbi.1000898.s005 (1.08 MB TIF)

Figure S6 Profile likelihood plot of the duration of immunity 1/

mRS. The upper panel corresponds to Kutch; the lower one, to

Barmer. Red and blue represent the models with and without

rainfall respectively. The dashed vertical lines construct approx-

imate 95% confidence intervals. (A) For Kutch, the duration of

immunity is estimated to fall in the interval (0.02,1) or (4.10,5.86)

years for the VSEIRS model with rainfall, and (0,23.71) years for

the VSEIRS model without rainfall. (B) For Barmer, the duration

of immunity is estimated to lie in the interval (0.43,6.76) years for

the VSEIRS model with rainfall and is not estimable for the

VSEIRS model without rainfall (i.e., the profile is effectively flat).

Found at: doi:10.1371/journal.pcbi.1000898.s006 (1.08 MB TIF)

Figure S7 Profile likelihood plot of reporting rate (r) for Kutch

(upper panel) and Barmer (lower panel), for the VSEIRS model

with rainfall. The dashed vertical lines construct approximate 95%

confidence interval. (A) The estimated reporting rate is between

0.3 and 1.9 percent of new infections for Kutch. (B) The estimated

reporting rate is between 0.7 and 4.5 percent of new infections for

Barmer.

Found at: doi:10.1371/journal.pcbi.1000898.s007 (1.08 MB TIF)

Figure S8 Profile likelihood plot for the mean duration of the

delay between the latent and the current force of infection, for

Kutch (upper panel) and Barmer (lower panel), for the VSEIRS

model with rainfall. The dashed vertical lines construct approx-

imate 95% confidence interval. (A) The estimated delay t is

between 4 and 30 days for for Kutch. (B) The estimated delay t is

between 16 and 39 days for Barmer.

Found at: doi:10.1371/journal.pcbi.1000898.s008 (1.08 MB TIF)

Figure S9 Intermediate model: Reported monthly malaria cases

(red) and simulations. Black lines show the median of ten thousand

simulations; the shadowed regions correspond to the range

between the 10% and 90% percentiles of the simulations. (A)

Kutch; (B) Barmer.

Found at: doi:10.1371/journal.pcbi.1000898.s009 (1.08 MB TIF)

Figure S10 Profile likelihood plot for the mean duration of the

delay between the latent and the current force of infection, for

Kutch for the VS2EI2 model with rainfall. The dashed vertical

lines construct approximate 95% confidence interval. The

estimated delay, t, is between 6.2 and 28.4 days.

Found at: doi:10.1371/journal.pcbi.1000898.s010 (1.47 MB TIF)

Figure S11 Hindcast predictions for the time course of

epidemics for Kutch. The malaria data are shown in red.

Superimposed on these observations, we show the mean of

predicted cases from one to four months ahead obtained by

simulating the VS2EI2 model from (1) the end of August (solid dots

in blue) and (2) the end of December (solid dots in green).

Shadowed regions in respective colors correspond to the standard

deviation from a set of 5000 predicted values. (A) VS2EI2 model

with rainfall; (B) VS2EI2 model without rainfall. (see further details

in the caption of Figure 4).

Found at: doi:10.1371/journal.pcbi.1000898.s011 (1.47 MB TIF)

Figure S12 Wavelet power spectra for simulations, malaria cases

and rainfall in Kutch. On the left panels, the y-axis corresponds to

the period in years and the x axis, to time. The colors code for the

value of the power for a given time and period, from low values in

dark blue, to high values, in dark red. The black continuous line

gives the boundary within which these values are not influenced by

edge effects and are therefore considered reliable, i.e. the cone of

influence. The respective right panel represents the global power

spectrum (obtained by averaging the wavelet spectrum over time),

and is therefore, comparable to a Fourier spectrum. The white

lines track the local maxima of the power in the wavelet spectrum.

The discontinuous black line corresponds to the 5% significance

level (obtained by a bootstrap significance test detailed in Cazelles

et. al. 2007): the areas within this line indicate significant

variability at the corresponding periods and times. A) Simulation

from the MLE of the VS2EI2 model with rainfall. B) P. falciparum

malaria cases. C) Rainfall.

Found at: doi:10.1371/journal.pcbi.1000898.s012 (1.23 MB TIF)

Figure S13 Wavelet power spectra for simulations from

VSEIRS models. See caption of Figure S12 for details. A)

Simulation from the maximum likelihood solution (MLE) of the

SEIRS model without rainfall. B) Simulation from the SEIRS

model with rainfall with the MLE in the short immunity region

(immunity = 1.2 months; log-likelihood = 21265.0). C) Simulation

from the SEIRS model with rainfall with the MLE in the long

immunity region (immunity = 5 years; log-likelihood = 21266.8).

Found at: doi:10.1371/journal.pcbi.1000898.s013 (1.10 MB TIF)

Table S1 Table of log-likelihood l and AIC of the fitted models

for Kutch and Barmer. In the table ‘‘p’’ denotes the number of

parameters for each model. AIC is computed by the formula

AIC = 22 l + 2p. The SARIMA model was fitted to the data on

the log scale (see the supplement of He et. al. 2010 for a detailed

description of this procedure).

Found at: doi:10.1371/journal.pcbi.1000898.s014 (0.03 MB PDF)

Table S2 List of symbols for the malaria model. Fixed

parameters are b= 1 yr21, nl = 1, D= 1 day and 1/d= 50 yr.

Found at: doi:10.1371/journal.pcbi.1000898.s015 (0.03 MB PDF)

Table S3 Estimated model parameters for Kutch. Correspond-

ing units and parameter descriptions are given in Table S2. The

columns marked VSEIRS and VS2EI2 correspond to maximum

likelihood point estimates for each type of model, with and without

including rainfall. The last two columns give the lower and upper

bounds for approximate 95% confidence intervals for the VS2EI2

model with rainfall, derived from profile likelihood computations

as shown in Figures S7 and S8; values of 0, 1 and ‘ correspond to

confidence intervals extending to the boundary of the parameter

space.
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Found at: doi:10.1371/journal.pcbi.1000898.s016 (0.05 MB PDF)

Table S4 Point estimates for estimated parameters of the

VSEIRS model with and without rainfall for Barmer district.

Corresponding description and units are given in Table S2.

Found at: doi:10.1371/journal.pcbi.1000898.s017 (0.03 MB PDF)

Text S1 Supporting Information online.

Found at: doi:10.1371/journal.pcbi.1000898.s018 (0.12 MB PDF)
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